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Abstract
Background Immunosuppression is a significant factor contributing to the poor prognosis of cancer. S100P, 
a member of the S100 protein family, has been implicated in various cancers. However, its role in the tumor 
microenvironment (TME) of pancreatic cancer remains unclear. This study aimed to investigate the potential impact of 
S100P on TME characteristics in patients with pancreatic cancer.

Methods Multiple data (including microarray, RNA-Seq, and scRNA-Seq) were obtained from public databases. 
The expression pattern of S100P was comprehensively evaluated in RNA-Seq data and validated in four different 
microarray datasets. Prognostic value was assessed through Kaplan-Meier plotter and Cox regression analyses. 
Immune infiltration levels were determined using the ESTIMATE and ssGSEA algorithms and validated at the single-
cell level. Spearman correlation test was used to examine the correlation between S100P expression and immune 
checkpoint genes, and tumor mutation burden (TMB). DNA methylation analysis was performed to investigate the 
change in mRNA expression. Reverse transcription PCR (RT-PCR) and immunohistochemical (IHC) were utilized to 
validate the expression using five cell lines and 60 pancreatic cancer tissues.

Results This study found that S100P was differentially expressed in pancreatic cancer and was associated with 
poor prognosis (P < 0.05). Notably, S100P exhibited a significant negative-correlation with immune cell infiltration, 
particularly CD8 + T cells. Furthermore, a close association between S100P and immunotherapy was observed, as 
it strongly correlated with TMB and the expression levels of TIGIT, HAVCR2, CTLA4, and BTLA (P < 0.05). Intriguingly, 
higher S100P expression demonstrated a negative correlation with methylation levels (cg14323984, cg27027375, 
cg14900031, cg14140379, cg25083732, cg07210669, cg26233331, and cg22266967), which were associated with 
CD8 + T cells. In vitro RT-PCR validated upregulated S100P expression across all five pancreatic cancer cell lines, and 
IHC confirmed high S100P levels in pancreatic cancer tissues (P < 0.05).

Conclusion These findings suggest that S100P could serve as a promising biomarker for immunosuppressive 
microenvironment, which may provide a novel therapeutic way for pancreatic cancer.
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Introduction
Pancreatic cancer is a highly lethal disease worldwide 
with a mortality rate that closely parallels its incidence 
[1]. In the United States and Europe, it ranks as the third 
and fourth leading causes of cancer-related mortality, 
respectively. [2, 3]. Despite some improvement, the five-
year relative survival rate remains low at only approxi-
mately 10% [4]. Early diagnosis and treatment have been 
shown to reduce surgical complications, disease recur-
rence, and clinical deterioration, and improve survival 
rates. Therefore, it is of paramount importance to deter-
mine the etiology mechanisms and explore more effective 
treatment strategies.

In recent years, immunotherapy and targeted thera-
pies have brought revolutionary progress in the therapy 
of various cancer types, including melanoma [5], lung 
cancer [6], and colorectal cancer [7]. However, the results 
have not been promising in patients with pancreatic can-
cer. This difference may be correlated with the higher 
TME heterogeneity of pancreatic cancer, particularly its 
highly desmoplastic stroma and immunosuppressive cell 
populations [8, 9]. The TME has been shown to inacti-
vate the ability of cytotoxic T cells to eliminate tumor 
cells [10], and CD8 + T cells, the central subpopulation 
of cytotoxic T lymphocytes, are primarily responsible for 
eliminating tumor cells [10]. Therefore, a comprehensive 
analysis of TME might reveal the mechanisms of resis-
tance to immunotherapy, which may provide the basis 
for pancreatic cancer immunology and opportunities to 
improve survival [11]. Immunomodulatory factors are 
vital to immunotherapy, and more profound research on 
the TME of pancreatic cancer will provide a new theo-
retical basis for the development of immunotherapy.

Numerous studies have demonstrated that S100P is an 
oncogenic gene involved in many types of tumors, such 
as breast cancer [12], gastric cancer [13], and pancreatic 
cancer [14]. However, the current literature provides lim-
ited insights into the possible role of S100P in the regu-
lation of the TME in pancreatic cancer. Therefore, this 
study was designed to explore the potential biological 
mechanisms and regulation of S100P in the pancreatic 
cancer microenvironment. The main objective of this 
study is to enhance our understanding of the immuno-
modulatory effects of S100P in pancreatic cancer, and 
potentially leverage its role in improving the effectiveness 
of immunotherapy.

Materials and methods
Data collection and pre-processing
In this study, multiple datasets were utilized to per-
form comprehensive analyses. Specifically, microarray, 

RNA-Seq, and scRNA-Seq datasets were selected to 
evaluate different aspects of the research question. The 
datasets were obtained from various public repositories, 
including the GEO (https://www.ncbi.nlm.nih.gov/gds/), 
the ArrayExpress (https://www.ebi.ac.uk/arrayexpress/), 
CCLE (https://sites.broadinstitute.org/ccle), and UCSC 
Xena (https://xenabrowser.net/datapages/). More spe-
cifically, GSE28735, GSE15471, GSE16515, GSE71729, 
and GSE155698 were retrieved from the GEO database, 
while E-MTAB-6134 was downloaded from ArrayEx-
press. RNA-Seq data were collected from cellular and tis-
sue levels through CCLE and UCSC Xena, respectively. 
In line with a prior publication, the same procedures for 
microarray pre-processing were implemented [15].

Overview of S100P in pan-cancer and pancreatic cancer
The expression of S100P was initially examined in 33 
solid tumor types using the GEPIA tool (http://gepia.
cancer-pku.cn/) [16]. To assess S100P expression at the 
cellular level, we analyzed its expression in 31 cancer 
types using CCLE data. We then validated the expres-
sion levels of S100P in four different microarray datasets 
(GSE28735, GSE15471, GSE16515, and GSE71729) using 
the “limma” package. Clinical characteristics were subse-
quently analyzed in relation to S100P expression levels, 
and survival statistics for S100P were calculated using 
the “survival” package in multiple cancer cohorts and 
further validated in E-MTAB-6134. To explore the role 
of S100P in pancreatic cancer progression, we examined 
its expression levels in different TNM stages and KRAS 
mutation states.

Assessment of the correlation between S100P and tumor 
microenvironment
Firstly, the ESTIMATE algorithm [17] was employed to 
calculate the TumorPurity (proportion of cancer cells in 
the tumor tissue), StromalScore (proportion of stromal 
ingredient), ImmuneScore (proportion of immune ingre-
dient), and ESTIMATEScore (sum of the ImmuneScore 
and StromalScore) for each pancreatic cancer sample. 
The correlation between these scores and S100P expres-
sion was subsequently evaluated. Next, single-sample 
gene set enrichment analysis (ssGSEA) was implemented 
to quantify the scores of 29 immune-related signatures 
in the datasets E-MTAB-6134 and GSE71729 via the 
“GSVA” package. The infiltration levels between the high- 
and low-expression groups were investigated based on 
the median of S100P expression. The correlation between 
S100P expression and CD8 + T cells was validated 
using five algorithms, including CIBERSORT, TIMER, 
MCP-counter, quanTIseq, and xCell. Additionally, the 
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“ImmuneSubtypeClassifier” package was employed to 
calculate the six immune subtypes (C1: wound healing, 
C2: IFN-γ dominant, C3: inflammatory, C4: lymphocyte 
depleted, C5: immunologically quiet, and C6: TGF-β 
dominant) [18]. The correlation between these immune 
subtypes and S100P expression was evaluated using pre-
viously processed data [15].

Analysis of S100P in pancreatic cancer using scRNA-Seq 
data
S100P expression in the TME of pancreatic cancer 
was validated at the single-cell level using CRA001160 
and GSE154778, with analysis conducted through the 
TISCH2 web (http://tisch.comp-genomics.org/) [19]. 
Then, we downloaded and reanalyzed the GSE155698 
dataset, which includes seventeen primary pancreatic 
cancer samples. The dataset was subjected to quality 
control and processed using standardized protocols in 
the “Seurat” and “DoubletFinder” packages. The “har-
mony” package was also utilized to correct batch effect; 
the identities of cell types were characterized based on 
CellMarker 2.0 webserver (http://bio-bigdata.hrbmu.edu.
cn/CellMarker/) [20]. Finally, to validate the relationship 
between the immune cell infiltration and S100P expres-
sion at the single-cell level, the proportions of these cells 
were calculated according to the S100P expression level.

Examining the relationship between S100P expression and 
immunotherapy
Previous results have indicated an inverse correlation 
between S100P and CD8 + T cells, highlighting the poten-
tial of S100P in immunotherapy. Hence, we used two 
datasets, E-MTAB-6134 and TCGA-PAAD, to explore 
the correlation between S100P expression and immune 
checkpoint molecules (PD-1/CD274, CTLA4, IDO1, 
BTLA, LAG3, TIM-3/HAVCR2, TIGIT). The RNA-
Seq data from TCGA was also utilized to compute the 
tumor mutation burden (TMB), and the Spearman cor-
relation coefficient was used to determine the correla-
tion between S100P expression and TMB expression. 
Finally, patients with pancreatic cancer were divided into 
high and low S100P expression groups according to the 
median value. We utilized “maftools” packages to observe 
the difference in mutated genes between the two groups 
[21].

Exploring the correlation between S100P expression and 
DNA methylation levels
Investigating the potential causes of the increased S100P 
expression in patients with pancreatic cancer is of para-
mount importance. DNA methylation is acknowledged as 
a well-established mechanism for regulating gene expres-
sion [22]. Accordingly, we sought to investigate the rela-
tionship between DNA methylation and the expression 

of S100P by utilizing the MEXPRESS database (https://
www.mexpress.be/). Furthermore, we aimed to explore 
the association between significant DNA methylation 
and infiltration levels of CD8 + T cells using Spearman 
correlation algorithm.

Cell culture, RNA extraction, and reverse transcription PCR 
(RT-PCR)
This study extracted total RNA from five types of pan-
creatic cancer cell lines (PANC-1, SW1990, BxPC-3, 
Capan 1, and AsPC-1), and its quality was assessed 
using an ND-1000 spectrophotometer (NanoDrop Tech-
nologies; Thermo Fisher Scientific, Inc). Next, cDNA 
was synthesized, and RT-PCR was performed using 
Applied Biosystems (Thermo Fisher Scientific, Inc). The 
primer sequences used were as follows: S100P, forward, 
5’-GCACCATGACGGAACTAGAGACA-3’ and reverse, 
5’-CAGGTCCTTGAGCAATTTATCCAC-3’; GAPDH, 
forward, 5’-GCACCGTCAAGGCTGAGAAC-3’ and 
reverse, 5’-TGGTGAAGACGCCAGTGGA-3’. Finally, 
the relative expression abundance was determined using 
the ΔCt(S100P-GAPDH) method.

Immunohistochemistry
Thirty patients with a pathological diagnosis of pancre-
atic cancer underwent radical surgery, and thirty adjacent 
tissues were carried out to assess the S100P expression at 
the protein level. First, the sections were deparaffinized 
and rehydrated. Next, it was incubated with polyclonal 
anti-S100P antibody (1:10000 dilution) (proteintech, 
11283-1-AP), log2(H-score) was used to quantify S100P 
expression from immunohistochemistry images. Then, 
the expression of S100P protein was assessed in 137 pri-
mary tumors and 74 normal tissues using the UALCAN 
platform (http://ualcan.path.uab.edu/index.html) [23].

Results
Pan-cancer expression pattern, prognostic significance, 
and clinical correlation of S100P
In pan-cancer, it was found that S100P was more 
highly expressed in breast cancer(BRCA), cervical 
cancer(CESC), colon cancer(COAD), liver cancer(LIHC), 
lung adenocarcinoma(LUAD), pancreatic cancer(PAAD), 
rectal cancer(READ), endometrioid cancer(UCEC), 
and uterine carcinosarcoma(UCS), but lower in large 
B-cell lymphoma(DLBC), prostate cancer(PRAD), 
melanoma(SKCM), thyroid cancer(THCA), and 
thymoma(THYM) (Fig.  1A), especially in PAAD (Fig-
ure S1). Four microarray datasets provided validation 
results that supported the notion that tumor tissues 
exhibited higher expressions of S100P as compared to 
non-tumor samples (Fig. 1B). Moreover, cellular analysis 
of S100P expression among thirty different types of can-
cer cells showed a significant trend of high expression 
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Fig. 1 Overview of S100P in human cancers. (A) Assessment of S100P expression in tumor and adjacent tissues using the TCGA and GTEx databases. (B) 
Validation of S100P expression in GSE28735, GSE15471, GSE16515, and GSE71729. (C) Evaluation of S100P expression in pan-cancer cells using the CCLE 
dataset. (D) Estimation of the prognostic value of S100P in different cancer types using cox regression analysis. (E) Validation of the prognostic value of 
S100P using the E-MTAB-6134 dataset. (F-G) Comparison of S1000P expression in pancreatic cancer samples with different KRAS mutation statuses using 
the TCGA-PAAD and E-MTAB-6134 databases. **: P < 0.01, ***: P < 0.001
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in PAAD (Fig.  1C). Survival analysis identified that higher expression of S100P was statistically linked 

Fig. 2 The correlation between S100P expression and Tumor Purity, Stromal Score, Immune Score, and ESTIMATE Score, as well as differential analysis 
based on the median of S100P expression. (A) E-MTAB-6134 dataset. (B) GSE71729 dataset. TumorPurity: proportion of cancer cells in the tumor tissue, 
StromalScore: proportion of stromal ingredient, ImmuneScore: proportion of immune ingredient, ESTIMATEScore: sum of the ImmuneScore and Stro-
malScore. *: P < 0.05, **: P < 0.01, ***: P < 0.001
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with poor survival in five cancers (Fig.  1D), includ-
ing PAAD, glioma(GBMLGG), LUAD, LIHC, adreno-
cortical carcinoma(ACC) with 1.18(95% CI 1.08,1.28), 
1.12(95% CI 1.04,1.20), 1.07(95% CI 1.02,1.12), 1.05(95% 
CI 1.00,1.09), 1.13(95% CI 1.01,1.28), significantly in 
PAAD, and this finding was validated in E-MTAB-6134 
with identical results (Fig.  1E). In the clinical aspect, 
the expression of S100P was associated with KRAS 
mutation in TCGA-PAAD and E-MTAB-6134 datasets 
(Fig.  1F&G). Notably, the mRNA expression of S100P 
was significantly increased in patients with stage II-IV 
compared to patients with stage I, suggesting that S100P 
may potentially contribute to the progression of pancre-
atic cancer (Figure S2). Furthermore, according to the 
pathway analysis from TISIDB, S100P was involved in 
three pathways: immune system, innate immune system, 
and neutrophil degranulation (http://cis.hku.hk/TISIDB/
browse.php?gene=S100P).

S100P expression in pancreatic cancer negatively 
correlates with immune infiltration
After calculating TumorPurity, StromalScore, Immu-
neScore, and ESTIMATEScore, a subsequent analysis 
revealed a negative correlation between S100P and Stro-
malScore, ImmuneScore, and ESTIMATEScore, whereas 
a positive correlation was observed with TumorPurity in 
E-MTAB-6134 dataset (Fig.  2A). This pattern was simi-
larly observed in GSE71729 dataset (Fig.  2B). Notably, 
immune scores indicated that samples with high levels 
of S100P expression had significantly lower immune-
infiltrating values. This trend was particularly notable 
in CD8 + T cells in E-MTAB-6134 and GSE71729 datas-
ets (Fig. 3A&B). Five methods were used to validate the 
above findings, all of which revealed a significant negative 
association between S100P expression in pancreatic can-
cer tissues and CD8 + T cell infiltration. The correlation 
coefficients obtained were − 0.307, -0.193, -0.282, -0.419, 

Fig. 3 The landscape of the TME in pancreatic cancer and the characteristics of different S100P subgroups. (A-B) Proportions of various TME cells were 
analyzed using E-MTAB-6134 and GSE71729 datasets, and the immune score of the two subgroups is illustrated by scattered dots. (C) The correlation be-
tween S100P expression level and CD8 + T cells in pancreatic cancer using five different algorithms. (D) The analysis of immune subtypes was conducted 
using E-MTAB-6134 dataset. *: P < 0.05, **: P < 0.01, ***: P < 0.001
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and − 0.334, respectively (Fig. 3C). Furthermore, patients 
with pancreatic cancer were predominantly enriched in 
the C3 subtype, in which low expression of S100P was a 
noteworthy trend (Fig.  3D). Finally, we employed RNA-
Seq data from TCGA to verify these findings and found 
consistent results through TISIDB (Figure S3).

S100P expression in pancreatic cancer associated with 
tumor microenvironment at the single cell level
At the single-cell level, S100P has been found to be 
closely associated with the TME of pancreatic can-
cer, as demonstrated by the results of CRA001160 and 
GSE154778 datasets. The expression of S100P was signif-
icantly higher in malignant cells compared to non-malig-
nant cells in these datasets (Fig. 4). Further analysis of the 
GSE155698 dataset, which included 41,378 cells from 17 
tumor samples, revealed that high expression of S100P 
was also predominantly observed in malignant cells 
(Fig. 5A). Interestingly, the percentage of immune-related 

cells, such as B cells, CD4 + T cells, CD8 + T cells, den-
dritic cells, endothelial cells, macrophages, mast cells, 
monocytes, NK cells, and plasma cells, was significantly 
lower in the group with higher expression of S100P com-
pared to the group with low expression. Conversely, the 
proportion of malignant cells was higher in the group 
with high S100P expression (Fig. 5B).

Higher S100P expression correlates with reduced response 
to immunotherapy
The results of the TMB analysis revealed a significant 
positive correlation between TMB and S100P expres-
sion (R = 0.47, P < 0.05); notably, the high S100P expres-
sion group had a higher TMB value compared to the low 
expression group (Fig. 6A). Moreover, the mutation genes 
for the two groups were found to be distinct (Fig. 6C&D). 
Analysis of the expression of immunotherapy-related 
genes (IRGs) revealed a negative correlation between 
S100P expression and TIGIT, LAG3, IDO1, CTLA4, 

Fig. 4 Analysis of S100P expression and immune cell infiltration in CRA111160 and GSE154778. (left) The UMAP plots of diverse cell types in pancreatic 
cancer tissues colored by major cell lineage. (right) Expression distribution of S100P in all cell types
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PD-1/CD274, and BTLA in the E-MTAB-6134 dataset. 
In the TCGA-PAAD dataset, S100P expression was nega-
tively correlated with TIGIT, BTLA, TIM-3/HAVCR2, 
CTLA4, and BTLA (Fig. 6B). These findings suggest that 
patients with higher S100P expression may not ben-
efit from immunotherapy due to the down-regulation of 
immune checkpoints and reduced CD8 + T cell infiltra-
tion in this group.

Overexpression of S100P negatively correlates with DNA 
methylation level
The expression of mRNA for the gene S100P was found 
to have a negative correlation with the methylation lev-
els of eight different probes: cg14323984, cg27027375, 
cg14900031, cg14140379, cg25083732, cg07210669, 
cg26233331, and cg22266967 (P < 0.001, r = -0.583; 
P < 0.001, r = -0.728; P < 0.001, r = -0.737; P < 0.001, r = 
-0.734; P < 0.001, r = -0.551; P < 0.001, r = -0.689; P < 0.001, 
r = -0.387; P < 0.001, r = -0.436; respectively; as shown in 

Fig. 5 Analysis of S100P expression and immune cell infiltration in GSE155698. (A) The UMAP plot of diverse cell types in pancreatic cancer(left) and the 
expression of S100P in all cell types(right). (B) The proportion of all cell types in high and low S100P groups
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Fig.  7). Additionally, these eight probes were found to 
have an association with CD8 + T cell infiltration (Fig. 8).

S100P overexpression at cellular and protein levels in 
pancreatic cancer
After conducting experiments and analyzing data, it was 
found that S100P expression is elevated in pancreatic 
cancer at both cellular and protein levels. RT-PCR results 
indicated the upregulation of S100P in five pancreatic 
cancer cell lines (Fig. 9), and immunohistochemistry test 
images revealed higher expression of S100P in pancreatic 
cancer tissues than in adjacent tissues (Fig. 10). Addition-
ally, the UALCAN dataset also demonstrated a significant 
increase in S100P expression in pancreatic cancer tissues, 
as compared to normal tissues (P < 0.05) (Figure S4).

Discussion
Pancreatic cancer is widely regarded as one of the most 
malignant tumors, and the study of the TME is of para-
mount importance for uncovering the regulatory fac-
tors of pancreatic cancer therapy. Thus, this study aims 
to examine the possible role of S100P in the TME of 
pancreatic cancer in a systematic manner. Our findings 
demonstrate that S100P is highly expressed in pancreatic 
cancer and significantly correlates with CD8 + T cells. The 
expression of S100P is assessed at single-cell levels and 
validated in vitro RT-PCR and IHC experiments. Our 
findings indicated that S100P can potentially contribute 
to the immunosuppressive microenvironment associated 
with pancreatic cancer.

Fig. 6 The association between S100P and immunotherapy. (A) The correction between S100P and TMB in pancreatic cancer. (B) The heatmap of S100P 
and immune checkpoint molecules expression level in E-MTAB-6134 and TCGA-PAAD datasets. (C) Waterfall plot of the top 20 most frequently mutated 
genes in S100P high- and low-expression groups. ***: P < 0.001
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S100P, a 95-amino-acid member of the S100 protein 
family, has been previously established to promote pan-
creatic cancer growth, metastasis, and invasion [24]. Lit-
erature has shown that S100P is involved in the processes 
of angiogenesis, immune evasion, and can inactivate p53 
[25, 26]. Recently, Zou et al. demonstrated that S100P 
was a novel immune-related biomarker and explored its 
prognostic significance [27]. Other members of the S100 
family, such as S100A2 [28], S100A5 [29] and S100A14 
[30] has been confirmed to be involved in the regula-
tion of immune microenvironment. In addition, Camara 
et al. proved that S100P inhibitors might provide a novel 
approach to treating pancreatic cancer [31]. However, the 
molecular mechanisms underlying the role of S100P in 

the TME remain poorly understood. We argue that the 
in-depth study of S100P can provide crucial insights and 
serve as the basis for the development of pancreatic can-
cer therapy.

Firstly, we comprehensively analyzed the S100P land-
scape in cancer, including its expression, survival, and 
clinical associations. Our results revealed diverse expres-
sion patterns of S100P across different cancer types, 
with high expression observed in pancreatic cancer and 
a correlation with poor prognosis. The credibility of 
these findings was strengthened through validation using 
multiple microarrays and CCLE datasets. Additionally, 
our analyses indicated that S100P expression is upregu-
lated in patients with KRAS mutation and II-IV stage, 

Fig. 7 The correlation of S100P expression and DNA methylation level
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suggesting its involvement in fundamental tumorigenic 
pathways in the pancreas. Enrichment analysis suggested 
a connection between S100P and immune-related signal-
ing pathways, with S100P being listed in the ImmPort 
database as a relevant gene. Given the impact of tumor-
infiltrating immune cells on cancer progression and ther-
apy [32], further investigation into the role of S100P in 
the tumor microenvironment and its potential for immu-
notherapy is imperative.

Next, our study aimed to investigate the potential role 
of S100P in the immune microenvironment of pancreatic 
cancer. Notably, our results revealed a negative correla-
tion between S100P expression levels and ImmuneScore, 
StromalScore, and ESTIMATEScore. Furthermore, we 
observed a significant association between increased 
S100P expression and reduced immune cell infiltration 
in two datasets. These findings suggest the involvement 
of S100P in immunosuppression-related pathways, indi-
cating its potential relevance as an immunologic marker 
in pancreatic cancer. We further employed five different 
algorithms to quantify CD8 + T cell proportion, which 
supported our earlier findings of increased S100P expres-
sion being associated with lower CD8 + T cell infiltra-
tion. Using three scRNA-Seq datasets, we consistently 
observed a reduction in immune cell populations, includ-
ing CD8 + T cells, CD4 + T cells, NK cells, B cells, and 
others, in patients with higher S100P expression. Previ-
ous studies have indicated that pancreatic cancer patients 
often exhibit low levels of tumor-infiltrating T cells, lead-
ing to poor response rates to immunotherapy [33]. Our 
analysis resonates with these findings, as we observed a 
high proportion of pancreatic cancer samples in the C3 
subtype, consistent with reports that inflammation is 
likely to be involved in regulating the immunosuppres-
sive microenvironment of pancreatic cancer [34]. Our 
data provide compelling evidence that S100P may play a 
crucial role in the remodeling of the TME and its associa-
tion with immune “cold” tumors. Hence, targeting S100P 
may offer a promising strategy to convert the tumor 
immunologically “hot” and trigger an anticancer immune 
response.

Fig. 9 The expression of S100P in four pancreatic cancer cells using RT-
PCR. ΔCt(S100P-GAPDH) ≦ 12 was regarded as high expression abundance

 

Fig. 8 The correlation of CD8 + T cell infiltration and eight DNA methylation probs using Spearman analysis

 



Page 12 of 14Hao et al. BMC Cancer          (2023) 23:997 

The tumor immune microenvironment (TIME) has 
been demonstrated to be imperative for tumor devel-
opment and clinical outcomes [35–37]. Thus, there is a 
possibility that therapeutic interventions targeting the 
TIME could serve as a promising immunotherapeutic 
approach for tumors [38]. To elucidate the potential of 
S100P as a pancreatic cancer immunotherapy, we ana-
lyzed the association between S100P expression and 
seven classic immune checkpoints in the TCGA-PAAD 
and E-MTAB-6134 cohorts. Our findings indicated 
that S100P was negatively linked with the expression of 
PD-1, CTLA-4, IDO1, and LAG-3. Moreover, the useful-
ness of TMB has already been established in predicting 
the response to cancer immunotherapy in numerous 
cancer types [39]. Our results showed that the correla-
tion between S100P and TMB was 0.47, highlighting the 
potential of S100P as a complementary biomarker for 
predicting immunotherapy efficacy. Although further 
studies are necessary to validate these findings, emerg-
ing evidence portrays S100P as a probable player in the 
immune microenvironment and response to pancreatic 
cancer immunotherapy.

The present discussion aims to elucidate the relation-
ship between S100P and the TME, which may be asso-
ciated with Ca2+ signaling. Previous investigations have 
highlighted that Ca2+ can trigger crucial pathways for 
tumorigenesis, such as cellular motility, proliferation, and 
apoptosis [40]. Correspondingly, S100P, a Ca2+ binding 
protein, has been implicated in TME remodeling [41]. 
Moreover, Ca2+ signaling has regulatory effects on T cells 
as identified by Schlunck et al., who discovered an inverse 
correlation between Ca2+ mobilization and cell prolifera-
tion in T cells [42]. Hence, we postulate that S100P may 
impede immune cell infiltration in the peritumoral com-
partment by exerting influence on Ca2+ signaling. Recent 

research has demonstrated that Ca2+ signaling may dis-
play anti-tumor efficacy via modulation of the immune 
microenvironment [43, 44]. For instance, Rong et al. 
discovered that MGP promotes CD8 + T cell exhaus-
tion in colorectal cancer by enriching intracellular free 
Ca2+ levels [45]. Furthermore, the mechanism of action 
of S100P may involve its interaction with the receptor 
for advanced glycation end products (RAGE) [46]. The 
interaction between S100P and RAGE can activate down-
stream signaling pathways, including Ca2+ signaling [47]. 
Additionally, RAGE has been reported to modulate the 
immune microenvironment by influencing the activa-
tion and function of immune cells, including T cells [48, 
49]. Various studies have shown that inhibitors targeting 
S100P can improve the effectiveness of pancreatic cancer 
therapy [46, 50, 51]. Thus, regulating S100P expression 
through inhibitors could facilitate TME remodeling and 
provide potential therapeutic interventions for pancre-
atic cancer.

The above analysis provided evidence to support the 
hypothesis that higher S100P expression is linked to 
immune resistance in pancreatic cancer patients. There-
fore, it is significant to investigate the underlying rea-
sons for this expression pattern. Our findings indicated 
no mutations in the S100P gene in pancreatic cancer 
patients, but its expression was closely connected to 
methylation status. These results were consistent with 
previous research, suggesting that epigenetic mecha-
nisms regulate S100P expression [52]. DNA methylation 
plays a critical role in the progression of cancer by induc-
ing “exhaustion” in cytotoxic T cells, and may be used 
in combination with current immunotherapies [53, 54]. 
Moreover, we identified eight DNA methylation probes 
of S100P potentially associated with the TME in pan-
creatic cancer, as these methylation sites were positively 

Fig. 10 The expression of S100P in 30 pancreatic cancer tissues and 30 adjacent tissues using immunohistochemistry
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correlated with CD8 + T cells. A recent study found that 
DNA methylation can be a predictive biomarker for 
response to immune checkpoint inhibitors [55]. Thus, 
downregulating the expression of S100P may enhance T 
cell immune activity and achieve anti-tumor immuno-
therapy objectives.

As far as we acknowledge, this study was the first com-
prehensive analysis to investigate the potential role of 
S100P in the immune microenvironment of pancreatic 
cancer. By incorporating various methodologies and 
in vitro validation, we obtained a multi-dimensional 
understanding of the involvement of S100P. However, 
some limitations of this study also warrant recognition. 
The relationship between S100P and the tumor envi-
ronment is mainly based on observed correlations, and 
further mechanistic studies are needed to establish cau-
sation and fully elucidate the role of S100P in restructur-
ing the tumor microenvironment in pancreatic cancer. 
Despite the lack of experimental validation and possible 
limitations, our study serves as a foundation for future 
investigations.

Conclusion
Our study suggested a potential association between 
S100P and the restructuring of the tumor microenviron-
ment in pancreatic cancer. The upregulation of S100P has 
been implicated in the immune dysfunction of pancreatic 
cancer, particularly in CD8 + T cells. Additionally, there 
is a potential for S100P to impact the regulation of pan-
creatic cancer through DNA hypomethylation. Further 
exploration of the molecular mechanisms underlying 
these findings should be conducted in future studies.
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