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Abstract
Lung adenocarcinoma (LUAD) is a common type of malignant tumor with poor prognosis and high mortality. In 
our previous studies, we found that estrogen is an important risk factor for LUAD, and different estrogen statuses 
can predict different prognoses. Therefore, in this study, we constructed a prognostic signature related to estrogen 
reactivity to determine the relationship between different estrogen reactivities and prognosis. We downloaded the 
LUAD dataset from The Cancer Genome Atlas (TCGA) database, calculated the estrogen reactivity of each sample, 
and divided them into a high-estrogen reactivity group and a low-estrogen reactivity group. The difference in 
overall survival between the groups was significant. We also analyzed the status of immune cell infiltration and 
immune checkpoint expression between the groups. We analyzed the differential gene expression between the 
groups and screened four key prognostic factors by the least absolute shrinkage and selection operator (LASSO) 
regression and univariable and multivariable Cox regression. Based on the four genes, a risk signature was 
established. To a certain extent, the receiver operating characteristic (ROC) curve showed the predictive ability of 
the risk signature, which was further verified using the GSE31210 dataset. We also determined the role of estrogen 
in LUAD using an orthotopic mouse model. Additionally, we developed a predictive nomogram combining the risk 
signature with other clinical characteristics. In conclusion, our four-gene prognostic signature based on estrogen 
reactivity had prognostic value and can provide new insights into the development of treatment strategies for 
LUAD.
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Introduction
Lung cancer is the most common malignancy and the 
leading cause of cancer-related death worldwide [1]. 
Non-small cell lung cancer (NSCLC) accounts for 85% of 
lung cancer and mainly comprises lung adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC) [2]. 
NSCLC cases occurring in non-smokers are more com-
mon among women than among men [3, 4]. Addition-
ally, female patients suffering from NSCLC were found 
to benefit less from the administration of immune check-
point inhibitors than control groups [5–8]. In a study, 
premenopausal women had a worse prognosis than men 
and postmenopausal women, suggesting that estrogen 
adversely affects the prognosis of lung cancer in pre-
menopausal women [9].

Estradiol (E2), estrone, and estriol are the three primary 
estrogens [10]. E2 strongly influences normal physiologi-
cal processes and the progression of numerous diseases 
[11, 12]. The known estrogen receptors include estro-
gen receptor α (ERα), estrogen receptor β (ERβ), and an 
orphan G-protein-coupled receptor (GPER) [13]. ERβ is 
highly expressed in the NSCLC tumors of both men and 
women, while the expression of ERα is low [14]. GPER 
expression in lung cancer cells and tumors is higher than 
that in normal lung tissues [15]. Estrogen acts by binding 
to these receptors [10]. Although the effects of estrogen 
on NSCLC have been extensively investigated, several 
issues remain unresolved [16–21]. In our previous stud-
ies, we found that estrogen can promote NSCLC pro-
gression, metastasis, and tyrosine kinase inhibitor (TKI) 
resistance [22–24]. However, these studies were limited 
to a single biomarker or small sample size, and the con-
clusions lacked accuracy and reliability. Therefore, deter-
mining the role of estrogen in lung cancer from different 
perspectives is necessary. A study based on bioinformat-
ics analysis identified several differentially expressed 
estrogen signaling pathway genes between tumor tissue 
and para-cancerous tissue [17]. Three genes were found 
to be related to the prognosis of lung cancer; however, 
the study did not analyze the correlations between estro-
gen reactivity and prognosis [17].

In this study, we analyzed differentially expressed genes 
(DEGs) and immune cell infiltration between different 
estrogen reactivity groups in LUAD using bioinformat-
ics methods. Then, we identified key prognostic genes 
and constructed a risk signature to predict the prognosis 
of LUAD patients by LASSO regression and univariable 
and multivariable Cox regression [25]. We performed in 
vivo experiments to further investigate the role of estro-
gen in the progression of LUAD. Finally, we developed a 
nomogram to predict the overall survival (OS) of LUAD 
patients.

Materials and methods
Data download
The gene transcriptome profiling data and the corre-
sponding clinical data on LUAD were downloaded from 
The Cancer Genome Atlas (TCGA) database (TCGA-
LUAD, https://portal.gdc.cancer.gov) and the Gene 
Expression Omnibus (GEO) database (GSE31210, https://
www.ncbi.nlm.nih.gov/gds) [26, 27]. Only LUAD patients 
with intact survival time and status were included in this 
study. Samples from the TCGA database were used as the 
training cohort, and the GSE31210 dataset [28] was used 
as the validation cohort. The clinical information of the 
patients in the two cohorts is presented in Table 1. Estro-
gen-related gene sets were collected from the hallmark 
gene sets in the Molecular Signatures Database (https://
www.gsea-msigdb.org/), which included Hallmark 

Table 1 Clinical characteristics of LUAD patients from TCGA and 
GEO databases

TCGA-LUAD
N = 509

GSE31210
N = 226

Vital status
Alive 326 (64%) 191 (85%)

Dead 183 (36%) 35 (15%)

Recurrence
Yes 64 (28%)

No 162 (72%)

Gender
Female 274 (54%) 121 (54%)

Male 235 (46%) 105 (46%)

Age (missing value: 10)
>=65 277 (54%) 62 (27%)

< 65 222 (44%) 164 (73%)

Clinical stage
Stage I 273 (54%) 168 (74%)

Stage II 122 (24%) 58 (26%)

Stage III 81 (16%)

Stage IV 25 (5%)

T stage
T1 171 (34%)

T2 272 (53%)

T3 45 (9%)

T4 21 (4%)

N stage
N0 329 (65%)

N+ 177 (35%)

M stage
M0 481 (95%)

M+ 24 (5%)

Smoking history
Yes 359 (71%) 111 (49%)

No 150 (29%) 115 (51%)

Malignancy history
Yes 82 (16%)

No 427 (84%)

https://portal.gdc.cancer.gov
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
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estrogen response early and Hallmark estrogen response 
late [29].

Classification of samples based on estrogen reactivity
All analyses were performed in the R software (ver-
sion 4.2.2; https://www.r-project.org/). The normalized 
enrichment score (NES) of each member in the hallmark 
gene sets was calculated by the gene set variation anal-
ysis (GSVA) method using the “GSVA” package in the 
TCGA-LUAD cohort [30]. Samples with an NES above 
the median for the Hallmark estrogen response early and 
Hallmark estrogen response late gene sets were placed in 
the high-estrogen reactivity group, and samples with an 
NES below the median in the two gene sets were placed 
in the low-estrogen reactivity group. The Kaplan-Meier 
(K-M) survival analysis was performed using the “sur-
vival” and “survminer” packages to evaluate the prog-
nostic differences between the groups. The heatmap of 
the results of GSVA was visualized using the “pheatmap” 
package and the differences in the estrogen-related gene 
set cluster were analyzed using the “ggpurb” package.

Differential expression and enrichment analysis
All analyses were performed in the R software (version 
4.2.2; https://www.r-project.org/). False discovery rate 
(FDR) adjustment was used when multiple testing adjust-
ment was applied. The DEGs between two estrogen reac-
tivity groups in the TCGA-LUAD cohort were identified 
using the “DESeq2” packages based on the thresholds of 
adjusted p-value < 0.05 and |log2-fold change (FC)| > 1 
[31]. The DEGs were visualized by the volcano plot using 
the “ggplot2” package. Then, Gene Set Enrichment Anal-
ysis (GSEA) based on hallmark gene sets, Gene Ontology 
(GO) enrichment analysis, and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis were 
performed using the “clusterProfiler” package [32, 33]. 
The enrichment was considered to be statistically signifi-
cant at an adjusted p-value < 0.05. The enrichment results 
were visualized using the “ggplot2” and “enrichplot” 
packages.

Immune cell infiltration analysis
All analyses were performed in the R software (version 
4.2.2; https://www.r-project.org/). The CIBERSORT 
algorithm was used to analyze the abundance of 22 types 
of tumor-infiltrating immune cells in all TCGA-LUAD 
samples [34, 35]. The results were visualized using a bar 
plot. Then, a correlation heatmap was constructed to 
determine the correlation of 22 types of immune cells 
using the “corrplot” package, and the “ggpurb” pack-
age was used to compare and visualize the abundance of 
each type of immune cell between the estrogen reactiv-
ity groups. The expression of key immune checkpoints, 

including PD-1, PD-L1, CTLA4, LAG3, and TIGIT, were 
also compared between the groups.

Antibodies and reagents
Anti-ESR2 (Cat. No. 14,007–1-AP) and anti-ESR1 (Cat. 
No. 21,244–1-AP) antibodies were purchased from Pro-
teintech (CA, USA). Estradiol (Cat. No. HY-B0141) and 
D-Luciferin sodium (Cat. No. HY-12,591) were pur-
chased from MCE (Shanghai, China).

Cell lines and transfection
Lewis Lung Carcinoma (LLC) cells were obtained from 
the American Type Culture Collection (ATCC). The 
LLC cells were grown in complete DMEM (DMEM, 10% 
FBS (GIBCO). All cells were cultured in a humidified 
incubator at 37℃ with 5% CO2. Lentiviral transfection 
expressing firefly luciferase reporter was obtained from 
Genechem Co., Ltd. (Shanghai, China). Transfection was 
performed following the manufacturer’s protocol. The 
cells with stable transfection were selected with puro-
mycin. The Firefly Luciferase expression levels in LLC 
cells were detected using the Dual-Luciferase® Reporter 
(DLR™) Assay System (Promega).

Animal experiments
A total of 9 female C57BL/6 mice (seven weeks old) were 
obtained from Beijing Vital River Laboratory Animal 
Technology Co. Ltd. They were randomly divided into 
three groups (n = 3 per group). One group served as the 
control, another group underwent ovarian removal, and 
a third group underwent ovarian removal and received 
E2. Ovariectomy was performed following the methods 
described in another study [36]. Ovariectomized (OVX) 
mice were intraperitoneally injected with PBS or E2 
(100 µg/kg) every day. The LLC cells (1 × 106) expressing 
firefly luciferase were injected directly into the left lung 
(in 50 µL of 1:1 mix of PBS and Matrigel (BD Biosci-
ences)) three days after surgery [37]. After 12 days, biolu-
minescence imaging experiments were performed using 
a Bruker In-Vivo MS FX Pro small animal optical imag-
ing system.

Construction and validation of a novel prognostic 
signature
All analyses were performed in the R software (version 
4.2.2; https://www.r-project.org/). The least absolute 
shrinkage and selection operator (LASSO) regression 
algorithm with 10-fold cross-validation was used to nar-
row down the prognosis-related DEGs using the “glmnet” 
package [38]. Then univariable and multivariable Cox 
regression analyses were conducted to determine the sig-
nature genes and calculate the corresponding regression 
coefficients. The K-M survival analysis was performed to 
further evaluate the prognostic value of each signature 

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
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gene. The risk score was calculated for the TCGA-LUAD 
cohort using the following formula:

 
risk score =

∞∑

i=1

Coefficient(mRNAi) × Expression(mRNAi)

The TCGA-LUAD patients were divided into the low-
risk group and the high-risk group based on the median 
risk score. The K-M curve was generated to compare OS 
between the low-risk and high-risk groups. The time-
dependent receiver operating characteristic (ROC) was 
evaluated to estimate the predictive value of signature for 
OS using the “timeROC” package. To validate the appli-
cability of this risk signature in different populations, the 
TCGA-LUAD patients were divided into different sub-
groups, and univariable Cox regression was conducted. 
The risk signature was also applied to the validation 
cohort GSE31210 to further assess its prognostic value 
for recurrence-free survival (RFS) and OS.

Immunofluorescence staining
Cells were fixed with 4% paraformaldehyde in 1x PBS, 
and then, permeabilized in 1x PBS with 5% BSA and 
0.4% Triton X-100. Fixed cells were incubated with the 
primary antibodies anti-ESR2 (Dilution: 1:200) or anti-
ESR1 (Dilution: 1:200) overnight at 4  °C, washed thrice 
in 1x PBS and then incubated with the secondary anti-
body (Goat anti-rabbit Alexa Fluor488-conjugated, dilu-
tion: 1:500) for 1  h at room temperature. The nucleus 
was stained with DAPI. Images were captured using the 
Nikon A1 Confocal microscope (Nikon, Tokyo, Japan).

Development of a nomogram
To further evaluate the prognostic value of our risk sig-
nature and other clinical characteristics, including gen-
der, age, tumor (T) stage, nodal (N) stage, metastatic (M) 
stage, clinical stage, smoking history, and malignancy his-
tory, univariable and multivariable Cox regression analy-
ses were conducted. Then, a nomogram was constructed 
based on the T stage, N stage, clinical stage, and risk 
score using the “rms” package. The Concordance index 
(C-index) was calculated to evaluate the discriminative 
ability of the nomogram and calibration curves were 
drawn to show the consistency between the predicted 
one-year, three-year, and five-year endpoint events and 
the authentic outcomes.

Statistical analyses
All analyses were performed in the R software (version 
4.2.2; https://www.r-project.org/) and the GraphPad 
Prism 8.0 software. Correlations were calculated using 
Spearman’s correlation analysis. The differences between 
the groups were assessed by performing the Wilcoxon 
rank sum test. Two-way ANOVA was performed to 

determine the differences in body weight over time 
between animal groups. The differences in OS and RFS 
were assessed by performing a Kaplan-Meier survival 
analysis and the log-rank test. FDR adjustment was used 
when multiple testing adjustment was applied. All statis-
tical tests were two-tailed, and the differences between 
groups were considered to be statistically significant at 
p < 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Results
Identification of estrogen reactivity subtypes in LUAD
The flowchart of our study is shown in Fig. 1. Using hall-
mark gene sets as a reference, we obtained the normal-
ized enrichment score (NES) of each tumor sample by 
performing GSVA using the data from the TCGA-LUAD 
cohort. The results of the correlation analysis showed that 
the NESs of the two estrogen-related gene sets (Hallmark 
estrogen response early and Hallmark estrogen response 
late) were strongly correlated (R = 0.77, p < 0.001) 
(Fig.  2A). Estrogen activates both of these estrogen-
related gene sets at the same time. Based on the NESs of 
these two estrogen-related gene sets, the TCGA-LUAD 
samples were divided into two groups; 200 samples in 
the low-estrogen reactivity group and 199 samples in the 
high-estrogen reactivity group (Fig. 2A). The K-M curve 
showed that the difference in OS between the groups was 
significant (p = 0.0038) (Fig. 2B). The NESs of all 50 gene 
sets were displayed in the heatmap, from which six lipid 
metabolism-related gene sets were identified. Hallmark 
xenobiotic metabolism, Hallmark bile acid metabolism, 
Hallmark cholesterol homeostasis, Hallmark peroxisome, 
Hallmark adipogenesis, and Hallmark fatty acid metabo-
lism were grouped into one cluster with the two estro-
gen-related gene sets (Fig. 2C). By comparing the NESs of 
these six gene sets, we found that their reactivities were 
significantly upregulated in the high-estrogen reactivity 
group (Fig.  2D). These results were consistent with the 
finding that estrogen promotes lipid metabolism [39].

Identification of DEGs and functional enrichment
The DEGs between the groups were identified and 1,086 
DEGs were obtained. Compared to the expression of the 
genes in the low-estrogen reactivity group, 795 genes 
were downregulated and 251 genes were upregulated in 
the high-estrogen reactivity group. The distribution of 
these DEGs is shown in the volcano plot (Fig. 3A). Tak-
ing the above 50 gene sets as a reference, GSEA was 
performed. In total, 25 gene sets with significant altera-
tions between the low-estrogen reactivity group and the 
high-estrogen reactivity group were obtained, among 
which the two estrogen-related gene sets had the highest 
enrichment scores (Fig.  3B). Four of the above six lipid 
metabolism-related gene sets were significantly upregu-
lated in the high-estrogen reactivity group, including 

https://www.r-project.org/
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Fatty acid metabolism (p = 9.18e-05), Coagulation 
(p = 2.12e-08), Cholesterol homeostasis (p = 0.004), and 
Adipogenesis (p = 2.57e-08) (Fig. 3C).

Next, we performed the GO and KEGG enrichment 
analyses on the 1,086 DEGs. After estrogen binds to 
the receptor, it immediately enters the nucleus and ini-
tiates gene transcription. Many terms in the results of 

the GO and KEGG enrichment analyses were related to 
DNA transcription enhancement, and these terms were 
also involved in tumor progression. In the GO analysis, 
the top biological process (BP) terms were DNA pack-
aging, nucleosome organization, antimicrobial humoral 
response, and nucleosome assembly (Fig.  3D). The 
terms related to the cellular components (CC) included 

Fig. 1 Flowchart of the present study
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protein-DNA complex, collagen-containing extracellular 
matrix, nucleosome, and DNA package complex (Fig. 3E). 
Regarding molecular functions (MF), the DEGs were 
mainly enriched in channel activity, passive transmem-
brane transporter activity, protein heterodimerization 

activity, and ion channel activity (Fig. 3F). The enriched 
KEGG pathways mainly included neuroactive ligand-
receptor interaction, alcoholism, and neutrophil extracel-
lular trap formation (Fig. 3G). More detailed enrichment 
results are presented in Supplementary Tables 1–3.

Fig. 2 Identification of estrogen response patterns in the TCGA-LUAD cohort. (A) The correlation of estrogen response early scores and estrogen re-
sponse late scores was calculated by GSVA. (B) K-M curve of OS between the estrogen reactivity groups. (C) Heatmap of GSVA scores in two groups. (D) 
Comparison of GSVA scores of 8 gene sets in estrogen response clusters between the groups
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Immune cell infiltration analysis
Many immune cells were found to infiltrate the tumor 
tissue, and the CIBERSORT algorithm was applied to 
obtain the abundance of 22 types of immune cells in each 

sample. The bar plot shows the proportion of the 22 types 
of immune cells in each sample of the TCGA-LUAD 
cohort (Fig.  4A). The distribution of the proportion of 
each immune cell type in the two estrogen reactivity 

Fig. 3 Identification of DEGs and functional enrichment analyses. (A) Volcano plot of the gene expression changes (the red plots represented upregu-
lated genes and the blue plots represented downregulated genes in the high-estrogen reactivity group). (B-C) GSEA analysis of the groups. (D-F) GO 
analysis of the DEGs. (G) KEGG analysis of the DEGs.
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groups was compared. Among them, the abundance of 
M2 macrophages (p = 0.00636), activated dendritic cells 
(p = 0.00013), and neutrophils (p = 7.9e-05) increased, 
while the abundance of M1 macrophages (p = 0.00606) 

decreased in the high-estrogen reactivity group (Fig. 4B). 
The correlation heatmap of the 22 types of immune cells 
showed that activated memory CD4 T cells and CD8 
T cells had the most significant positive correlations 

Fig. 4 Immune cell infiltration analysis and expression of immune checkpoints. (A) The abundance of 22 types of immune cells in each sample. (B) 
Comparison of levels of 22 types of immune cells between the groups. (C) The correlations of levels of every two types of immune cells. (D) Comparison 
of expression of 5 immune checkpoints between the groups
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(r = 0.52) (Fig.  4C). Immune checkpoints are important 
for predicting the response to immunotherapy in LUAD. 
A study has shown that high expression of immune 
checkpoints might predict a better response to immuno-
therapy [40]. Therefore, we analyzed the expressions of 
some key immune checkpoints between the groups. The 
results showed that the expression of CTLA4 (p = 1.3e-
08), PD-1 (p = 0.00774), PD-L1 (p = 0.00103), LAG3 
(p = 0.00068), and TIGIT (p = 0.00013) was significantly 
lower in the high-estrogen response group compared to 
that in the low-estrogen response group (Fig. 4D).

Estrogen promotes LUAD progression in vivo
In another study, we showed that estrogen promotes 
NSCLC progression in immunodeficient mice [22]. 
Tumor growth is mainly influenced by the immune 
system [41]. Therefore, we selected immunocompe-
tent C57BL/6 mice and administered in situ injections 
to construct a lung adenocarcinoma model. First, we 
confirmed the expression of ERα and ERβ in LLC cells 
by immunofluorescence (Fig.  5A). Then, nine female 
mice were divided equally among three groups, which 
included the control group, the OVX group, and the 
OVX + E2 group. The LLC cells were injected three days 
after ovariectomy, and the mice were weighed every two 

Fig. 5 Validating the role of estrogen in an orthotopic mouse model. (A) The expression of ERα and ERβ in LLC cells expressing firefly luciferase was de-
termined by immunofluorescence. (B) Changes in body weight over time after LLC injection (n = 3 per group). The two-way analysis of variance (ANOVA) 
was calculated using Prism 8 (GraphPad) (**p < 0.01, ***p < 0.001, ****p < 0.0001). Detailed data on body weight are shown in Supplementary Table 4. (C) 
Images of mice detected by a bioluminescence imaging system. (D) Representative thoracic anatomy images of mice

 



Page 10 of 16Wang et al. BMC Cancer         (2023) 23:1047 

days. After injection, the mice lost weight rapidly. The 
mice in the control group were the fastest to lose weight, 
while those in the ovariectomy group showed the least 
change in weight (Fig. 5B). After 12 days, the biolumines-
cence imaging results showed that the size of the tumor 
decreased significantly after OVX, and the administra-
tion of estrogen abolished this tumor protection effect 
(Fig.  5C). Finally, after euthanizing the mice, they were 
dissected and photographed, and three representative 
pictures were selected for display (Fig. 5D).

A novel prognostic signature for the prognostic prediction 
of LUAD
To further identify the key genes with a prognostic 
value among these DEGs, the LASSO regression based 
on the TCGA-LUAD cohort was conducted, and nine 
genes were obtained (CIDEC, IGFBP1, DKK1, LYPD3, 
LINGO2, FAM83A, MAEL, FURIN, and GTF2H4) 
(Fig.  6A, B). Then, univariable Cox and multivariable 
Cox analyses were performed for these nine genes, and 
four prognostic genes with p < 0.05, including IGFBP1, 
DKK1, LINGO2, and GTF2H4, were identified (Fig. 6 C, 

Fig. 6 Selection of prognostic genes among DEGs. (A-B) LASSO regression analysis with 10-fold cross-validation. (C-D) univariable and multivariable Cox 
regression analyses of genes from LASSO regression. (E-H) K-M curves of OS between low- and high-expression groups of LINGO2, DKK1, IGFBP1, and 
GTF2H4
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D). To further determine the prognostic values of the 
four genes, the TCGA-LUAD cohort was divided into 
two groups based on the median expression value of 
each gene. The K-M survival analysis was performed in 
each group, and the results showed that the OS for all 
genes differed significantly (IGFBP1 p = 0.0016; DKK1 
p < 0.0001; LINGO2 p = 0.021; GTF2H4 p = 0.011). The 
high expression of IGFBP1, DKK1, and LINGO2 pre-
dicted a worse prognosis, while the high expression of 
GTF2H4 indicated a prognostic protective effect (Fig. 6E-
H). Therefore, we selected these four genes to construct a 
risk signature with their expression levels and the corre-
sponding coefficients from the multivariable Cox analy-
sis results; the formula is as follows: risk score = (0.131 × 
IGFBP1) + (0.085 × DKK1) + (0.464 × LINGO2) + (-1.286 
× GTF2H4).

Based on the median value of the risk score, we divided 
the TCGA-LUAD cohort into the low-risk group and the 
high-risk group. The K-M curve showed that patients 
with lower risk scores lived longer than those with higher 
risk scores (Fig.  7A). The one-year, three-year, and five-
year OS AUC values were 0.7, 0.66, and 0.69, respectively, 
which showed that the accuracy of risk signature needs to 
be improved (Fig. 7B). The risk score, survival status, and 
gene expression heatmap of the four prognostic genes 
are presented in the risk plots (Fig. 7C). Next, we further 
investigated whether the risk signature affected OS in the 
different clinical characteristic subgroups. We grouped 
the TCGA-LUAD cohort according to age, gender, T 
stage, N stage, M stage, clinical stage, smoking history, 
and malignancy history. We performed the univariable 
Cox analysis for each subgroup. The results showed that 
the risk signature had significant effects on survival for 
almost all subgroups (Fig. 7D). To validate the applicabil-
ity of this risk signature, we downloaded the GSE31210 
dataset from the GEO database, which contains data on 
OS and RFS. We used the same formula mentioned above 
to calculate the risk score for each patient and divided 
them into the low-risk group and the high-risk group 
based on the median risk score. The K-M curves showed 
that patients in the high-risk group had shorter RFS and 
OS than those in the low-risk group (Fig. 7E, F). To a cer-
tain extent, these results confirmed the applicability of 
our risk signature.

Development of a nomogram
To determine whether the risk signature we constructed 
can serve as an independent prognostic factor, we per-
formed univariable and multivariable Cox regression 
analyses using the risk score and other common clinical 
characteristics in the TCGA-LUAD cohort. The results of 
the univariable Cox regression analysis showed that the 
T stage, N stage, M stage, clinical stage, and risk score 
were strongly associated with OS (Fig.  8A). The results 

of the multivariable Cox regression analysis showed that 
the T stage and risk score were independent prognostic 
factors (Fig. 8B). Although the N stage and clinical stage 
were not significant as covariates, considering their clini-
cal importance, they were also selected for constructing 
a nomogram to evaluate the probability of the one-year, 
three-year, and five-year OS (Fig.  8C). The C-index of 
the nomogram for predicting the OS was 0.717 (95% CI: 
0.694–0.74, p < 0.001). The calibration curves of the one-
year, three-year, and five-year OS showed good agree-
ments between predicted survival and observed survival 
(Fig. 8D-F). These results suggested that our nomogram 
had good prognostic significance.

Discussion
Many studies have investigated the relationship between 
estrogen and NSCLC [16–21]. Several studies have 
shown that different estrogen reactivities might affect 
the prognosis of NSCLC patients [42, 43]. In our previ-
ous study, we showed that estrogen is a pro-tumor fac-
tor for NSCLC [22]. However, models for accurately 
predicting the effects of estrogen reactivity on the OS 
of NSCLC patients are absent. The screening of prog-
nostic biomarkers based on bioinformatics methods has 
been widely performed in studies on lung cancer. In this 
study, we used hallmark gene sets as the reference gene 
sets, and the samples in the TCGA-LUAD cohort were 
divided into the high-estrogen reactivity group and the 
low-estrogen reactivity group according to their estrogen 
reactivity scores based on the results of the GSVA. A risk 
signature was constructed based on DEGs between the 
groups. The results of the univariable and multivariable 
Cox regression analyses confirmed this risk signature as 
an independent prognostic factor in patients with LUAD, 
and this signature was validated using the GSE31210 
dataset. We also showed the tumor-promoting effects 
of estrogen in vivo using an orthotopic mouse model of 
LUAD. Finally, we constructed a nomogram based on the 
risk signature and some clinical characteristics to predict 
the one-year, three-year, and five-year OS of the LUAD 
patients. The results showed that our nomogram was 
similar to the observed scenario.

Many immune cells were found to infiltrate tumor tis-
sue, and these immune cells were involved in tumor 
metastasis, drug resistance, and immune escape [41]. 
Therefore, we analyzed the differences in the immune 
cell infiltration status between the groups with different 
estrogen reactivities. We found that the abundance of 
M2 macrophages increased while the abundance of M1 
macrophages decreased in the high-estrogen reactiv-
ity group. In the tumor microenvironment, M1 macro-
phages have an antitumor effect, while M2 macrophages 
can promote immunosuppression [44]. These results 
suggested that estrogen might strongly influence tumor 
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Fig. 7 Construction and validation of a four-gene prognostic signature. (A) K-M curve of OS between low- and high-risk groups in the TCGA-LUAD co-
hort. (B) ROC curves of the risk score in the TCGA-LUAD cohort. (C) Risk plots in the TCGA-LUAD cohort. (D) Subgroups analysis in the TCGA-LUAD cohort. 
(E) Validation of recurrence-free survival between low- and high-risk groups in the GSE31210 cohort. (F) Validation of overall survival between low- and 
high-risk groups in the GSE31210 cohort
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immune escape. We also studied the expression levels of 
five immune checkpoints, which were closely related to 
antitumor immunity [45]. Patients with high expression 
levels of these checkpoints respond better to immuno-
therapy. Our results showed that their expression levels 
were higher in the low-estrogen reactivity group, which 

suggested that immunotherapy had a greater effect on 
the patients in this group.

By performing differential expression analysis, we 
obtained 795 downregulated genes and 291 upregulated 
genes in the high-estrogen reactivity group. Among 
them, four key prognostic genes (LINGO2, DKK1, 

Fig. 8 Development of a nomogram in the TCGA-LUAD cohort. (A-B) Univariable and multivariable Cox regression analyses of risk score and other clinical 
characteristics. (C) Development of a nomogram predicting the one-year, three-year, and five-year survival rates. (D-F) The calibration curves for predict-
ing the one-year, three-year, and five-year survival
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IGFBP1, and GTF2H4) were identified and used for con-
structing a risk signature. The results of the K-M survival 
analysis showed that our risk signature had excellent 
prognostic value. LINGO2 (Leucine Rich Repeat And Ig 
Domain Containing 2) was found by Carim-Todd et al. 
to be expressed in the early developmental stages of the 
central nervous system and also in the limbic system and 
cerebral cortex of adult tissues [46]. Studies on LINGO2 
are limited and are mostly related to non-neoplastic dis-
eases, such as Parkinson’s disease [47, 48]. Only one study 
on the molecular mechanism in gastric cancer found that 
it influences the progression of gastric cancer by alter-
ing gastric cancer initiation, stem cells, and cell motil-
ity tumorigenesis [49]. DKK1 (Dickkopf WNT Signaling 
Pathway Inhibitor 1) is a secreted protein that antago-
nizes the Wnt/b-catenin pathway. It regulates bone for-
mation and affects the development and progression of 
bone metastases [50]. Several studies have indicated 
its role in the development, progression, and metasta-
sis of tumors, including pancreatic ductal adenocarci-
noma, breast cancer, ovarian cancer, cervical cancer, and 
endometrial cancer [51]. In deficient mismatch repair 
colorectal cancer, DKK1 can also attenuate the efficacy of 
immunotherapy by suppressing CD8 + T cells [52]. Based 
on the findings of studies on DKK1 in cellular and animal 
models, several clinical trials have been initiated to evalu-
ate the safety and efficacy of anti-DKK-1 neutralizing 
antibodies in cancer [53]. One study used a panel of four 
genes (including DKK1) to predict the OS of LUAD [54]. 
The regulatory relationship between DKK1 and estrogen 
was also investigated. By preventing an increase in DKK1 
levels, low physiological levels of E2 protect the hippo-
campal CA1 region against global cerebral ischemia [55]. 
IGFBP1 (Insulin Like Growth Factor Binding Protein 1) 
is the most prevalent IGFBP found in amniotic fluid and 
is typically expressed in the placenta, endometrium, and 
liver in a tissue-specific manner. After being secreted, 
IGFBP functions by interacting with IGFs [56]. Several 
studies have investigated its role as a biomarker in tumors 
such as gastrointestinal tumors and prostate cancer [57, 
58]. IGFBP1 is specifically expressed in ovarian clear-cell 
adenocarcinoma [59]. In breast cancer cells, 4-OHT sup-
presses IGF-1 signaling due to the accumulation of extra-
cellular IGFBP1, which is mediated by GPER1 and CREB 
[60]. The transcription factor II H (TFIIH) component 
GTF2H4 (also known as p52) is involved in nucleotide 
excision repair [61]. Studies on its role in tumors are lim-
ited. Overall survival was found to be strongly correlated 
with GTF2H4 SNPs in lung cancer [62]. Estrogen regula-
tion of IGFBP1 and DKK1 has been reported in previous 
studies. In breast cancer cells, estrogen regulates IGFBP1 
expression via GPER1 [59]. The expression of DKK1 in 
CD4 + and CD8 + T cells was increased in ovariectomized 
mice. No literature has reported the correlation between 

LINGO2 and GTF2H4 and estrogen [63]. Our findings 
suggested that the estrogen signaling pathway might 
affect the progression and prognosis of LUAD by regulat-
ing the expression of these four genes.

In this study, we divided LUAD patients into the high-
estrogen reactivity group and the low-estrogen reactiv-
ity group, which had clinically important prognostic 
significance. Based on this grouping, a risk signature 
and a nomogram were constructed, which could effec-
tively predict the prognosis of LUAD patients. In another 
study, we showed the pro-cancer effects of estrogen using 
a subcutaneous tumor model. In this study, we con-
firmed the effects using an orthotopic mouse model and 
obtained more reliable results. However, our study had 
some limitations that should be addressed in subsequent 
studies. First, our study was based on data collected from 
public databases, and choosing the median as a thresh-
old to binarize variables might not be the best solution. 
Thus, our findings need to be validated by conducting 
large prospective clinical trials. Second, we analyzed the 
differences in immune cell infiltration between different 
estrogen reactivity groups, but these differences need to 
be verified experimentally, which we aim to perform in 
our next study. Third, the ROC curve and AUC values of 
the prognostic signature in the validation set are not ideal 
(Supplement Fig. 1A, B). It might be brought on by varia-
tions in clinical characteristics such as patient counts, 
tumor stages, and smoking histories. Finally, information 
on the effects of three of the four key prognostic genes 
on LUAD (i.e., except DKK1) investigated in this study is 
limited. Hence, further cell and animal experiments need 
to be performed to elucidate the functions of these genes.

Conclusion
To summarize, our present and previous studies showed 
that estrogen adversely affects the prognosis of LUAD. 
Differences in estrogen reactivity can be used to predict 
the OS of LUAD patients. We constructed a prognostic 
risk signature and developed a points-scoring system to 
predict the OS of LUAD patients. Our study elucidated 
the specific mechanisms by which estrogen promotes 
lung adenocarcinoma progression and identified promis-
ing prognostic indicators and potential therapeutic tar-
gets for treating patients with LUAD.
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