
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Guo et al. BMC Cancer          (2023) 23:773 
https://doi.org/10.1186/s12885-023-11277-4

BMC Cancer

†Xian-wen Guo and Rong-e Lei contributed equally to the study.

*Correspondence:
Bang-li Hu
hubangli@gxmu.edu.cn
Yun-xiao Liang
pettery_wy@163.com

1Department of Gastroenterology, The People’s Hospital of Guangxi 
Zhuang Autonomous Region, No.6 Tao-Yuan Road, Nanning 530021, 
Guangxi, China
2Department of Gastroenterology, First Affiliated Hospital of Guangxi 
Medical University, Nanning 530021, Guangxi, China
3Department of Research, Guangxi Medical University Cancer Hospital, 
No.71 Hedi Road, Nanning 530021, Guangxi, China

Abstract
Background The tumor microenvironment (TME) plays a crucial role in tumorigenesis, progression, and therapeutic 
response in many cancers. This study aimed to comprehensively investigate the role of TME in colorectal cancer (CRC) 
by generating a TMEscore based on gene expression.

Methods The TME patterns of CRC datasets were investigated, and the TMEscores were calculated. An unsupervised 
clustering method was used to divide samples into clusters. The associations between TMEscores and clinical features, 
prognosis, immune score, gene mutations, and immune checkpoint inhibitors were analyzed. A TME signature was 
constructed using the TMEscore-related genes. The results were validated using external and clinical cohorts.

Results The TME pattern landscape was for CRC was examined using 960 samples, and then the TMEscore pattern 
of CRC datasets was evaluated. Two TMEscore clusters were identified, and the high TMEscore cluster was associated 
with early-stage CRC and better prognosis in patients with CRC when compared with the low TMEscore clusters. The 
high TMEscore cluster indicated elevated tumor cell scores and tumor gene mutation burden, and decreased tumor 
purity, when compared with the low TMEscore cluster. Patients with high TMEscore were more likely to respond to 
immune checkpoint therapy than those with low TMEscore. A TME signature was constructed using the TMEscore-
related genes superimposing the results of two machine learning methods (LASSO and XGBoost algorithms), and a 
TMEscore-related four-gene signature was established, which had a high predictive value for discriminating patients 
from different TMEscore clusters. The prognostic value of the TMEscore was validated in two independent cohorts, 
and the expression of TME signature genes was verified in four external cohorts and clinical samples.

Conclusion Our study provides a comprehensive description of TME characteristics in CRC and demonstrates 
that the TMEscore is a reliable prognostic biomarker and predictive indicator for patients with CRC undergoing 
immunotherapy.
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Background
Colorectal cancer (CRC) is the third most common can-
cer and the fourth leading cause of cancer-related deaths, 
according to a recent report by GLOBOCAN 2020 [1]. 
Numerous advancements have been made over the past 
few decades with regard to CRC treatment, and the five-
year survival rate has increased significantly [2]. Recently, 
immunotherapy, such as immune-checkpoint blockade 
programmed cell death 1 (PD-1) and programmed cell 
death 1 ligand 1 (PD-L1), has further improved the prog-
nosis of patients with CRC, especially those with late-
stage cancer [3, 4]. However, owing to the heterogeneity 
of CRC, only a subset of patients is suitable for immuno-
therapy [5, 6]; therefore, it is essential to investigate the 
pathogenesis of CRC and screen patients that may be 
appropriate for immunotherapy.

Tumor components are very complex; besides tumor 
cells, there are numerous immune, stromal, and inflam-
matory cells in the tumor microenvironment (TME) that 
modulate tumor development and other biological func-
tions [7]. Immune cells in the TME are associated with 
the pathogenesis, development, therapeutic response, 
and prognosis of various cancers. Immune cell abun-
dance varies greatly in tumor tissues, and different types 
of immune cells display distinct functions that exert pro- 
and anti-tumor effects at different stages [8]. A dynamic 
balance exists between the pro- and anti-tumor effects 
within the TME, profoundly influencing the prognosis of 
patients with cancer [9].

Recently, the abundance of immune and other cells in 
the TME has been assessed quantitatively using compu-
tational methods. This has been termed the TMEscore, 
which has great value in identification of patients suit-
able for precision therapy or immunotherapy in several 
cancers, such as gastric [10], bladder [11] and prostate 
cancer [12]. However, the comprehensive landscape of 
the TME cells in CRC has not yet been characterized, 
and the utility of the TMEscore for CRC remains to be 
elucidated. Therefore, the aim of the present study was to 
estimate the TME patterns of CRC using a meta-cohort 
with larger tumor samples. Additionally, we intended to 
systematically analyze the TMEscore with genomic char-
acteristics and CRC clinical out, which could provide key 
biomarkers for predicting responsiveness to immuno-
therapy, thereby further improving precision immuno-
therapy for CRC.

Materials and methods
CRC dataset acquisition and preprocessing
CRC datasets were systematically searched from the 
Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/), and only datasets with 
sufficient clinical information were collected. In total, 
five datasets were selected (GSE103479, GSE29621, 

GSE72970, GSE39582, and GSE41258) with survival 
information regarding samples from patients with CRC. 
Four datasets (GSE20916, GSE21815, GSE3629, and 
GSE89287) with tumor tissues and the corresponding 
control tissues were also downloaded. We downloaded 
The Cancer Genome Atlas (TCGA)-COADREAD data-
set (615 samples) from the TCGA database (GDC hub: 
https://gdc.xenahubs.net), which included 449 colon 
cancer and 166 rectal cancer samples, and we also down-
loaded the corresponding clinical information. The raw 
data from the GEO datasets were preprocessed using 
the RMA algorithm for background adjustment before 
analysis. The raw data from the TCGA dataset were 
transformed into transcripts per kilobase million values 
prior to analysis. The “sva” R package was used to process 
the RNA expression data from both the GEO and TCGA 
cohorts with the aim of reducing the batch effect.

Quantification of tumor infiltrating cells, immune scores, 
and tumor purity
The CIBERSORT algorithm [13] was used to quantify the 
proportions of immune infiltrating cells in CRC samples, 
which allowed for sensitive and specific discrimination of 
22 human immune cell phenotypes by calculating gene 
expression. The immune score, stromal score, Estimation 
of Stromal and Immune cells in Malignant Tumor tissues 
using Expression data (ESTIMATE) score, and tumor 
purity of CRC samples were calculated using the ESTI-
MATE algorithm [14]. This algorithm provides research-
ers with scores for tumor purity, the level of stromal 
cells present, and the infiltration level of immune cells in 
tumor tissues based on gene expression.

Consensus clustering analysis
Unsupervised clustering methods for dataset analysis 
(TME pattern and TMEscore) were used to classify sam-
ples and determine the optimal number of clusters for 
further analysis. The procedures were undertaken using 
the ConsensusClusterPlus package [15] in R software, 
and were repeated 1,000 times, to ensure classification 
stability. The tool implements the consensus cluster-
ing method and provides visualizations, including item 
tracking, item-consensus, and cluster-consensus plots. 
The results are in the form of cumulative distribution 
function curves, which are used to determine the number 
of clusters, with k values ranging from 2 to 6. Further-
more, a consensus heatmap of the clusters was deter-
mined and visualized.

Differentially expressed gene analysis
For the GEO datasets, the differentially expressed genes 
(DEGs) among different groups were screened using 
the “limma” package, which adopts an empirical Bayes-
ian approach to estimate gene-expression changes using 
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moderated t tests. For the TCGA dataset, DEGs were 
screened using the “edgeR” package, which is specifically 
used to screen DEGs in TCGA datasets. The DEGs were 
determined based on the |logFC| > 0.5 and P value < 0.01 
criteria.

Functional and pathway enrichment analysis
Gene annotation enrichment analysis was performed on 
DEGs from TMEscore-related genes using the cluster-
Profiler R package [16]. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) terms of 
the genes were identified with a cutoff of P < 0.01 and a 
false discovery rate < 0.05. Gene set variation analysis 
(GSVA) was used to screen significantly enriched path-
ways between the two clusters using the Molecular Sig-
natures Database (MSigDB) version 7.4 [17]. Significant 
pathway terms were set at a P-value < 0.05.

TMEscore calculation and establishment of the TME 
signature
The “TMEscore” package [10, 18] was used to calculate 
the TMEscore and establish TME clusters for the gene 
datasets, which estimates the TMEscore based on gene 
expression. This provides functionality for calculating the 
TMEscore using principal component analysis or z-score 
methods. The results generated four types of data: TME-
scoreA, TMEscoreB, TMEscore, and TME_binary. TME_
binary divides the samples into high or low clusters based 
on the TMEscore value.

Reverse transcription-polymerase chain reaction (RT-PCR) 
assay using CRC clinical samples
Gene expression in clinical CRC samples was tested 
using RT-PCR. Forty tumor tissues and their correspond-
ing adjacent tissues were collected from our hospital 
between February 2020 and August 2021. Total RNA 
from the tissues was isolated using TRIzol reagent (Invi-
trogen, Waltham, MA, USA), according to the manufac-
turer’s instructions. The primers used for RT-PCR are 
as follows: CXCL10 FORWARD: CTC TCT CTA GAA 
CTG TAC GCT G, REVERSE: ATT CAG ACA TCT 
CTT CTC ACC C; IDO1 FORWARD: CTG CCT GAT 
CTC ATA GAG TCT G, REVERSE: TTG TGG TCT 
GTG AGA TGA TCA A; MAB21L2 FORWARD: CTA 
TCT CTC AGC GCG TAA GAT C, REVERSE: CAT 
CTT GAC CAC ATC CCG ATA G; LZTS2 FORWARD: 
TCC TCC TCC TCC TCT TCC TCC TC, REVERS: 
GCA GGC TGG ACA GTG AGT TTCG. RT-PCR was 
performed using the SYBR ® Premix Ex Taq kit (Takara, 
Dalian, China). The relative expression of each gene was 
calculated using the 2−ΔΔCT method. This study was 
approved by the hospital’s ethics committee.

Statistical analysis
Statistical significance for normally distributed variables 
was tested using the unpaired Student’s t test when com-
paring two groups; otherwise the Mann–Whitney U test 
was used. The Kruskal–Wallis test and one-way Analysis 
of Variance were used as nonparametric and paramet-
ric methods, respectively, for the comparison of more 
than two groups. The Chi-square test was used to com-
pare categorical variables. Kaplan–Meier and log-rank 
(Mantel–Cox) tests were used to determine the statisti-
cal significance of patient survival. Two machine learning 
methods, LASSO regression and XGBoost, were used to 
screen significant genes using the “glmnet” and “xgboost” 
packages, respectively. Receiver Operating Characteris-
tic (ROC) curves were used to calculate the area under 
the curve (AUC) and evaluate the predicted value of the 
signature. All statistical analyses were performed using 
R language. P-values were two-sided, and P < 0.05 were 
considered to indicate statistical significance.

Results
Construction and analysis of TME landscape patterns in 
CRC
The TME pattern of CRC was evaluated by calculat-
ing the immune cell infiltrating fraction from four CRC 
datasets (TCGA-CORDREAD, GSE103479, GSE29621, 
and GSE72970) with a total of 960 CRC tissue samples, 
using the CIBERSORT algorithm. After removing the 
batch effect for the datasets, each immune cell infiltrating 
fraction was combined into a large meta-cohort to con-
struct the landscape of the TME pattern. Subsequently, 
an unsupervised hierarchical clustering method using 
the ConsensusClusterPlus package was used to deter-
mine the optimal cluster number for the TME pattern, 
and two robust clusters (clusters I and II) of the meta-
cohort were identified (Fig. 1A and B). Next, the correla-
tion of each type of immune cell was analyzed, and the 
TME cell network was visualized as a landscape of CRC 
tumor–immune cell interactions and CRC cell lineages 
(Fig.  1C and F). Based on the two clusters of TME cell 
patterns, we found that the patients with CRC in cluster 
II had better prognosis than those in cluster I (log-rank 
test, P = 0.001; HR = 2.404; Fig.  1D). We also found that 
the infiltrating fractions of plasma, T, CD8, and resting 
dendritic cells were considerably higher in cluster I than 
in cluster II. In addition, the infiltrating fraction of Mac-
rophages M0, T cells, follicular helper T cells, and resting 
CD4 memory cells were significantly higher in cluster II 
than in cluster I (Fig. 1E).

Identification of TME clusters in TCGA dataset
To characterize the clinical significance of the TME pat-
tern between the two clusters, we focused on the TCGA-
CORDREAD dataset, which contains comprehensive 
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clinical information for most patients. Here, we calcu-
lated the immune cell infiltrating fraction for the TCGA 
dataset, and the TMEscore of the immune cells was cal-
culated using the “TMEscore” package. Subsequently, 
unsupervised hierarchical cluster analysis was performed 
to screen the optimal clusters for the TMEscore. Two 
distinct clusters were identified for the TMEscore (TME-
cluster I and TME-cluster II). TME-cluster II was asso-
ciated with a higher immune score than TME-cluster 
I (Kruskal–Wallis, P < 0.001; Fig.  2A). Survival analysis 
revealed that patients in TME-cluster II exhibited better 
survival rates than those in TME-cluster I (log-rank test, 
P = 0.001; HR = 1.838; Fig.  2B). The clinical characteris-
tics analysis results indicated that patients in TME-clus-
ter II exhibited increased MSI-H status, T1 + T2 stage, 
N0 stage, M0 stage, and I + II tumor stage than those in 
TME-cluster I (Fig.  2C–F); however, there was no sig-
nificant difference in sex or tumor location. The results 
indicate that patients in TME-cluster II displayed high 
TMEscores and were associated with early-stage CRC. 
Subsequently, we explored the pathways involving the 
two TME clusters using the GSVA method, and observed 
immunodeficiency, antigen processing and presentation, 
and natural killer cell-mediated cytotoxicity pathways 
underlying the TME clusters (Fig. 2G).

Construction of the TME signature and functional 
annotation
To further determine the underlying biological charac-
teristics of TME clusters, we screened DEGs between 
TME-cluster I and TME-cluster II of the TCGA dataset 
using the “edgeR” package. Here, 1953 DEGs were identi-
fied based on the (|logFC| > 0.5 and P value < 0.01) crite-
ria, with 1208 upregulated and 745 downregulated genes 
(Fig.  3A). The DEGs were then incorporated into the 
unsupervised hierarchical cluster analysis, and two clus-
ters, TME-H and TME-L, were identified. The samples 
in the two signatures were significantly consistent with 
the clustering results of TME-clusters I and II (χ2 tests, 
P < 0.05). Survival analysis showed that patients with 
TME-H signature displayed a better prognosis than those 
with TME-L signature (log-rank test, P = 0.001; Fig. 3B). 
The results also revealed that the TME-H signature 
exhibited an elevated immune score (Fig. 3C).

GO enrichment and KEGG analyses of the signature 
genes were conducted using the R package clusterPro-
filer. We observed that upregulated genes were involved 
in the biological processes of leukocyte-mediated immu-
nity, T-cell activation, and lymphocyte-mediated immu-
nity. The pathways are involved in cytokine–cytokine 
receptor interaction and viral protein interaction with 
cytokines and cytokine receptors. The downregulated 
genes were involved in the phospholipase C-activating 

Fig. 1 Landscape of TME patterns in four CRC cohorts (TCGA-CORDREAD, GSE103479, GSE29621 and GSE72970) with 960 samples. (A) Heatmap of the 
consensus clustering matrix for k = 2; (B) CDF curves of the consensus score from k = 2 to 6. (C) Cellular interaction of the TME cell types. Cell cluster I: 
blue; cell cluster II: pink. The size of each cell represents survival of each TME cells type, the smaller log-rank test P value, the larger size of node. The lines 
connecting TME cells represent cellular interactions. The thickness of the line represents the strength of correlation estimated by Spearman correlation 
analysis. The more correlation, the more thickness of the lines. (D) Kaplan–Meier curves for overall survival (OS) of 960 CRC patients from four CRC cohorts 
between two TME clusters. (E) Comparison of 22 immune cells infiltrating fraction between TME cluster I and cluster II. (F) Unsupervised clustering of 22 
immune cells in TME for 960 patients from four CRC cohorts
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G protein-coupled receptor signaling pathway and posi-
tive regulation of cytosolic calcium ion concentration 
involved in the phospholipase C-activating G protein-
coupled signaling pathway. The calcium and Wnt sig-
naling pathways were found to be involved (Fig. 3D–G). 
Subsequently, we tested the robustness of the TME sig-
nature using DEGs in the GSE39582 and GSE41258 
datasets. The results verified that the TME signatures 
constructed by DEGs in the GSE39582 and GSE41258 
datasets were consistent to the TCGA-COADREAD 
dataset, and patients with CRC with the TME-H signa-
ture displayed a better prognosis (Fig. 3H and I). Finally, 
the correlations between TME signature scores and TME 
patterns were determined, and the TME-H signature was 
associated with elevated immune scores in the TCGA-
COADREAD, GSE39582, and GSE41258 datasets (Fig. 3J 
and K), suggesting the reliability of the TME signature.

Association of TME signature with the immune 
environment and immune checkpoint inhibitors
To determine the association of the TME signature 
with immune cell scores and tumor purity in CRC, we 
used the ESTIMATE algorithm to quantify the compo-
sition of CRC. The results indicated that TME-H had 
higher immune, stromal, and ESTIMATE scores, and 
lower tumor purity, than the TME-L signature (P < 0.05, 
Fig. 4A), demonstrating high abundances of immune and 

stromal cells and low tumor purity in patients with the 
TME-H signature. Next, we examined the association 
between the TME signature and immune cell infiltration 
fraction in CRC. As Fig.  4B illustrates, follicular helper 
T cells and M1 macrophages were more abundant in the 
TME-H cluster, whereas other immune cell infiltrating 
fractions showed little difference between the TME-H 
and TME-L signatures (P > 0.05). Finally, we examined 
the associations between the TME signatures with known 
immune checkpoint inhibitors, including CTLA4, PD1 
(PDCD1), CD80, CD86, PD-L1, PD-L2 (PDCD1LG2), 
and (CD274). As shown in Fig. 4C, the expression levels 
of the six immune checkpoint inhibitors were increased 
in the TME-H when compared with those in the TME-L 
signature. The findings demonstrate that the TME sig-
nature is critically associated with the immune environ-
ment and may be used to screen patients with CRC who 
are suitable for immunotherapy.

Association of TME signature with gene mutations and 
tumor mutation burden
Gene mutation and Tumor Mutation Burden (TMB) 
are closely related to the pathogenesis of various can-
cers, including CRC [19, 20]. Therefore, we explored the 
association of the TME signature with CRC gene muta-
tions and TMB in the TCGA dataset using the “maftools” 
package. We first examined the whole gene mutation 

Fig. 2 Identification of TME clusters in TCGA dataset. (A) Comparison of TME scores between TME-cluster I and TME-cluster II. (B) Kaplan–Meier curves for 
overall survival of CRC patients between two TME clusters. Comparison of T stage (C), N stage (D), M stage (E), Tumor stage (F) between TME-cluster I and 
TME-cluster II. (G) GSVA method revealed the pathways that the TME-clusters involved
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between the TME-H and TME-L signatures and found 
that the whole mutated frequency was higher in TME-H 
than in TME-L (99.71% vs. 96.97%). However, the top 10 
mutated genes of the two signatures were similar, namely 
APC, TP53, TTN, KRAS, PIK3CA, PTEN, ATM, SYNE1, 
MUC16, and SMAD4, demonstrating that the two 

signatures harbor similar top mutated genes (Fig. 5A and 
B). Next, we screened the genes with significant differen-
tial mutation frequency between the two signatures and 
revealed that ITPR3, DSCAML1, EP400, RNF43, TRPM3, 
RYR1, TEP1, GRIK2, MCF2, and DNAH5 showed higher 
mutation frequencies in the TME-H signature than in 

Fig. 3 Construction of the TME signature and functional annotation. (A) Volcano plot for the differential expressed genes (DEGs) between TME-cluster 
I and TME-cluster II. (B) Kaplan–Meier curves for overall survival of CRC patients between TME-H and TME-L. (C) Comparison of immune scores between 
TME-H and TME-L signature. (D-E) GO and KEGG analysis for the upregulated genes. (F-G) GO and KEGG analysis for the downregulated genes. Validated 
survival impact of TME signature using the DEGs in (H) GSE39582 dataset and (I) GSE41258 dataset. Validated immune scores of TME signatures using the 
DEGs in (J) GSE39582 dataset and (K) GSE41258 dataset
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the TME-L signature. However, we did not observe a sig-
nificant difference in the top 10 mutated genes between 
the two signatures (Fig.  5C). In addition, we observed 
that the TMB value was much higher in the TME-H sig-
nature than in the TME-L signature (P < 0.001; Fig. 5D). 
The findings indicate that the TME-H signature harbored 

higher gene mutations and TMB than the TME-L 
signature.

Establishment of a predictive model for the TME signature
To establish a predictive model for the TME signature, 
the CRC samples were randomly divided into two sets 

Fig. 5 TME signature was associated with gene mutation and TMB. (A-B) Top 10 mutated genes in the TME-H and TME-L signature. (C) Comparison of 
gene mutation between TME-H and TME-L clusters. (D) Comparison of tumor mutation burden between TME-H and TME-L signature

 

Fig. 4 TME signature was associated with (A) immune cells scores and tumor purity; (B) tumor immune cells fraction; (C) immune checkpoint inhibitors
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(training and test sets) at a 7:3 ratio as previous stud-
ies did [21, 22], with 430 and 185 samples in each set, 
respectively. Two machine learning algorithms (LASSO 
and XGBoost) were employed, by incorporating TME-
score DEGs into the model, and the key genes related to 
the TME signature were screened. Five-fold cross valida-
tion was performed to search the best hyper-parameters, 
and the “nround” was 25 in the present analysis, and 
the min logloss and min logloss index were 2.54 and 43, 
respectively. The LASSO and XGBoost algorithms identi-
fied 59 and 6 genes associated with the TME signature, 
respectively. The ROC curve showed that both models 
constructed using LASSO and XGBoost algorithms had 
good predictive value in differentiating TME-H from 
the TME-L signature (both AUC values > 0.90; Fig.  6A 
and B). We then superimposed the genes from the two 
algorithms and observed that four genes (CXCL10, 
LZTS2, IDO1, and MAB21L2) were identified by the two 
machine learning algorithms (Fig. 6C). Subsequently, we 
applied a multivariate logistic regression analysis to con-
struct a predictive model using the four genes. As shown 
in Fig. 6D, the optimal cutoff value of the model for dis-
criminating the two clusters was 0.552, which means that 
patients with scores < 0.552 were grouped in the TME-H 
signature; otherwise, they were grouped in the TME-L 
signature. The ROC curve demonstrated that the predic-
tive value of the model reached 0.982, with a sensitivity 
and specificity of 90.1% and 95.4%, respectively, for the 
entire dataset. Finally, we tested the expression of the four 

genes in the training and test sets between the TME-H 
and TME-L signatures. The results showed that CXCL10 
and IDO1 expression levels increased, while LZTS2 levels 
decreased in the TME-H signature compared with that in 
TME-L signature; however, there was no significant dif-
ference between the two signatures regarding MAB21L2 
expression (Fig. 6E and F).

Validation of TME signature-related genes in independent 
cohorts and CRC clinical samples
The expression of four TME-related genes (CXCL10, 
LZTS2, IDO1, and MAB21L2) that predict the TME 
signature of CRC was validated in four GEO datas-
ets: GSE20916 (145 samples), GSE21815 (141 samples), 
GSE3629 (121 samples), and GSE89287 (71 samples), 
which contained normal control and tumor samples. 
Furthermore, 40 clinical CRC tissues and corresponding 
adjacent tumor tissues were collected, and the expression 
of the four genes was determined using RT-PCR assay. As 
shown in Fig. 7, the four GEO datasets and our clinical 
samples confirmed that the expression levels of CXCL10, 
IDO1, and MAB21L2 were significantly higher in tumor 
tissues than in control tissues (P < 0.05). Moreover, the 
expression level of LZTS2 decreased in tumor tissues 
from the GSE20916 and GSE3629 datasets, but appeared 
increased in samples from GSE21815 and GSE89287 
datasets and our clinical samples (P < 0.05). Collectively, 
the results indicated that the levels of the three TME sig-
nature genes (CXCL10, IDO1, and MAB21L2) were all 

Fig. 6 Establishment of predictive model for TME signature. (A) xgboost algorithms identified a model predicting the TME signature; (B) LASSO algo-
rithms identified a model predicting the TME signature. (C) Venn diagram identified overlapped genes between xgboost and LASSO algorithms. (D) Mul-
tivariate logistic regression model revealed the predictive value for the TME signature. (E) Expression of the four overlap genes in training dataset between 
TME-H and TME-L signature. (F) Expression of the four overlap genes in tested dataset between TME-H and TME-L signature
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increased in CRC tissues when compared with the con-
trol tissues, but the expression of LZTS2 in CRC tissues 
remained need to further validate.

Discussion
Increasing evidence indicates that the TME profoundly 
influences tumorigenesis, progression, and therapeu-
tic response; however, the utility of the TME in clinical 
settings is hampered by the inaccurate combination and 
uncertain interactions of the TME [23, 24]. Over the past 
few decades, flow cytometry or immunohistochemis-
try assays have mostly been used to determine various 
cell types in clinical tissues; however, these methods are 
subject to cumbersome procedures and low feedback 
efficiency, which limits the application of the TME in 
the clinical setting. With the development of sequenc-
ing techniques and bioinformatics, many deconvolution 
methods are available for predicting cell types and pro-
portion information in various tissues [25, 26]. TME-
score, a parameter designed to quantitatively evaluate the 
composition of the TME using computational algorithms, 
was recently introduced as a biomarker for predicting the 
prognosis of patients with cancers and to guide more 
effective immunotherapy strategies. However, a compre-
hensive characterization of the TME in CRC has not yet 
been performed. The present study demonstrated that 
TMEscore and its signature are promising tools [10, 18].

Herein, we performed a systematic analysis to explore 
the value of the TMEscore with the clinical outcome 
in patients with CRC based on several gene datas-
ets. We first depicted the TME cell landscape using a 
large meta-cohort, divided the cells into two clusters, 
and observed that the clusters were associated with the 
survival of patients with CRC. We then focused on the 
TCGA dataset and calculated its TMEscore, and the 
cluster analysis revealed its significant prognostic value 

and clinical significance, with a high TMEscore indicat-
ing better patient prognosis. Next, we developed a TME-
score signature using TMEscore-related genes that were 
divided into TME-H and TME-L signatures. We then 
determined the prognostic value and association of the 
TMEscore signature with tumor immune scores, tumor 
purity, immunotherapy response, and genomic muta-
tions, which exhibit high prognostic value and are closely 
associated with the above indicators. Moreover, we 
screened genes that represented the TMEscore signature 
using two machine learning algorithms and validated the 
predictive value of the genes using independent cohorts. 
Overall, the comprehensive estimation of the cellular, 
molecular, and genetic factors associated with TME char-
acterization has shed light on the mechanism of tumor 
response to immunotherapy and may guide the identifi-
cation of patients who are suitable for immunotherapy.

Consistent with previous studies regarding other types 
of cancers, such as gastric and prostate cancer [10, 12], 
patients with CRC with a high TMEscore showed a bet-
ter prognosis than those with a low TMEscore. We noted 
that the DEGs between the TMEscore clusters were 
involved in immune cell processes, such as T cell activa-
tion and differentiation, and that the TMEscore clusters 
were related to the immune cell score and tumor purity. 
High TMEscores indicated more immune cells and fewer 
tumor cells, indicating that the TMEscore clusters were 
critical biomarkers for immune cells and may serve as a 
predictor of immunotherapy response. Currently, anti-
tumor immunity through immune checkpoint inhibi-
tors, specifically anti PD-1/PD-L1 interaction, is a new 
line of treatment for patients with CRC, especially for 
those at later stages of cancer [27]. However, only a 
minority of patients exhibit response to the immune 
checkpoint blockade, and studies have found that PD-1/
PD-L1 expression and mutation load are not efficient 

Fig. 7 Validation of four genes in datasets and clinical samples. Comparison of CXCL10, LZTS2, IDO1 and MAB21L2 between CRC and control tissues in 
(A) GSE20916 dataset; (B) GSE21815 dataset; (C) GSE3629 dataset; (D) GSE89287 dataset; (E) clinical tissues
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biomarkers for predicting the benefits of immune check-
point blockade [28, 29]. Therefore, the establishment of 
reliable predictive biomarkers for checkpoint immuno-
therapy is important for maximizing therapeutic benefits 
[30, 31]. In the present study, the top 10 mutated genes 
(APC, TP53, KRAS, PIK3CA, ATM, PTEN, TTN, SYNE1, 
MUC16 and SMAD4), which have well documented in 
the pathogenesis of CRC [32–37]. Regarding the ten 
genes with a significant differential mutation frequency 
between the two signatures, mutation of EP400[38], 
RNF43[39], TRPM3[40],TEP1[41], MCF2[42] have been 
reported to associated with pathogenesis or prognosis 
of CRC, and the expression of DSCAML1[43], RYR1[44] 
and DNAH5[45] was related to CRC development. How-
ever, although ITPR3[46] and GRIK2[47] were reported 
to associated with cancers development, but the no evi-
dence reported their roles in CRC. These results revealed 
that these TMEscore signatures also exhibited high 
gene mutation, and thus potentially influence the tumor 
microenvironment. Moreover, some genes mutation was 
not reported in CRC, suggesting further study is warrant 
to explore their role in CRC. Furthermore, we observed 
that the TMEscore clusters were associated with the 
expression of six immune checkpoint inhibitors and 
that genomic mutation and TMB were greatly increased 
in the TME-H cluster, demonstrating that patients with 
high TMEscores may benefit from immunotherapy.

Compared with previous studies that investigated the 
value of TMEscore in other cancers [10, 12, 25], our study 
constructed a four-gene TME signature using TMEscore-
related genes (CXCL10, LZTS2, IDO1, and MAB21L2), 
making it easy for clinicians to assess patients who might 
belong to the TME-H or TME-L signature. The role of 
CXCL10 and IDO1 in CRC has been described in previ-
ous studies; for example, CXCL10 was found to be related 
to immune infiltration [48], and IDO1(+) Paneth cells 
promote the immune escape of CRC [49]. LZTS2 pro-
tein reduces the level of nuclear β-catenin in CRC cells 
(SW480 cells) [50], while MAB21L2 is reduced in CRC 
and is associated with the Wnt pathway [51]. Therefore, 
our results suggest that further studies are required to 
explore their roles in that aspect. However, their roles in 
predicting immunotherapy have not yet been reported. 
Notably, LZTS2 expression trend from GSE20916 and 
GSE3629 datasets was contrary to those from the other 
two datasets and our clinical samples. We speculated that 
the disparity is due to sample sources, so that the tissue 
stage, gene mutation status, and detection methods could 
influence gene expression. Hence, more studies are war-
ranted to validate the gene expression by considering 
other factors related to gene expression.

In the present study, we first combined the TCGA 
dataset and other GEO datasets to construct a larger 
cohort, which could increase the reliable of the results 

due to the larger samples. In addition, we also employed 
other public datasets and clinical samples to validate 
the results, this strategy could guarantee the robustness 
of the results. Our study showed that the TMEscore is a 
reliable prognostic biomarker and predictive indicator in 
patients with CRC, and the gene expression results were 
verified using independent cohorts and clinical samples. 
Nevertheless, our results still require further validation 
in a prospective cohort of patients with CRC undergo-
ing immunotherapy, and their gene expression profiles 
should be tested to confirm the results of the TMEscore 
signature. In addition, the number of immune cells in the 
tumors was determined by computational algorithms, the 
exact number of which remained to be determined using 
flow cytometry or immunohistochemistry. Furthermore, 
the treatment response of CRC is affected by numerous 
factors, and our study only included a few, and more clin-
ical factors should be incorporated into predictive mod-
els to further improve the accuracy of the signature.

Conclusion
The present study provides a comprehensive descrip-
tion of TME characteristics in CRC. It also demonstrates 
that the TME score is a potential reliable prognostic bio-
marker and predictive indicator for patients with CRC 
undergoing immunotherapy. Furthermore, our results 
provide a novel strategy for the precise treatment of 
patients with CRC.
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