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Abstract
Background This study targeted at developing a robust, prognostic signature based on super-enhancer-related 
genes (SERGs) to reveal survival prognosis and immune microenvironment of breast cancer.

Methods RNA-sequencing data of breast cancer were retrieved from The Cancer Genome Atlas (TCGA), 1069 
patients of which were randomly assigned into training or testing set in 1:1 ratio. SERGs were downloaded from 
Super-Enhancer Database (SEdb). After which, a SERGs signature was established based on the training set, with its 
prognostic value further validated in the testing set. Subsequently, we identified the potential function enrichment 
and tumor immune infiltration of the model. Moreover, in vitro experiments were completed to further explore the 
biological functions of ZIC2 gene (one of the risk genes in the prognostic model) in breast cancer.

Results A risk score system of prognostic value was constructed with 6 SERGs (ZIC2, NFE2, FOXJ1, KLF15, POU3F2 
and SPIB) to find patients in high-risk group with significantly worse prognosis in both training and testing sets. In 
addition, a multivariate regression was established via integrating the 6 genes with age and N stage, indicating well 
performance by calibration, time-dependent receiver operating characteristic (ROC) analysis and decision curve 
analysis (DCA). Further analysis demonstrated that tumor-associated pathological processes and pathways were 
significantly enriched in the high-risk group. In general, the novel SERGs signature could be applied to screen breast 
cancer with immunosuppressive microenvironment for the risk score was negatively correlated with ESTIMATE score, 
tumor-infiltration lymphocytes (such as CD4 + and CD8 + T cell), immune checkpoints and chemotactic factors. 
Furthermore, down-regulation of ZIC2 gene expression inhibited the cell viability, cellular migration and cell cycle of 
breast cancer cells.

Conclusions The novel SERGs signature could predict the prognosis of breast cancer; and SERGs might serve as 
potential therapeutic targets for breast cancer.

Keywords Breast cancer, Super-enhancer, Overall survival, Tumor immune microenvironment, Immune checkpoints

A novel super-enhancer-related gene 
signature predicts prognosis and immune 
microenvironment for breast cancer
Qing Wu1,2†, Xuan Tao3†, Yang Luo1†, Shiyao Zheng4, Nan Lin5,6 and Xianhe Xie1,2,7*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://orcid.org/0000-0002-4134-5887
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-023-11241-2&domain=pdf&date_stamp=2023-8-18


Page 2 of 18Wu et al. BMC Cancer          (2023) 23:776 

Introduction
Breast cancer has been the most common global malig-
nancy as well as the leading cause of cancer deaths [1]. 
During the past recent years, various therapies have 
emerged in the era of breast cancer. However, there are 
still a large portion of breast cancer patients with poor 
prognosis and high mortality due to its heterogeneity and 
the complexity of cancer pathogenesis, development, and 
metastasis [2, 3]. Studies have shown that status of estro-
gen receptor (ER), progesterone receptor (PR), human 
epidermal growth factor receptor 2 (HER2), circulating 
tumor cell DNA (ctDNA), carcinoembryonic antigen 
(CEA), carbohydrate antigen 15−3 (CA15-3), extracellu-
lar vesicles (EV), circulating miRNA, BRCA gene muta-
tions and other biomarkers were closely related to 
diagnosis and prognosis of breast cancer, but without 
specificity and stability [4–10]. Therefore, it is critical to 
find appropriate prognostic and predictive biomarkers 
for breast cancer.

In 2013, Richard A. Young and his colleagues firstly 
proposed the concept of super-enhancers (SEs), which 
were a class of cis-regulatory elements with super tran-
scriptional activation characteristics [11, 12], with broad 
application prospects in the discovery of pathogenic 
driver genes, the analysis of the susceptibility of disease-
associated variation sites, the development of accurate 
diagnosis as well as drug development of complex dis-
ease [13, 14]. In recent years, accumulating studies have 
focused on whether SEs could enable the identification 
of effective biomarkers in cancer and the development of 
therapeutics targeting transcriptional addiction [15–17]. 
Therefore, SE-related genes (SERGs) are expected to be 
potential biomarkers for predicting prognosis and anti-
tumor therapy [18, 19]. Nevertheless, the robust relation-
ship between SEs and breast cancer remains to be further 
clarified [20, 21]. Hence, it is urgent to explore the poten-
tial molecular mechanisms and prognostic indicators of 
breast cancer based on SEs.

In this study, we obtained RNA-sequence and clini-
copathological data of breast cancer patients from The 
Cancer Genome Atlas (TCGA) database. Then, through 
a comprehensive bioinformatics analysis, we established 
a risk score system with 6 prognosis SERGs and validated 
it by testing set. Meanwhile, enrichment analyses were 
conducted between the low-risk and high-risk groups 
to reveal the potential mechanisms and pathways. In 
addition, analyses based on tumor infiltration immune 
level, immune checkpoints and chemotactic factors were 
applied to investigate the associations between SERGs 
signature and tumor immune microenvironment (TIME). 
Furthermore, reverse transcription quantitative poly-
merase chain reaction (RT-qPCR), Western Blot, immu-
nohistochemistry (IHC) and functional experiments 
(such as Cell Counting Kit-8 (CCK-8) assay, cellular 

migration assay and cell cycle assay) were all adopted to 
validate the expression level and significant clinical value 
of ZIC2 (one of the risk genes in the prognostic model) in 
cell lines and tissues of breast cancer.

Materials and methods
Data Acquisition
Complying with the TCGA data access policies and 
publication guidelines, gene expression profile (RNA-
sequencing) with corresponding clinical information of 
breast cancer and normal samples were obtained from 
the publicly-available TCGA database (https://portal.gdc.
cancer.gov/) [22].

Identification of SERGs
A total of 153 SERGs were identified from SEdb 2.0 
(www.licpathway.net/sedb/) through the following 
screening process: human, NCBI GEO/SRA, tissue, 
mammary gland (Sample_02_0667; Sample_02_0670; 
Sample_02_0671; Sample_02_1517) after removal of 
duplicates (the transcriptional abundance of 153 SERGs 
in TCGA-BRCA as shown in Additional File 1).

Selection and functional clustering analyses of SERGs
|log2 (fold change) | value of > 1 and false discovery rate 
(FDR) control (adjusted P < 0.05) were set as the cut-
offs to screen for differentially expressed genes (DEGs) 
between tumor and normal samples. Venn analysis was 
utilized to select overlapping genes, and Volcano plots 
of the DEGs were generated using the “ggplot2” package 
(https://ggplot2.tidyverse.org). Furthermore, the “clus-
ter Profiler” package and Metascape database (https://
metascape.org/gp/#/main/step1) were applied to conduct 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses for patients based on the 
SERGs [23]. Additionally, Search Tool for the Retrieval of 
Interacting Genes (STRING) (http://string-db.org) data-
base was adopted to predict protein-protein interaction 
(PPI) network of significantly positive DEGs and analyze 
the degree of interactions between proteins [24].

Construction and validation of a Novel SERGs signature
Univariate Cox analysis of overall survival (OS) was con-
ducted to screen for SERGs with prognostic value and 
visualized by forest plots (P < 0.05) [25]. A total of 1069 
breast cancer patients were randomly assigned into 
training or testing set in 1:1 ratio for constructing and 
validating the SERGs signature. Subsequently, the Least 
Absolute Shrinkage and Selection Operator (LASSO) 
regression was performed with tenfold cross-valida-
tion and a P value of 0.05 based on the training set [26]. 
Finally, 6 SERGs were integrated into a risk signature, 
and the risk score of every breast cancer patient was cal-
culated according to the normalized expression level of 
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SERGs and corresponding regression coefficients, with 
the following computational formula:

 

Risk score =
n∑

i=1

exp ressiongene_i×

lasso_coeffieicentgene_i

 (1)

After that, patients in training set were divided into low-
risk and high-risk groups with the median value of risk 
score as the threshold value, and the OS between groups 
were compared by Kaplan-Meier (KM) analysis. Then, 
time-dependent receiver operating characteristic (ROC) 
curve analysis was performed with “survivalROC” R 
package to evaluate the predictive accuracy of the SERGs 
signature. In order to validate the prognostic model, the 
risk score for every breast cancer patient in testing set 
was also calculated in accordance with the same formula 
as training set, and patients in testing set were further 
divided into low-risk and high-risk groups according to 
the median value of risk score (median value of the test-
ing set was different from the threshold from the training 
set).

DNA methylation plays a key role in prognostic assess-
ment and potential biomarkers for cancer development 
[27]. In this study, MethSurv (https://biit.cs.ut.ee/meth-
surv/) was adopted to determine the expression and 
prognostic patterns of single CpG methylation of the 
SERGs in breast cancer [28], with the DNA methylation 
values represented by beta values ranging from 0 to 1.

Risk score and clinicopathological characteristics
Breast cancer patients in training set were also assigned 
into subgroups by clinicopathological characteristics 
[including age, T stage, N stage, M stage, TNM stage, 
status of ER, PR, HER2, and menopause (Pre: <6 months 
since last menstrual period AND no prior bilateral ovari-
ectomy AND not on estrogen replacement; Post: prior 
bilateral ovariectomy OR > 12 months since last men-
strual period with no prior hysterectomy)]. Then, the 
associations between risk score and clinical features were 
identified, and the predictive value of SERGs signature in 
subgroups were also presented based on various clinical 
characteristics.

Nomogram and Validation
Univariate and multivariate Cox regression analyses were 
conducted with clinicopathological indicators (including 
age, T stage, N stage, M stage, status of ER, PR, HER2 
and menopause). Then, integrating the risk score with 
age and N stage, a multi-variate regression was estab-
lished by a nomogram to predict the OS rates of 1-, 3- 
and 5-year. In addition, calibration, time-dependent ROC 
analysis, concordance index (C-index) and decision curve 

analysis (DCA) for model were completed to assess the 
discriminatory ability of the nomogram.

DEGs between risk groups
The “edgeR” R package was used to identify the DEGs 
between high-risk and low-risk groups with FDR < 0.05 
and |log2FC| ≥1. GO and KEGG analyses with P 
value < 0.05 were considered statistically significant. 
Then, GSEA (http://software.broadinstitute.org/gsea/
index.jsp) (version 3.14.3) [29] was adopted to investigate 
the hallmarks of high-risk group and get visualized by 
ridge map.

Associations between SERGs signature and TIME
The immune infiltration scores and tumor-infiltrating 
immune cells (TIICs) of breast cancer samples in train-
ing set were calculated by ESTIMATE [30] and Immune 
Cell Abundance Identifier (ImmuCellAI) (http://bioinfo.
life.hust.edu.cn/web/ImmuCellAI/) [31], respectively. 
In addition, we also validated the correlation between 
identified genes (SERGs) and immune cells by means of 
the “TIMER” (http://timer.cistrome.org/) analysis tool 
[32]. Meanwhile, the associations between SERGs signa-
ture and immune checkpoints and chemotactic factors 
were also analyzed to further predict the TIME of breast 
cancer.

Preliminary Experimental Verification for ZIC2
The mRNA expression level of ZIC2 in various breast 
cancer cell lines was validated by Cancer Cell Line Ency-
clopedia (CCLE) (https://sites.broadinstitute.org/ccle) 
and RT-qPCR, and the protein expression level of ZIC2 
in cell lines and tissues was displayed by Western Blot 
and IHC. Referring to the Human Protein Atlas (HPA) 
database (https://www.proteinatlas.org/), immunocyto-
chemistry (ICC) images were also obtained to detect and 
visualize ZIC2 protein in the human HEK293 cell line 
and U251MG glioblastoma cell line by antibodies specific 
to the target. In addition, the ZIC2 was knocked down by 
siRNA to further reveal its effects on cell viability, cellular 
migration and cell cycle of BT549 cells.

Clinical samples
We obtained 20 pairs of breast cancer tissues and the 
paired normal adjacent tissues from patients without 
preoperative chemotherapy, hormone therapy, or radio-
therapy who had undergone tumor resection at The First 
Affiliated Hospital of Fujian Medical University between 
2020 and 2023, with written consent from all patients 
concerned.

Cell lines and Cell Culture
MCF10A, the normal breast epithelial cell line, was 
obtained from Procell Life Science & Technology Co., 

https://biit.cs.ut.ee/methsurv/
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Ltd. (Wuhan, China) and cultured in specific epithe-
lial culture medium (CM-0525, Procell Co., Ltd). Fur-
thermore, the human breast cancer cell line BT549 was 
purchased from Sailybio Co., Ltd. (Shanghai, China) and 
cultured in RPMI-1640 medium (meilunbio, China) sup-
plemented with 10% fetal bovine serum (FBS; meilunbio, 
China) and 100 U/ml penicillin and streptomycin in a 
humidified atmosphere of 5% CO2 at 37 °C.

RT-qPCR
Total RNA was extracted from cells using the Total RNA 
Isolation Kit V2 (Vazyme, China), and Complementary 
DNA (ctDNA) was synthesized by the HiScript III All-in-
one RT SuperMix Perfect for qPCR (Vazyme, China). In 
addition, RT-qPCR was conducted on an ABI 7500 ther-
mocycler (Applied Biosystems, Foster City, CA, USA) 
using the SYBR Green PCR Master Mix (Vazyme, China), 
with appropriate primers were listed in Additional File 2. 
The relative expression levels of mRNA were reported as 
fold change compared to levels detected in controls via 
the ΔΔCt method.

IHC
By means of the standard avidin-biotin complex method, 
the staining procedure was performed for IHC, with the 
extent of positively stained cells scored (0–10). In addi-
tion, the ZIC2-stained sections were divided into two 
groups (High and Low) based on scores of the staining 
between breast cancer tissues and paired normal adja-
cent tissues, with two pathologists evaluating all the 
specimens in a blinded manner.

SiRNA transfection
For the ZIC2 depletion studies, BT549 cells were plated 
at a density of 3 × 105 cells/well in 6-well plates. After 
reaching 30–40% confluence, cells were transfected with 
siRNA and GP-transfect-Mate (Shanghai GenePharma 
Co., Ltd.) according to the protocol of manufacturer. 
The siRNA duplexes with the following sense and anti-
sense sequences were used: GAACCUCAAGAUCCA-
CAAATT and UUUGUGGAUCUUGAGGUUCTT. All 
of the siRNAs were synthesized by Hanbio (Hanbio Bio-
technology Co., Ltd., Shanghai, China), and the cells were 
transfected with siRNAs via GP-transfect-Mate (Shang-
hai GenePharma Co., Ltd.) for 48  h and then harvested 
for further experiments.

CCK-8 assay
Cells were incubated at 5% CO2 and 37  °C on 96-well 
plates (100 µL/well), and ten microliters of CCK-8 
reagent (Beyotime Bio Inc., China) were added to each 
well after 24  h, 48  h, 72  h, and 96  h, respectively, with 
OD450 values determined by a microplate reader.

Cellular Migration Assay
The cellular migration assay was performed in vitro using 
24-well transwell chambers. Cells (2 × 10^4) were seeded 
in the top chambers, and the bottom chambers were 
filled with RPMI-1640 medium (600 ml) containing 10% 
FBS to stimulate migration. After 24 h of incubation, the 
cells were stained with 0.1% crystal violet. The cells that 
had migrated through the ostioles to the reverse side 
were counted under a microscope in five predetermined 
fields at magnification of 200. Each assay was performed 
in triplicate.

Cell cycle assay
Cells were harvested and fixed in 70% cold ethanol and 
stored at 4  °C overnight. The next day cells were centri-
fuged at 2500 rpm for 5 min. After washed with PBS, cell 
pellets were treated with RNase A and stained with PI at 
37 °C for 30 min in the dark. The cell cycle was assessed 
with flow cytometry (Beckman Coulter).

Protein extraction and western blot analysis
The cells were lysed using Radio Immunoprecipitation 
Assay (RIPA) lysis buffer (Beyotime, China). The protein 
concentration was determined by BCA protein concen-
tration kit (Beyotime, China). Sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) was 
done in advance to separate the proteins. The proteins 
were subsequently electroblotted onto polyvinylidene 
difluoride membranes (Millipore, 150 Billerica, MA, 
USA). The membranes were blocked for 2  h in a solu-
tion of 5% nonfat dry milk in Tris Buffer Solution Tween 
(TBST). The primary antibodies ZIC2 (ZIC Family Mem-
ber 2; HUABIO, 1: 2000) and β-actin (#YT0099, 1:5000) 
were then incubated at 4  °C overnight. The membranes 
were washed with TBST every 10 min. Membranes were 
washed and stained for 1 h at room temperature with goat 
anti-rabbit IgG secondary antibody (HUABIO, 1: 50,000). 
After that, the membranes were washed three times with 
TBST every 10 min. The blots were cut prior to hybridi-
sation with antibodies during blotting. The bands were 
developed using an improved ECL kit (Thermo Scientific, 
Rockford, USA). GelDoc XR equipment was used to take 
the images, which were then analyzed using Image Lab 
Software (Bio-Rad). The original, uncropped Western 
Blot images of the study were in Additional File 3.

Statistical analysis
Statistical analyses in this study were conducted by R 
software (version 3.6.3). The log-rank test was applied 
for the KM analysis. T test or Wilcoxon-test were used 
to compare the risk score between different clinical char-
acteristic subgroups and proportion of immune infiltra-
tion score, TIICs, immune checkpoints and chemotactic 
factors between low-risk and high-risk groups. The mean 
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standard deviation was utilized when the data were nor-
mally distributed and the independent t-test was used 
to compare the means of two independent groups. A 
p-value of < 0.05 was considered statistically significant. 
Graphpad Prism 8.0 was used to conduct the statisti-
cal analyses (GraphPad Software Inc., USA). *P < 0.05, 
**P < 0.01, *** P < 0.001.

Results
Identification of SERGs in breast cancer
The flow of the study was displayed in Fig. 1. After raw 
data preprocessing, a total of 5,073 DEGs of TCGA-
BRCA (Fig. 2A) was obtained (the details of 5073 DEGs 
and GSEA for them were shown in Additional File 4, 
GSEA for the whole transcriptome were shown in Addi-
tional File 4). Meanwhile, 153 SERGs were identified 
from SEdb 2.0 after removal of duplicates. Then, based 
on overlapping genes between the two algorithms men-
tioned above, a total of 55 SERGs were screened for 
further analysis (Fig.  2B) (the details of 55 SERGs were 
shown in Additional File 5).

Functional clustering analysis of SERGs in breast Cancer
Go and KEGG analyses were performed to reveal the 
functions of the 55 SERGs. These genes were significantly 
enriched in terms of developmental process, metabolic 
process, and tumor formation (Fig.  2C, D). In addition, 
the protein-protein interaction (PPI) network among 
these genes illuminated that they interacted with each 
other (Fig. 2E).

Construction and validation of the SERGs Prognostic 
signature
Univariate Cox regression analysis was used to screen 
the SERGs with prognostic value in breast cancer. Then, 
6 SERGs were identified as potential prognostic genes 
(Fig.  3A) by cut-off threshold of P < 0.05. Then, LASSO 
regression algorithm was used to refine by calculating 
regression coefficients in training set (Fig. 3B, C). Finally, 
the 6-SERGs prognostic model, comprised of POU3F2, 
NFE2, FOXJ1, KLF15, SPIB, and ZIC2, were obtained, 
with the risk score system was set up (Table 1) (the rela-
tionships between individual composition gene and clini-
cal outcomes were detailed in Additional File 6).

DNA methyltransferases on CpG island methylation 
are transcription factors in the suppression or promotion 
of cell growth which is a reversible process [33]. In this 
study, we present the heatmap and prognostic value of 
DNA methylation clustering the expression levels of the 
6 SERGs in breast cancer (Additional File 7). With regard 
to DNA methylation expression levels, cg06807713, 
cg25721818, cg23384027, cg17869315, cg24087497 from 
NFE2; cg16861241, cg12284789, cg25051233 from FOXJ1 
came up with the highest levels and significant prognos-
tic values (likelihood ratio (LR) test P < 0.05) in breast 
cancer.

With the risk score formula, the distribution of risk 
score, survival status, survival time, and expression lev-
els of 6 SERGs for breast cancer were compared between 
low-risk and high-risk groups in both training (Fig. 3D) 
and testing (Fig. 3E) sets. The results indicated the high-
risk group had a worse prognosis. KM analysis displayed 

Fig. 1 The flow diagram of this study
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Fig. 2 Characterization of differentially expressed SERGs in breast cancer
(A) Volcano plot of differentially expressed genes (DEGs) in TCGA-BRCA with the cut-offs of |log2 (fold change) | value of > 1 and false discovery rate (FDR) 
control (adjusted P < 0.05); (B) 55 SERGs were screened via Venn diagram of DEGs from TCGA-BRCA and SERGs from SEdb; (C, D) Gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (www.kegg.jp/kegg/kegg1.html) analyses of the 55 differentially expressed SERGs; (E) protein-protein 
interaction (PPI) networks constructed by STRING on the basis of 55 differentially expressed SERGs

 

http://www.kegg.jp/kegg/kegg1.html
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that high-risk group had a significantly poorer OS than 
low-risk group in both training (P < 0.001, Fig.  3F) and 
testing (P = 0.008, Fig. 3G) sets. Besides, the time-depen-
dent ROC curve in training (Fig. 3H) and testing (Fig. 3I) 
sets indicated that the SERGs prognostic signature was 
reliable for predicting the prognosis of breast cancer 
patients.

Risk score and clinicopathological characteristics
Relationship between risk score and clinicopathologi-
cal characteristics of patients in training set were ana-
lyzed in Fig. 4A. It revealed that risk score was lower in 
breast cancer patients ≤ 60 years, T1 stage, PR positive, 
HER2 negative, and pre menopause status. In addition, 
we also validated the prediction efficiency of risk groups 

Fig. 3 Identification and validation of the 6-SERGs signature
(A) The 6 differentially expressed SERGs with prognostic value were extracted by univariate Cox regression analysis and represented by a forest plot; 
(B) the tenfold cross-validation for variable selection in the LASSO model; (C) the LASSO coefficient profile of 6 differentially expressed SERGs; risk plot 
distribution, survival status of patients, and heat map including 6 SERGs in (D) training set and (E) testing set; Kaplan-Meier (KM) survival curves of overall 
survival (OS) for patients between low-risk and high-risk groups in (F) training set and (G) testing set; time-dependent receiver operating characteristic 
(ROC) curves for predictive performance of the SERGs signature in (H) training set and (I) testing set
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in several subgroups. KM analyses showed that high-risk 
group had a worse OS in subgroups of age ≤ 60 years, 
age > 60 years, stages of T1&2, T3&4, N0&1, N2&3, M0, 
TNM stage I&II, TNM stage III&IV, ER positive, PR posi-
tive, PR negative, and post menopause status (Fig. 4B). In 
addition, subgroup analysis revealed that the high-risk 
group had a significantly worse OS in luminal A, B breast 
cancer and tended to have a worse clinical outcome in 
triple negative breast cancer (Additional File 8).

Nomogram and Validation
The potential prognostic clinicopathological factors (age, 
stage of T, N, M, status of ER, PR, HER2, menopause, 
and radiotherapy) were analyzed by univariate and mul-
tivariate Cox regression in training set (Table  2). Then, 
the independent prognostic parameters (age and N stage) 
and risk score were calculated by univariate and mul-
tivariate Cox regression (Fig.  5A, B). The result showed 
that high-risk group had significantly lower OS in train-
ing set [hazard ratio (HR) = 2.995, 95% confidence inter-
val (CI): 2.070–4.334, P < 0.001]. The model was verified 
by testing set (HR = 1.681, 95% CI: 1.203–2.350, P = 0.002) 
(Fig. 5C, D). Subsequently, the age, N stage and risk score 
were integrated into nomogram model (Fig. 5E) with the 
C-index was 0.788 (95% CI: 0.759–0.816). Moreover, the 
results of time-dependent ROC analysis (Fig. 5F, G) and 
DCA (Fig.  5H, I) for model in training and testing sets 
revealed that the discriminatory ability of the nomo-
gram was robust. In addition, the calibration plots dis-
played outstanding agreement among 1- and 2-, 3- and 
4-, 5- and 6-year OS rates when comparing the ideal and 
nomogram model (Fig. 5J, K, L).

DEGs between high-risk and low-risk groups
Based on the DEGs between low-risk and high-risk 
groups (Fig. 6A), Go and KEGG analyses were performed 
and showed these genes were significantly enriched in 
terms of T cell activation, lymphocyte differentiation, 
receptor ligand activity, and cytokine-cytokine receptor 
interaction (Fig. 6B). Moreover, GSEA analysis was con-
ducted to clarify the potential regulatory mechanisms 
leading to the differences between low-risk and high-risk 
groups. Some cancer-related hallmarks, including the 

cancer metabolism and dysregulation of cell cycle were 
significantly associated with high-risk group (Fig.  6C). 
T cell receptor signaling pathway, chemokine signaling 
pathway and PD-1 signaling pathways were associated 
with low-risk group (Fig. 6D).

Associations between SERGs signature and TIME
The results displayed that the risk score was negatively 
correlated with immune infiltration score (Stromal score, 
Immune score and ESTIMATE score) (Fig.  7A, B); fur-
thermore, the risk score was negatively correlated with 
tumor-infiltration lymphocytes (TILs) (such as CD4 + T 
cells, NK, and CD8 + T cells) (Fig.  7C, D). As analyzed 
with the TIMER tool, expressions of SERGs were also 
correlated with immune infiltration profiles in breast 
cancer. In summary, expression of each SERG was associ-
ated with tumor purity and markers of different immune 
cells (Additional File 9).

Moreover, we evaluated the relationship between risk 
score and immune checkpoints (Fig. 7E). The expression 
level of immune checkpoints (including CD27, CD274, 
CTLA4, PDCD1, LAG3, TIGIT) were lower in high-risk 
group (Fig. 7F).

Besides, we also analyzed the relationship between risk 
score and chemotactic factors (Fig.  7G). The expression 
level of chemotactic factors (including CCL17, CCR7, 
CXCL2, CCL19, CX3CL1, CXCR3) were lower in high-
risk group (Fig. 7H).

Preliminary Experimental Verification for ZIC2 Gene
We focused on the expression, clinical significance and 
prognostic value of ZIC2 in breast cancer to further 
confirm the prognostic signature. ZIC2 expression at 
the transcriptome level in breast cancer cell lines was 
displayed using the database of CCLE (Fig. 8A) and RT-
qPCR (Fig. 8B). Then, ZIC2 expression was further con-
firmed at the protein level in cell lines using Western Blot 
(Fig.  8C). These findings showed that ZIC2 was highly 
expressed in MCF-7, MDA-MB-231, and BT549 cell 
lines, in accordance with the transcriptional results. The 
HPA database was used to reveal the subcellular localiza-
tion of ZIC2 protein in HEK293 and U251MG cells by 
ICC, which indicated that ZIC2 was primarily expressed 
in the nucleoplasm and nuclear bodies (Fig. 8D). To con-
firm the dysregulation of ZIC2, IHC analysis was also 
performed on 20 pairs of breast cancer and peritumoral 
tissues (Fig.  8E). Furthermore, we knocked down the 
ZIC2 by siRNA (Fig. 8F, G). Then, the results of CCK-8 
assay (Fig. 8H), cellular migration assay (Fig. 8I) and cell 
cycle assay (Fig. 8J) showed that the down-regulation of 
ZIC2 gene expression inhibited the cell viability, cellular 
migration, and cell cycle of breast cancer cells. In addi-
tion, the expression level of ZIC2 was higher in T3&4 
stage, N2&3 stage, TNM stage III&IV, age > 60 years, 

Table 1 Differentially expressed SERGs and their coefficients in 
LASSO regression model
Gene Description Coefficients
ZIC2 Zic Family Member 2 0.251
NFE2 Nuclear Factor Erythroid 2 -0.339
FOXJ1 Forkhead Box J1 -0.208
KLF15 Kruppel-like factor 15 -0.238
POU3F2 POU Class 3 Homeobox 2 0.275
SPIB Spi-B Transcription Factor -0.177
SERGs, super-enhancer-related genes; LASSO, Least Absolute Shrinkage and 
Selection Operator



Page 9 of 18Wu et al. BMC Cancer          (2023) 23:776 

Fig. 4 The predictive power of the risk score system
(A) Correlation between the risk score and clinical characteristics (age; T stage; N stage; M stage; TNM stage; ER status; PR status; HER2 status; menopause 
status); (B) KM curves for OS prediction in subgroups based on various clinical characteristics (age ≤ 60 years; age > 60 years; T1&2; T3&4; N0&1; N2&3; M0; 
stage I&II; stage III&IV; ER positive; PR positive; PR negative; menopause status (post))
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HER2 positive, and post menopause status (Fig.  8K). 
Patients with high expression level of ZIC2 had a shorter 
OS (HR = 1.92, 95% CI: 1.38–2.67, P < 0.001) (Fig. 8L).

Discussion
SEs are a subclass of enhancers that frequently contain 
multiple enhancer-like elements, characterized by dense 
binding of master transcription factors (TFs) and Media-
tor complexes and high signals of active histone marks 
[12, 18]. More and more studies have revealed that as 
important regulatory regions, SEs control cell identity 
and contribute to the pathogenesis of diverse diseases 
[19, 34, 35]. In cancer, SEs have multifaceted roles by acti-
vating various oncogenes and other cancer-related genes 
and play important regulatory roles in cancer occurrence, 
cell differentiation, immune response and other impor-
tant biological processes [13, 36].

Recently, the role of SEs in the pathogenesis and pre-
diction of breast cancer has been the research hot spots 
[37, 38]. However, the underlying mechanism remains 
to be fully elaborated. Therefore, we performed a 

comprehensive profiling based on SERGs in breast cancer 
patients to investigate and establish a prognostic model. 
In addition, we also explored the relationship between 
the prognostic signature and TIME.

In this study, we identified a total of 5,073 DEGs from 
TCGA-BRCA and 153 SERGs from SEdb 2.0. Then, 
based on overlapping genes between the two algorithms 
mentioned above, a total of 55 SERGs were screened 
and established a 6-SERGs signature with prognostic 
value on the basis of univariate Cox regression analysis 
and LASSO regression algorithm. Meanwhile, we also 
validated the prediction efficiency of risk score system 
in several subgroups. According to the risk score system, 
breast cancer patients were divided into low-risk and 
high-risk groups. The effective and stable of the risk score 
system were validated in training set (including several 
subgroups) and testing set by KM curve. Then, the age, 
N stage and risk score were integrated into a nomogram 
model and calibration plots revealed the robust predic-
tive ability of the prognostic nomogram for OS in the 
training set. Besides, time-dependent ROC analysis and 

Table 2 Univariate and multivariate Cox analysis of OS in training set
Characteristics Total (N) Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
Age 536 1.039 (1.021–1.058) < 0.001 1.054 (1.026–1.083) < 0.001
T stage 534
T1 139 Reference
T2 316 1.168 (0.674–2.025) 0.580
T3&4 79 1.119 (0.539–2.324) 0.762
 N stage 526
N0 262 Reference
N1 170 1.556 (0.910–2.663) 0.106
N2 62 1.407 (0.606–3.265) 0.427
N3 32 2.637 (1.004–6.924) 0.049
M stage 451
M0 442 Reference
M1 9 1.455 (0.567–3.733) 0.435
ER status 506
Negative 110 Reference
Positive 396 1.316 (0.681–2.543) 0.413
PR status 505
Negative 162 Reference
Positive 343 1.030 (0.601–1.766) 0.914
HER2 status 338
Negative 267 Reference
Positive 71 1.912 (0.912–4.011) 0.086
Menopause status 459
Pre 117 Reference Reference
Post 342 2.605 (1.167–5.811) 0.019 0.737 (0.256–2.123) 0.571
Radiotherapy 91
YES 42 Reference
NO 49 1.274 (0.283–5.745) 0.753
OS, overall survival; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; 95% CI, 95% confidence 
interval
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Fig. 5 Nomogram and verification of prognostic model
Univariate and multivariate Cox analyses of clinical factors and risk score with OS in training set (A, B) and testing set (C, D); (E) nomogram predicting 
1-, 3- and 5-years survival rate of breast cancer patients; time-dependent ROC curves for predictive performance of the model in (F) training set and (G) 
testing set; decision curve analysis (DCA) for the model in (H) training set and (I) testing set; the calibration curves for (J) 1- and 2-, (K) 3- and 4-, (L) 5- and 
6-year OS in training set
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DCA for model in training and testing sets revealed the 
well discriminatory ability of the nomogram. Therefore, 
our prognostic model based on SERGs can competently 
predict the clinical outcomes of breast cancer patients.

The 6-SERGs prognostic model was comprised of 
POU3F2, NFE2, FOXJ1, KLF15, SPIB, and ZIC2. Previ-
ous studies have indicated that the 6 SERGs are involved 
in invasion, angiogenesis, and malignant phenotypes 
of breast cancer [39–44]. Literature evidences have 
revealed that down-regulation of POU3F2 could remark-
ably inhibit the increasing trends of proliferation, clone 
formation, invasion, and migration abilities induced by 
BCYRN1 in hepatocellular carcinoma (HCC) cells [45]; 
transcription factor NFE2-related factor 2 (NRF2) could 
activate antioxidant programs and influence tumorigen-
esis and metastasis [46]; FOXJ1 could promote bladder 

cancer cell growth and regulates warburg effect [47]; 
KLF15 could inhibit the proliferation and migration of 
gastric cancer cells via regulating the TFAP2A-AS1/
NISCH axis [48]; SPIB acted as a tumor suppressor by 
activating the NFkB and JNK signaling pathways through 
MAP4K1 in colorectal cancer cells [49]. ZIC2 was over-
expressed and played an oncogene role in various can-
cers, such as lung adenocarcinoma, colorectal cancer, 
and HCC [50–53]. There is currently limited evidence 
on the role of ZIC2 in breast cancer. Liu et al. reported 
that ZIC2 is downregulated and represses tumor growth 
in breast cancer [54]. However, Zhang et al. argued that 
ZIC2 was an oncogene and upregulated in breast cancer 
[44].

In our study, the expression level of ZIC2 in the TCGA 
databases were negative correlated with OS of breast 

Fig. 6 The DEGs between low-risk and high-risk groups
(A) Variance ranking chart and (B) GO and KEGG (www.kegg.jp/kegg/kegg1.html) analyses of DEGs from high-risk group compared with low-risk group; 
(C, D) ridge map of gene set enrichment analysis (GSEA) for DEGs from high-risk group compared with low-risk group

 

http://www.kegg.jp/kegg/kegg1.html


Page 13 of 18Wu et al. BMC Cancer          (2023) 23:776 

Fig. 7 Correlation between prognostic model and TIME
(A) Relationship between immune infiltration scores (including Stromal score, Immune score, and ESTIMATE score) and risk score; (B) comparison of im-
mune infiltration scores between low-risk and high-risk groups; (C) correlations between the risk model and tumor-infiltrating immune cells (TIICs); (D) 
comparisons of TIICs between low-risk and high-risk groups; (E) association between risk score and immune checkpoints; (F) comparison of six immune 
checkpoints between low-risk and high-risk groups; (G) association between the risk score and chemotactic factors; (H) comparison of six chemotactic 
factors between low-risk and high-risk groups
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Fig. 8 Preliminary experimental verification of characteristics of ZIC2
(A) ZIC2 mRNA expression levels in breast cancer cell lines from CCLE; (B) the mRNA relative expression levels of ZIC2 in a normal breast cell line (MCF10A) 
and breast cancer cell lines (MCF-7, MDA-MB-231 and BT549) determined by RT-qPCR. (C) the protein expression levels of ZIC2 in a normal breast cell 
line (MCF10A) and breast cancer cell lines (MCF-7, MDA-MB-231 and BT549) determined by cropped Western Blot; (D) ICC for determining the subcellular 
location of ZIC2 in HEK293 and U251MG cell lines by HPA. ZIC2 localized to the nucleoplasm and nuclear bodies (green). Microtubules are stained in red 
and the nucleus in blue (DAPI); (E) the representative images of H&E and IHC for ZIC2 expressed on breast cancer and peritumoral tissues, and the protein 
expression levels of ZIC2 in 20 pairs of tumoral and peritumoral tissues by IHC; the mRNA and protein expression levels of ZIC2 in BT549 cells treated 
with siNC or siZIC2 via (F) RT-qPCR and (G) cropped Western Blot; (H) the cell viability of BT549 cells treated with siNC or siZIC2 by CCK-8 assay; (I) cellular 
migration assay of BT549 cells treated with siNC or siZIC2; (J) cell cycle assay of BT549 cells treated with siNC or siZIC2; (K) the association between ZIC2 
expression levels and clinicopathological features in breast cancer; (L) KM survival curves of OS for breast cancer patients according to the expression 
level of ZIC2. *P < 0.05, **P < 0.01, ***P < 0.001
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cancer patients. The mRNA and protein expression lev-
els of breast cancer cell lines were determined, showing 
that ZIC2 may act as an independent prognostic factor in 
breast cancer. The in vitro experiments revealed that the 
down-regulation of ZIC2 gene expression inhibited the 
cell viability, cellular migration, and cell cycle of breast 
cancer cells, and ZIC2 might serve as a therapeutic tar-
get for breast cancer. In addition, further experimental 
studies should be conducted to unravel the mechanism 
by which ZIC2 mediates the malignant function of breast 
cancer cells, resulting in a poor prognosis for patients.

Then, we performed GO and KEGG analyses based on 
DEGs between low-risk and high-risk groups to evalu-
ate risk score system. The results displayed that DEGs 
were significantly enriched in terms of T cell activation, 
lymphocyte differentiation, receptor ligand activity, 
and cytokine-cytokine receptor interaction, which were 
closely related to the tumorigenesis and immune micro-
environment [55–58]. Subsequently, we conducted GSEA 
between high- and low-risk groups. The results revealed 
that pathways associated with cancer metabolism and 
dysregulation of cell cycle were enriched in the high-risk 
group while T cell receptor signaling, chemokine signal-
ing and PD-1 signaling pathways were enriched in the 
low-risk group. Several studies have showed that TIME 
was associated with the oncogenesis and prognosis of 
breast cancer [59–61]. Hence, immune analyses were 
adopted to further evaluate the relationship between 
6-SERGs prognostic model and TIME.

Patients in the two risk groups had different TIME. The 
results revealed that the risk score was negatively cor-
related with ESTIMATE score, which was composed of 
stromal score and immune score. In tumor infiltrating 
immune cells, the risk score was negatively correlated 
with tumor-infiltration lymphocytes (TILs) (including 
CD4 + T cells, NK, and CD8 + T cells), which played an 
important role in immunotherapy [62–64]. Addition-
ally, the risk score was negatively correlated with both 
immune checkpoints and chemotactic factors. Those 
results revealed that tumors of high-risk groups are so-
called immunologically “cold”, with immunosuppressive 
tumor microenvironment [65].

This study was innovative to some extent: it took the 
SEs as the entry point, with the purpose of discovering 
potential new biomarker for predicting the prognosis 
of breast cancer, and a prognostic model on the basis 
of SERGs was constructed; in addition to validating the 
model through testing set, the biological function of 
ZIC2 was also preliminarily explored in vitro experi-
ments. Meanwhile, this study also had three limitations: 
firstly, it will be better if the performance of the model 
itself can be further improved; secondly, only one repre-
sentative risk gene (ZIC2) in the prognostic model was 
validated in true bench work; thirdly, some patients from 

TCGA-BRCA lacked of HER-2 status, which might be a 
cause to the bias.

In summary, the 6-SERGs signature is capable of attrib-
uting to screen the population with various TIME and 
is promising to act as prognostic biomarker for breast 
cancer patients. Therefore, how to accurately identify 
patients in high-risk and achieve superior immuno-
infiltration of “cold” tumors may be the topic of future 
research [66–69].

Conclusions
The novel SERGs signature could predict the prognosis 
of breast cancer; moreover, SERGs might have a potential 
role in serving as therapeutic targets for breast cancer.
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