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Abstract 

Background Bladder cancer (BLCA) represents a highly heterogeneous disease characterized by distinct histological, 
molecular, and clinical features, whose tumorigenesis and progression require aberrant metabolic reprogramming 
of tumor cells. However, current studies have not expounded systematically and comprehensively on the metabolic 
heterogeneity of BLCA.

Methods The UCSC XENA portal was searched to obtain the expression profiles and clinical annotations of BLCA 
patients in the TCGA cohort. A total of 1,640 metabolic-related genes were downloaded from the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database. Then, consensus clustering was performed to divide the BLCA patients 
into two metabolic subtypes according to the expression of metabolic-related genes. Kaplan-Meier analysis was used 
to measure the prognostic values of the metabolic subtypes. Subsequently, comparing the immune-related charac-
teristics between the two metabolic subtypes to describe the immunological difference. Then, the Scissor algorithm 
was applied to link the metabolic phenotypes and single-cell transcriptome datasets to determine the biomarkers 
associated with metabolic subtypes and prognosis. Finally, the clinical cohort included 63 BLCA and 16 para-cancer-
ous samples was used to validate the prognostic value and immunological correlation of the biomarker.

Results BLCA patients were classified into two heterogeneous metabolic-related subtypes (MRSs) with distinct 
features: MRS1, the subtype with no active metabolic characteristics but an immune infiltration microenvironment; 
and MRS2, the lipogenic subtype with upregulated lipid metabolism. These two subtypes had distinct prognoses, 
molecular subtypes distributions, and activations of therapy-related pathways. MRS1 BLCAs preferred to be immuno-
suppressive and up-regulated immune checkpoints expression, suggesting the well-therapeutic response of MRS1 
patients to immunotherapy. Based on the Scissor algorithm, we found that S100A7 both specifically up-regulated 
in the MRS1 phenotype and MRS1-tumor cells, and positively correlated with immunological characteristics. In 

†Yun Cai, Yifei Cheng and Ziyu Wang contributed equally to this work.

*Correspondence:
Zhengtao Qian
csBaiZJ93@163.com
Wei Xia
xiawei0909@163.com
Weiwei Yu
yuweiweiwxry@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-023-11182-w&domain=pdf


Page 2 of 18Cai et al. BMC Cancer          (2023) 23:725 

addition, in the clinical cohort included 63 BLCA and 16 para-cancerous samples, S100A7 was obviously associated 
with poor prognosis and enhanced PD-L1 expression.

Conclusions The metabolic subtype with S100A7 high expression recognizes the immuno-suppressive tumor micro-
environment and predicts well therapeutic response of immunotherapy in BLCA. The study provides new insights 
into the prognostic and therapeutic value of metabolic heterogeneity in BLCA.

Keywords Bladder cancer, Metabolic heterogeneity, Tumor microenvironment, S100A7

Introduction
Bladder cancer (BLCA) is one of the most common 
malignancies in the urothelial system worldwide, rank-
ing ninth in tumor incidence and thirteenth in tumor-
induced mortality globally [1]. In the past few decades, 
platinum-based chemotherapy has been the standard-
of-care first-line treatment for bladder cancer. Although 
approximately 60-70% patients were initially responding 
to platinum-based treatment, most of them will relapse 
and succumb to the disease due to drug resistance [2]. 
Moreover, despite the advances in cancer genomics, 
transcriptomics, proteomics, and metabolomics led to 
the discovery of potential biomarkers for cancers [3, 4], 
most of the biomarkers have failed to demonstrate supe-
rior performance characteristics compared with existing 
clinical tests unfortunately. Therefore, how to predict the 
clinical outcome more efficiently and accurately, as well 
as to guide the selection of adequate and sensitive treat-
ments, is the focus of clinical research on BLCA.

The increasing number of evidence has confirmed that 
tumorigenesis and progression require aberrant meta-
bolic reprogramming of tumor cells [5, 6]. Tumor cells 
autonomously alter their metabolic pathways to meet the 
increased bioenergetic and biosynthetic demand as well 
as mitigate oxidative stress required for tumor cell prolif-
eration and survival [7–9]. Many studies have confirmed 
that compared with normal cells, tumor cells in vivo and 
in  vitro are dependent on glycolysis for energy produc-
tion and neoplastic proliferation via regulating the criti-
cal transcription factors or axis, such as HIF-α/ALYREF/
PKM2 axis [10, 11]. Moreover, the aberrant metabolic 
reprogramming, including cholesterol metabolic path-
ways [12], and fatty acid metabolism [13], also resulted in 
tumorigenesis and progression.

Based on the advances in technology and biological 
science, recent works emphasize the inter- and intra-
tumoral heterogeneity and flexibility of metabolism 
in many solid tumors [14, 15]. For example, Yu et  al. 
revealed metabolic heterogeneity of human breast 
cancer by synthesizing the bulk and single-cell tran-
scriptome profiling, and found that patients with 
glycolysis and pentose phosphate pathway (PPP) phe-
notype had a worse overall survival (OS) than those 

with glulaminolysis and fatty acid oxidation pheno-
type [16]. Moreover, the crosstalk between tumor cells 
and immune cells within the tumor microenvironment 
(TME) could affect the therapeutic response, due to the 
requirement of precise metabolic regulation of immune 
cells [17]. Preclinical studies suggest that metabolic 
heterogeneity within the tumor microenvironment 
(TME) influences local immune cell function and might 
contribute to treatment failures [18–21]. All findings 
suggested that metabolic heterogeneity plays an impor-
tant part in influencing tumor progression, therapeutic 
vulnerabilities, and clinical outcomes. Thus, system-
atic and comprehensive exploration of the landscape 
of metabolic heterogeneity will help to understand the 
tumor state of patients, and provide accurate clini-
cal prognostic information and potential therapeutic 
targets.

Here, we performed a systematic and comprehen-
sive exploration of the metabolic landscape of BLCA 
patients, and identified promising subtype-selective 
metabolic vulnerabilities. In addition, combined with 
single-cell transcriptome profiling, we further decon-
structed the TME of patients with different metabolic 
phenotypes to explore the underlying reasons for poor 
outcome, and identified potential therapeutic targets.

Materials and methods
Data source and preprocess
The UCSC Xena website (https:// xenab rowser. net/ datap 
ages/) and the Gene Expression Omnibus (GEO) por-
tal (https:// www. ncbi. nlm. nih. gov/ geo/) were used to 
acquire gene expression profiles of BLCA patients. After 
screening, GSE13507 [22] and TCGA-BLCA cohorts 
were obtained. The robust multi-array average (RMA) 
algorithm was conducted to preprocess the array pro-
files in the “affy” R package. After background correc-
tion, quantile normalization, and probe summarization, 
the gene expression profile was generated based on the 
platform providing gene and probe mappings. Samples 
with OS above one month were selected for further 
analysis. In addition, the immunotherapeutic bladder 
cancer cohort: GSE176307 [23] was also included.

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
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Identification of metabolic‑related subpopulations 
for BLCA patients
In order to deconstruct the metabolic heterogeneity for 
BLCA patients, a total of 1,640 metabolic-related genes 
were downloaded from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database (https:// www. genome. 
jp/ kegg/) [24]. Then, consensus clustering (the “Consen-
susClusterPlus” package [25] in R, 1,000 iterations, 80% 
resampling) was performed to determine the optimal 
number of stable metabolic-related subpopulations for 
BLCA patients in the dataset, according to the expression 
of 1,640 metabolic-related genes. Finally, patients in the 
dataset were divided into two metabolic-related subpop-
ulations (MRS1 and MRS2).

Estimation of the molecular subtypes in BLCA
Several molecular subtype systems were established in 
previous studies, including The Cancer Genome Atlas 
(TCGA) [26], the Cartes d’Identité des Tumeurs (CIT)-
Curie [27], MD Anderson Cancer Center (MDA) [28], 
University of North Carolina at Chapel Hill (UNC) [29], 
Lund [30], Baylor [31], and the consensus subtypes [32]. 
The “ConsensusMIBC” and “BLCAsubtyping” R pack-
ages were utilized to predict the molecular subtypes for 
each BLCA patients. In addition, twelve bladder cancer 
signatures that are peculiar to different molecular sub-
types were acquired from the Bladder Cancer Molecular 
Taxonomy Group [32]. The enrichment scores of these 
signatures were estimated by “GSVA” R package [33].

Assessment of the immune characteristics of the tumor 
microenvironment
In order to assess the immune characteristics of the 
tumor microenvironment (TME), immunomodulators, 
well-known effector genes of tumor-infiltrating immune 
cells (TIICs), and immune checkpoints were collected 
from previous studies [34, 35]. Besides, the “ESTIMATE” 
algorithm [36], a method inferring tumor purity and stro-
mal or immune cell abundance from transcriptomic pro-
files, was applied to assess tumor purity, immune score, 
and stromal score.

Prediction of therapeutic response
The therapeutic response between MRS1 and MRS2 
was also assessed. According to previous research, we 
collected gene signatures of oncogenic pathways associ-
ated with inflamed TME, targeted therapy, and immu-
notherapy responses [34]. The activation scores of these 
pathways were calculated via “ssGSEA” function. It 
was notable that the mutations of several crucial genes, 
including TP53, RB1, ATM, ERBB2, ERCC2 and FANCC, 

were indicators of the response to chemotherapy in 
BLCA [37, 38]. Thus, we compared the mutation rates of 
these genes between MRS1 and MRS2 phenotypes.

Single‑cell RNA sequencing datasets acquisition 
and analysis
The single-cell RNA sequencing (scRNA-seq) datasets 
of BLCA patients were obtained from the GEO data-
base (GSE190888 [39] and GSE186520 [40]). Quality 
control and pre-processing procedures was performed 
using “Seurat” (4.0.5, https:// satij alab. org/ seurat/) R 
toolkit [41].

To avoid the influence of abnormal cells and techni-
cal noise on downstream analysis, we removed the low-
quality cells, including doublets and empty droplets. 
Cells were removed if the expression of mitochondrial 
genes was greater than 20% or with detected genes less 
than 200 or greater than 5,000. Finally, a total of 42,658 
cells from nine BLCA patients were reserved for further 
analysis.

In order to minimize the technical batch effects among 
individuals and experiments, we used the “RunHarmony” 
function in R package “harmony” [42] to perform integra-
tion. The top 4,000 variable genes were used for principal 
component analysis (PCA) to reduce dimensionality. The 
dimensionality of the scaled integrated data matrix was 
further reduced to two-dimensional space based on the 
first 30 principal components (PCs) and visualized by 
t-Distributed Stochastic Neighbor Embedding (tSNE). 
The cell clusters were identified based on a shared near-
est neighbor (SNN) modularity optimization-based clus-
tering algorithm with a resolution of 3. According to 
the expression levels of some well-known markers, the 
42,658 cells were annotated as four cell types, including 
epithelial cells, fibroblasts, T cells and macrophages.

Linking cells with metabolic‑related subpopulations
In order to link cells with metabolic-related subpopula-
tions, we applied “Scissor” algorithm [43] in “Scissor” R 
package to identify cell subpopulations from single-cell 
data that are associated with a given phenotype from 
TCGA profiling. Firstly, we integrated TCGA-BLCA 
expression data and single-cell data by quantifying the 
similarity between each single cell and each bulk sample. 
Then, a regression model was optimized on the correla-
tion matrix with the sample phenotype to identify rele-
vant metabolic-related subpopulations.

Evaluation of proliferation for single‑cell
In order to estimate the proliferation of each single cell, 
we used the “CellCycleScoring” function to predict the 
cell cycle state according to a series of cell cycle-related 
signature. Furthermore, we computed the proliferation 

https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
https://satijalab.org/seurat/
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Fig. 1 Metabolic-gene-based stratification of TCGA-BLCA patients. A NbClust analysis of BLCA metabolic-gene-based subtypes. B Silhouette 
analysis of clustering results. C UMAP visualization of metabolic subtypes in the TCGA cohort for the expression of metabolic genes. D Correlations 
between metabolic subtypes and clinicopathological features in BLCA. E, F Barplot showing the percentage of pathological stages (E) and vital 
status (F) in the MRS1 and MRS2 groups. G, H Kaplan-Meier analysis in term of OS (G) and PFS (H) in TCGA cohort
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score for each single cell by using a signature consist-
ing ten genes that were highly expressed in cycling cells 
(ASPM, CENPE. CENPF, DLGAP5, MKI67, NUSAP1, 
PCLAF, STMN1, TOP2A, TUBB) [44]. For each of 
these signature genes, we selected the 100 genes with 
the smallest difference in average expression levels as a 
background gene set. The average expression level of the 
background genes was subtracted from the respective 
signature gene, and the average of the yielded values of all 
signature genes was kept as the proliferation score.

Cell‑cell communication analysis
Cell-cell communications mediated by ligand-receptor 
complexes were critical to diverse biological processes, 
such as inflammation and tumorigenesis. To investigate 
the molecular interaction networks between different cell 
types, we used “CellPhoneDB” [45], a software to infer 
cell-cell communication from the combined expression 
of multi-subunit ligand-receptor complexes, to analyze 
the interactions between tumor cells and microenviron-
ment cell subpopulations. The ligand-receptor pairs with 
a P value < 0.05 were remained for the assessment of rela-
tionship among different cell clusters.

Identification of differentially expressed genes (DGEs)
For single-cell datasets, “FindAllMarkers” function from 
“Seurat” package was used to identify the specific genes 
of each group. For bulk datasets, the R package “limma” 
[46] was applied to recognize DEGs. Genes with the 
adjusted P-value < 0.05 and | fold change (FC) | ≥ 1.5 
were determined as DEGs.

Enrichment analysis of gene functions and pathways
The enrichment analysis was performed through the fol-
lowing steps: according to the pathway gene set of the 
Molecular Signatures Database in the R package “Clus-
terProfiler” [47], the activation degree of each pathway 
was calculated using GSEA [48]; then the differential 
pathway was identified by the “limma” package [46].

Clinical samples
The BLCA tissue microarray (TMA, HBlaU079Su01) was 
obtained from Outdo Biotech (Shanghai, China). The 
HBlaU079Su01 microarray contained 63 BLCA and 16 

adjacent samples. Ethical approval for the study of tissue 
microarray slides was granted by the Clinical Research 
Ethics Committee, Outdo Biotech.

Immunohistochemistry and semi‑quantitative scoring
Immunohistochemistry (IHC) staining was directly 
conducted on the HBlaU079Su01 TMA with stand-
ard procedures. The primary antibodies used were 
as follows: anti-S100A7 (1:100 dilution, Cat. 13061-
1-AP, ProteinTech, Wuhan, China) and anti-PD-L1 
(Ready-to-use, Cat. GT2280, GeneTech, Shanghai, 
China). Antibody staining was visualized with DAB and 
hematoxylin counterstain, and stained sections were 
scanned using Aperio Digital Pathology Slide Scan-
ners. The stained TMA was independently assessed by 
two pathologists. The percentage of positively stained 
tumor cells was scored as 0–4: 0 (< 1%), 1 (1–5%), 2 
(6–25%), 3 (26–50%) and 4 (> 50%). The staining inten-
sity was scored as 0–3: 0 (negative), 1 (weak), 2 (moder-
ate), and 3 (strong). The immunoreactivity score (IRS) 
equals the percentage of positive cells multiplied by the 
staining intensity.

Cell culture and proliferation test
BLCA cell line RT4 (Cat. KG089) was obtained from 
KeyGEN (Nanjing, China). RT4 cells were cultured in 
McCoy’s 5A media added with 10% fetal bovine serum 
(FBS) at 37°C with 5%  CO2. All assays were conducted 
with mycoplasma-free. For S100A7 inhibition, RT4 cells 
were transfected with siRNA obtained from Thermo 
Fisher (Cat. s12421) for S100A7 using Lipofectamine 
3000 (Cat. L3000015, Invitrogen, CA). The transfection 
efficiency was validated by quantitative real-time PCR 
(qRT-PCR). The primers for S100A7 and GAPDH mRNA 
reverse transcription were synthesized in KeyGEN (Nan-
jing, China). The detailed information of primers used for 
gene amplification was shown as follows. S100A7 [49]: 
(forward) 5’-AAC TTC CTT AGT GCC TGT G-3’, (reverse) 
5’-TGG TAG TCT GTG GCT ATG TC-3’; GAPDH [50]: (for-
ward) 5’-AGA TCA TCA GCA ATG CCT CCT-3’, (reverse) 
5’-TGA GTC CTT CCA CGA TAC CAA-3’. The functions of 
S100A7-knockdown RT4 cells were checked. For cell pro-
liferation detection, CCK-8 and EdU assays were applied. 

Fig. 2 Metabolic phenotypes show distinct metabolic and immune features in the TCGA cohort. A Volcano plot showing the differentially 
expressed genes of the MRS1 and MRS2 groups. Each dot represents one gene, colored by the groups. MRS1-specific genes are represented 
by navy, MRS2-specific genes are represented by lightcoral. B Functional enrichment analysis of genes specifically expressed in MRS1 or MRS2 
group. Each bar represents one pathway, colored by the groups. MRS1-upregulated pathways are represented by navy, MRS2- upregulated 
pathways are represented by lightcoral. C The number of metabolic pathways that was significantly upregulated (p-value < 0.05) in the MRS1 
or MRS2 group in the TCGA cohort. D A representative gene set enrichment analysis plot showing significant upregulated fatty acid degradation 
in theMRS2 group versus the MRS1 group in the TCGA cohort. (E) Comparison of ESTIMATE results between the MRS1 and MRS2 group. F Expression 
levels of the gene markers of the common TIICs in the MRS1 and MRS2 groups. *p < 0.05, **p < 0.01, ***p < 0.0001

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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CCK-8 (Cat. KGA317s) assay kit was obtained from Key-
GEN (Nanjing, China) and EdU (Cat. C10310-1) assay kit 
was RIBOBIO (Guangzhou, China). The detailed protocol 
was according to the manufacturer’s protocol.

Statistical analysis
All statistical analyses were handled using R software 
(version 4.0.4). The differences in continuous vari-
ables between two groups were assessed using the Wil-
coxon rank-sum test, while Fisher exact test was used 
to measure the differences among categorical variables. 
Prognostic values were evaluated using the log-rank 
test. For all analyses, a two-paired P-value < 0.05 was 
deemed to be statistically significant, and labeled with * 
P-value < 0.05, ** P-value < 0.01, *** P-value < 0.001, and 
**** P-value < 0.0001.

Results
Metabolic‑related stratification of BLCA patients
To deconstruct the metabolic heterogeneity of BLCA 
patients, we extracted 1,640 human genes assigned to 
85 metabolic pathways from the KEGG database [24] 
(https:// www. genome. jp/ kegg/). Unsupervised cluster-
ing based on the expression profile of these metabolic 
genes showed that BLCA had distinctive metabolic gene 
transcriptomic levels from normal samples in the TCGA-
BLCA cohort, whereas normal samples seemed to share 
relatively higher similarity (Supplementary Fig. 1A). The 
divergence in metabolic gene expression levels, measured 
by euclidean and correlation distance, was significantly 
larger both between tumor and normal and within tumor 
samples than within normal samples (Supplementary 
Fig. 1B). To reveal the metabolic heterogeneity of BLCA 
patients, unsupervised clustering based on the expres-
sion profile of these metabolic genes was performed. 
According to the consensus clustering matrixes, the 
number of tests supporting the cluster number from the 
NbClust testing, and the silhouette analysis, we identi-
fied that the optimal cluster number was two (Fig. 1A, B, 
Supplementary Fig. 2). Then, all 398 BLCA tumors were 
classified into two subtypes (MRS1 and MRS2) by using 
unsupervised k-means clustering based on the transcrip-
tion levels of metabolic genes (Fig. 1C).

Subsequently, we evaluated the relationship between 
metabolic subtypes and the clinicopathological fea-
tures of BLCA samples. Patients harboring MRS1 tend 
to develop high histological grade, higher pathological 
stages (Stage III and Stage IV), and nonpapillary subtype 
(Fig. 1D, E, Supplementary Fig. 3), and expectedly skew 
towards worse clinical outcomes (Fig. 1F). Moreover, sur-
vival analysis suggested that MRS1 phenotype was asso-
ciated with the poor OS (Fig.  1G) and progression-free 
survival (PFS, Fig.  1H) of BLCA patients in the TCGA 
cohort. The results were validated in the GSE13507 data-
base. A total of 165 patients were divided into two meta-
bolic subgroups (MRS1 and MRS2, Fig.  4A); patients 
with the MRS1 phenotype showed a worse OS (Fig. 4B). 
In summary, our results indicated the metabolic hetero-
geneity in the BLCA tumor samples, and the prognostic 
values of metabolic phenotypes.

MRS1 phenotype was associated 
with the immuno‑suppressive microenvironment
Next, we explored the biological characteristics of the 
two groups, especially the activation of metabolic-related 
pathways. Differential expression analysis was per-
formed to identify the up-regulated genes in the MRS1 
and MRS2 phenotypes, respectively (Fig.  2A, Supple-
mentary Table  1). Then, functional enrichment analysis 
of up-regulated genes revealed the distinct functional 
pattern of MRS1 and MRS2 phenotypes, respectively. 
As shown in Fig. 2B, lipid metabolism pathways such as 
fatty acid metabolic processes were significantly acti-
vated in patients with MRS2 phenotype. Moreover, we 
also performed GSEA of metabolic pathways in MRS1 
and MRS2, the results demonstrated that a total of 16 
metabolic pathways, encompassing the majority of 
metabolic processes, were significantly up-regulated in 
the MRS2 phenotypes compared with the MRS1 phe-
notype (Fig.  2C, Supplementary Table  2), especially the 
pathways belong to lipid metabolism, such as fatty acid 
degradation (Fig.  2D). Furthermore, the up-regulated 
pathways in the MRS1 phenotype were enriched in sev-
eral immune-related signaling pathways, including the 
leukocyte chemotaxis, lymphocyte differentiation, and 
T cell activation (Fig.  2D), indicating that patients with 

(See figure on next page.)
Fig. 3 Metabolic phenotypes predicted molecular subtypes and clinical therapy. A Correlations between metabolic phenotypes and molecular 
subtypes using seven different algorithms (CIT, Lund, MDA, TCGA, Baylor, UNC, and consensus) and BLCA signatures. B, C Mutational profiles 
of chemotherapy-related genes in the MRS1 and MRS2 groups in the TCGA cohort. D Comparison of oncogenic pathways associated 
with therapeutic-targets between the MRS1 and MRS2 groups. *p < 0.05, **p < 0.01, ***p < 0.0001. E Left: UMAP visualization the expression 
distribution of PD-L1 (CD274). Right: Comparison the expression values of PD-L1 between the MRS1 and MRS2 groups. F Stacked histogram 
showing the percentage of MRS1 and MRS2 groups in CR/PR and PD/SD in GSE176307 cohort. CR: complete remission; PR: partial remission; PD: 
progression disease; SD: stable disease

https://www.genome.jp/kegg/
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Fig. 3 (See legend on previous page.)
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MRS1 phenotype tended to remodel an immune infiltrat-
ing microenvironment.

Therefore, we subsequently explored the immuno-
logical characteristics of the metabolic phenotypes. The 
ESTIMATE analysis showed that compared with the 
MRS2 phenotype, the MRS1 group exhibited higher lev-
els of Immune Score and Stromal Score, along with lower 
Tumor Purity (Fig. 2E), indicating that tumors with MRS1 
phenotype were accompanied by increased immune cell 
infiltration. Analyses based on the GSE13507 dataset also 
yield consistent results (Supplementary Fig. 4C). In addi-
tion, immunomodulatory factors including chemokines, 
paired receptors, MHC molecules, and immunostimu-
lator were also significantly up-regulated in the MRS1 
phenotype in the TCGA-BLCA cohort (Supplemen-
tary Fig.  5A). Meanwhile, the gene markers of common 
immune cells such as CD8A and CD8B for  CD8+ T cells, 
C1QA and MMP8 for macrophages, were also up-regu-
lated in the MRS1 phenotype (Fig.  2F), consistent with 
previous research that chemokines and receptors recruit 
effector TIICs, including  CD8+ T cells, macrophages, and 
antigen-presenting cells [51]. However, patients in the 
MRS1 subtype showed unfavorable prognosis, therefore 
we speculated that the MRS1 subtype suffered from the 
immuno-suppressive microenvironment. As expected, 
most immune checkpoints were highly expressed in 
patients with MRS1 phenotype, including CD274, 
PDCD1, and CTLA4 (Supplementary Fig. 5B). To verify 
the conclusions found in the TCGA-BLCA cohort, we 
explored the immune microenvironment characteristics 
of subtypes in the GSE13507 cohort. Immunomodulatory 
factors were also significantly up-regulated in the MRS1 
phenotype (Supplementary Fig.  6A), and the expression 
of most conventional gene signatures of immune cells 
and immune checkpoints were remarkably increased in 
the MRS1 phenotype (Supplementary Fig. 6B). All these 
convince the results found in the TCGA-BLCA cohort. 
In summary, BLCA patients showed two heterogene-
ous metabolic subtypes with distinct features: MRS1, 
harboring inconspicuous metabolic characteristics but 
an immuno-suppressive TME; and MRS2, with upregu-
lated lipid metabolism but a deserted TME, suggesting 

the diagnostic value in identifying the immunogenicity of 
BLCA.

MRS1 phenotype patients belonged to the basal subtype 
and were sensitive to immunotherapy
To explore the response of MRS phenotype to clinical 
treatments, we assessed the molecular subtypes among 
patients in the TCGA-BLCA cohort, which has been 
proven as a prediction of clinical response [34, 52]. We 
found that patients with the MRS1 phenotype preferred 
to be the basal subtype consistently within seven estab-
lished molecular subtyping systems, and possessed 
higher levels of basal differentiation (Fig. 3A), which was 
more likely to receive pathological response to immune 
checkpoint blockade (ICB) [32, 52]. Moreover, compared 
with patients harboring the MRS2 phenotype, patients 
with the MRS1 phenotype also had significantly higher 
mutation rates of RB1, ERBB2, and FANCC (Fig. 3B, C), 
which were associated with the response to neoadjuvant 
chemotherapy [53, 54], suggesting that the MRS1 patients 
might be more sensitive to neoadjuvant chemotherapy. 
Further analysis of therapy-predicted pathways based on 
the gene signatures showed that the enrichment scores of 
anti-cancer immunotherapy and radiotherapy-predicted 
pathways, as well as the EGFR ligands were remarkably 
higher in the MRS1 phenotype (Fig. 3D)

In line with results found in the TCGA-BLCA cohort, 
patients with the MRS1 phenotype in the GSE13507 
dataset also tended to associate with basal-type BLCA 
(Supplementary Fig. 7A), and were enriched for anti-can-
cer immunotherapy pathways, radiotherapy-predicted 
pathways, and several immune checkpoints (Supplemen-
tary Fig.  6B, Supplementary Fig.  7B). According to the 
principle of immunotherapy, some immune checkpoints 
such as PD1/PD-L1 and CTLA4, can be targeted by 
inhibitors to enhance anti-cancer immunoreaction. Nota-
bly, compared with the MRS2 group, patients harboring 
the MRS1 phenotype had prominently higher expression 
values of immune checkpoints and immunotherapeutic 
targets (Supplementary Fig. 5B, Supplementary Fig. 6B), 
especially PD-L1 (Fig.  3E), a conventional drug-target 
of some well-known inhibitors, implying the potential 

Fig. 4 Comparison of the transcriptional patterns of MRS1 and MRS2 cells. A UMAP visualization of cell types annotated by classical gene markers. B 
UMAP visualization of cells with the MRS1 or MRS2 phenotype predicted by Scissor algorithm. Each dot represents one cells, colored by the groups. 
cells with the MRS1 phenotype genes are represented by navy, cells associated with the MRS2 phenotype are represented by lightcoral, and other 
cells are represented by lightgray. C Upper: Stacked histogram showing the percentage of MRS1 and MRS2 cells in each celltype. Bottom: Heatmap 
showing the enrichment of MRS1 cells in each cell type, with color encoded by odds ratio estimated by Fisher’s exact test. The red color represents 
enrichment of subpopulation in the MRS2 cells, while blue color represents depletion of subpopulation in the MRS cells. + p < 0.05. D Functional 
enrichment analysis of genes specifically expressed in the MRS1-tumor cells versus the MRS2-tumor cells. E A representative gene set enrichment 
analysis plot showing significant upregulated cholesterol biosynthesis in theMRS1-tumor cells versus the MRS2-tumor cells. F Proliferation scores 
overlaid on the UMAP embedding. G Comparison of proliferation scores between the MRS1- and MRS2- tumor cells. H UMAP visualization of G1 
(blue), S (orange) and G2M (red) phases. I Fraction of G1 (blue), S (orange) and G2M (red) phases of the MRS1- and MRS2-tumor cells

(See figure on next page.)
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immunotherapeutic sensitivity of the MRS1 group. Fur-
thermore, we used an ICB treatment cohort dataset, the 
GSE176307 cohort, to further explore the association 
between metabolic phenotypes and immunotherapeu-
tic response. The result showed that more than half of 
the patients receiving complete/partial remission after 
ICB had the MRS1 phenotype, while approximately 60% 
patients with ICB failure exhibited the MRS2 phenotype 
(Fig.  3F), suggesting that patients with the MRS1 phe-
notype may receive pathological remission after immu-
notherapy. Collectively, these results implied that ICB, 
neoadjuvant or adjuvant chemotherapy, and ERBB ther-
apy can be considered, either alone or in combination, for 
the treatment of BLCA with the MRS1 phenotype.

Tumor cells with higher proliferation and cholesterol 
biosynthesis contributed to the malignancy of the MRS1 
phenotype
In order to explore the transcriptional biomark-
ers of patients with MRS1 phenotype, we performed 
“Scissor”analysis to identify biologically and clinically 
relevant cell subpopulations from single-cell assays by 
leveraging phenotype and bulk-omics datasets. Firstly, 
we collected the scRNA-seq data of nine patients with 
BLCA from GEO datasets, including the GSE190888 
[39] and the GSE186520 [40] datasets (Supplementary 
Fig.  8A). A total of 42,658 cells met the quality control 
criteria and were subsequently divided into 46 clusters by 
unsupervised clustering (Supplementary Fig.  8B). Based 
on the expression levels of well-established gene mark-
ers, we annotated the cell type for each cluster, includ-
ing tumor cells, T cells, fibroblasts, and macrophages 
(Fig. 4A, Supplementary Fig. 8C). Then, we identified the 
MRS1 and MRS2 relevant cell subpopulations by lever-
aging the TCGA-BLCA dataset (Fig.  4B). Consistently, 
tumor cells were remarkably enriched in cells recog-
nized as MRS2-related (MRS2 cells), while T cells, mac-
rophages, and fibroblasts were significantly enriched in 
MRS1-related cells (MRS1 cells) (Fig.  4C). Functional 
enrichment analyses of HALLMARK database on the up-
regulated genes of MRS1-tumor cells revealed a distinct 
functional pattern. As shown in Fig.  4D, the prolifera-
tion-related signaling pathways (G2-M checkpoint) and 
oxidative phosphorylation were significantly activated 

in MRS1-tumor cells, compared to MRS2-tumor cells. 
Consistently, we found that MRS1-tumor cells had signif-
icantly higher proliferation scores (Fig.  4E, F). Approxi-
mately 36% and 46% of the MRS1-tumor cells were in S 
and G2/M phase, respectively (Fig. 4G, H). Notably, cho-
lesterol homeostasis was also significantly up-regulated 
in the MRS1-tumor cells versus the MRS2-tumor cells 
(Fig.  4D and I). We also found that patients with high 
cholesterol metabolism was associated with a poor OS 
in the TCGA and the GSE13507 cohorts (Fig. 4J, K), sug-
gesting that the activation of cholesterol metabolism may 
lead to worse clinical outcomes. Summarily, our analysis 
implied that tumor cells with high proliferation and cho-
lesterol biosynthesis contributed to the more malignant 
status of the MRS1 phenotype, perhaps in an immune-
mediated mann

S100A7 was a marker of MRS1‑tumor cells
The remarkably activated pathways in MRS1-tumor 
cells (e.g., cell-cycle signaling pathways and cholesterol 
metabolism) were essential in the tumor progression 
and the immunologic escape mediated by cell-cell com-
munications [55–57]. Therefore, we hypothesize that the 
interactions between tumor cells and microenvironment 
cells would contribute to the malignant status of MRS1. 
Using “CellPhoneDB”, we performed a single-cell resolu-
tion cellular interactions analysis among MRS1 cell types 
identified in the above analyses (Supplementary Fig. 9A). 
Results showed that MRS1-tumor cells communicated 
with MRS1-T cells via CXCL16-CXCR6 (Fig. 5A), which 
has been reported to be involved in the T cell recruit-
ment by tumor cells [58]. Besides, our results also found 
that some inhibitory interactions, such as SIRPG-CD47 
and TNFRSF14-TNFSF14 interactions were detected 
between MRS1-tumor cells and MRS1-T cells (Fig. 5A). 
In addition, the interaction of LGALS9-HAVCR2, and 
ANXA1-FPR1 were also found between MRS1-tumor 
cells and MRS1-macrophages (Fig. 5B). Several research 
showed that the MIF-CD74 interaction was confirmed to 
involve in the persisting immunosuppressive M2 state of 
myeloid cells and abolished immune surveillance [59, 60]. 
Moreover, the MRS1-tumor cells also can communicate 
with the microenvironment cells via highly expressing 
VEGFA, a crucial regulator of pathological angiogenesis 

(See figure on next page.)
Fig. 5 S100A7 was up-regulated in MRS1-tumor cells. A The interactions between MRS1-tumor cells and MRS1-T cells. B The interactions 
between MRS1-tumor cells and MRS1-macrophages. C Comparison of metastasis characteristics between the MRS1- and MRS2-tumor cells. D 
Venn plot showing the shared up-regulated genes in the MRS1-tumor cells and patients with the MRS1 phenotype. For TCGA-BLCA and GSE13057 
cohort, the R package “limma” was applied. Genes with adjusted P-value< 0.05 and FC ≥ 1.5 were identified the DEGs of the MRS1 group. For single 
cell transcriptional dataset, “FindAllMarkers” function was used to identify the specific genes of MRS1- and MRS2-tumor cells. Genes with adjusted 
P-value< 0.05, FC ≥ 1.5, pct.1 ≥ 0.4 & pct.2 ≤ 0.1 were identified as the DEGs of the MRS1-tumor cells. E, F Kaplan-Meier analysis in term of OS 
of S100A7 in the TCGA-BLCA (E) and the GSE13057 (F) cohorts. All patients were categorized into two groups based on the median of the S100A7 
expression. G Correlation between S100A7 and metastatic characteristics in the scRNA-seq dataset of MRS1 and MRS2-tumor cells. H, I Correlation 
between S100A7 and metastatic characteristics in the TCGA-BLCA (H) and GSE13507 cohorts (I)
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[61], and involve in the proliferation and metastasis of 
tumor cells [62]. Consistently, compared with the MRS2-
tumor cells, the gene signatures of metastasis-related 
characteristics (invasion, angiogenesis, migration, and 
extravasation) were observably enriched in the MRS1-
tumor cells (Fig.  5C). All results above supported that 
the tumor cells from patients with the MRS1 phenotype 
could enhance the malignancy of tumor via the cross-talk 
with microenvironment cells and the up-regulating of 
metastasis-related signaling pathways.

We then explored the crucial biomarkers of MRS1-
tumor cells, finding that S100A7, S100A8, and PTTG1 
were up-regulated in the MRS1 phenotype both in 
bulk data (TCGA-BLCA and GSE13057) and single-
cell data (Fig.  5D, Supplementary Fig.  9B, Supplemen-
tary Tables 1, 3, 4). Notably, compared with PTTG1 and 
S100A8, approximately 50% MRS1-tumor cells expressed 
S100A7, with a 34-fold change than the expression per-
centage in MRS2-tumor cells (Figure S9C, D, Supple-
mentary Table  4). Meanwhile, the expression levels of 
S100A7 were significantly associated with the worse 
outcomes both in the TCGA-BLCA and GSE13507 data-
sets (Fig. 5E, F, and Fig. S10). In addition, S100A7 were 
positively correlated with the enrichment of metastatic 
characteristics both at the single-cell and bulk omics 
levels (Fig.  5G and I), suggesting that S100A7 may cor-
relate with the metastatic phenotype that observed in 
MRS1-tumor cells. Additionally, S100A7 also signifi-
cantly positively correlated with the majority of immune 
features in these two cohorts (Supplementary Fig.  11A, 
B). Combined with the above results, we kindly pro-
posed that the expression of S100A7 can characterize 
the inflamed TME, and predict the clinical outcomes of 
BLCA patients.

S100A7 was associated with poor prognosis and enhanced 
PD‑L1 expression in the TMA cohort
To confirm the above results, we also obtained a TMA 
cohort for validation, which included 63 BLCA and 16 
para-cancerous samples. First of all, S100A7 was signifi-
cantly upregulated in the BLCA tissues compared with 
para-cancerous tissues (Fig.  6A, B). Next, BLCA sam-
ples with S100A7 high expression showed remarkably 
poor prognosis (Fig. 6C). We used siRNA to knockdown 
S100A7 expression (Figure S12A), and the results showed 
that S100A7 knockdown significantly inhibited tumor 

cells proliferation (Figure S12B, C). In addition, we also 
explored the association between S100A7 expression 
and clinicopathological features. S100A7 was notably 
related to clinical stages, but not related to other features 
(Fig.  6D). Moreover, S100A7 was positively correlated 
with PD-L1 expression in the current cohort (Fig.  6E, 
F). Overall, based on the in-house cohort, we validated 
that S100A7 was correlated with poor prognosis and 
immuno-suppressive TME in BLCA.

Discussion
In the present study, we have comprehensively explored 
the metabolic heterogeneity of patients with BLCA at 
transcriptional levels, and revealed that the metabolic 
phenotypes were associated with the immune infiltration 
microenvironment and clinical outcomes. Moreover, we 
elucidated that the metabolic phenotypes could accu-
rately predict the molecular subtypes, and therapeutic 
response to several treatments, including ICB. Finally, 
we recognized a crucial biomarker: S100A7, which was 
positively correlated with many immune-related charac-
teristics and associated with the poor clinical outcomes 
of BLCA patients. Importantly, the expression of S100A7 
could predict the response to ICB.

With the complex genetic and transcriptional char-
acteristics, BLCA is a kind of disease with highly inter-
tumor heterogeneity [63], leading to about 17,100 deaths 
in the United States [64]. However, platinum-based 
chemotherapy is the standard-of-care-first-line used 
treatment strategy in a majority of BLCA [63]. Although 
approximately 60-70% patients were initially responding 
to platinum-based treatment, most of them will relapse 
and succumb to the disease due to the drug resistance 
[2]. Immunotherapy is an exciting breakthrough for the 
clinical treatment of patients. Several studies on immune 
checkpoint inhibitors (ICIs) have changed the treatment 
paradigm for BLCA patients [65]. However, the response 
rate of PD-1/PD-L1 inhibitors is only 20–24%, Most 
patients are insensitive to treatment and develop drug 
resistance [66]. Therefore, revealing the biological fea-
tures for BLCA patients is important to development the 
precise therapy for individuals.

Increasing evidence has proved that the aberrant 
metabolic reprogramming of tumor cells is involved in 
the tumorigenesis and progression in many carcinomas 
[5, 6, 67]. Recent studies also underlined the inter- and 

Fig. 6 Validation of expression and prognostic value of S100A7 in the recruited TMA cohort. A Representative images revealing S100A7 
expression in tumor and paratumor tissues using anti-S100A7 staining. Magnification, 200×. B Expression levels of S100A7 in tumor and paratumor 
tissues. C Kaplan-Meier analysis of S100A7 in term of OS in the TMA cohort. D Association between S100A7 expression and clinicopathological 
features in BLCA. E Representative images revealing PD-L1 expression in the high- and low-S100A7 groups. Magnification, 200×; (F) Correlation 
between S100A7 and PD-L1 expression

(See figure on next page.)
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intra-tumor heterogeneity and flexibility of metabolism 
in many solid tumors [14, 15], and revealed the crucial 
correlations between metabolic heterogeneity and micro-
environment status, therapeutic response, and clinical 
outcomes [16, 18, 19]. Based on the limitation of precise 
therapy and the significance of metabolic reprogram-
ming, we deconstructed the metabolic heterogeneity of 
BLCA and revealed the prognostic values of metabolic 
subtypes. Notably, some metabolic pathways, especially 
the lipid metabolism associated pathways, were signifi-
cantly activated in patients with the MRS2 phenotype, 
while the MRS1 phenotype did not show distinct func-
tional metabolic characteristics. Prognostic and immune 
microenvironment analysis showed that the MRS1 phe-
notype, with poor OS and PFS, preferred to shape an 
immuno-suppressive microenvironment, which might 
contribute to the enhanced malignancy of BLCA.

With the development of technology, scRNA-seq 
makes it possible to quantify the whole transcriptome 
at single cell level in a tissue mixture and provides an 
unprecedented opportunity to decipher the complexity 
of cellular heterogeneity and microenvironment [68]. A 
series of single-cell data analyses revealed that the tumor 
cells with the MRS1 phenotype had higher proliferation 
levels, activated cholesterol biosynthesis, and metas-
tasis-related characteristics, which have been reported 
to contribute to the malignancy of BLCA [69]. Choles-
terol metabolism shows the specificity of MRS1 subtype 
at the single cell level, but there is no difference in bulk 
data, which can be explained by the fact that the high 
mixed immune cells in bulk data weaken this feature of 
tumor cells. In addition, the cell-cell communications 
analysis showed that some interactions, involved in T 
cell recruitment, such as CXCL16-CXCR6; the formation 
of the immuno-suppressive microenvironment, such as 
LGALS9-HAVCR2, and ANXA1-FPR1; and promoting 
the proliferation and metastasis of tumor cells, were also 
detected between MRS1-tumor cells and MRS1-micro-
environment cells. Collectively, these findings suggested 
the potential factors leading to the enhanced malignancy 
of BLCA.

Findings based on the PURE-01 study discovered that 
the basal-type BLCA showed the highest infiltration of 
immune cells, and better pathological response to pem-
brolizumab [52]. A consensus molecular classification of 
muscle-invasive bladder cancer also revealed a similar con-
clusion that basal-type tumors were more likely to receive 
pathological response to ICB [32]. Although the MRS1 
phenotype had worse clinical outcomes, this subgroup 
preferred basal-type BLCA, a molecular subtype sensitive 
to immunotherapy and neoadjuvant chemotherapy. Meta-
bolic subtyping for the immunotherapy cohort found that 
more than half of patients received complete remission/

partial remission after ICB had the MRS1 phenotype, while 
approximately 60% patients failed to ICB exhibited the 
MRS2 phenotype, suggesting that patients with the MRS1 
phenotype may be more sensitive to immunotherapy.

Prominently, we observed that S100A7 is mostly 
expressed on the MRS1-tumor cells, and can predict the 
clinical outcomes of BLCA patients. In addition, S100A7 
was associated with the immuno-suppressive microenvi-
ronment. Lines of evidence have proved that S100A7 as 
a potential diagnostic and prognostic biomarker contrib-
utes to the malignancy of carcinomas via crosstalk and 
promoting angiogenesis [49].

Conclusions
Taken together, our study reveals the metabolic hetero-
geneity and crucial biomarkers of BLCA based on the 
integrating analysis of bulk and scRNA-seq datasets. The 
group with the MRS1 phenotype had an immuno-sup-
pressive TME and higher levels of S100A7, and preferred 
basal-type BLCA, which was sensitive to immunotherapy 
and neoadjuvant chemotherapy. Neoadjuvant chemo-
therapy, immunotherapy, or the combination treatment 
of the two are likely to benefit patients with the MRS1 
phenotype. We anticipate that our study will provide 
important information for better understanding of the 
metabolic heterogeneity of BLCA, as well as provide a 
novel perspective for precision treatment.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12885- 023- 11182-w.

Additional file 1: Supplementary Figure S1. Related to Figure 1. BLCA 
samples had distinct metabolic gene expression from normal samples. 
(A) UMAP visualization of BLCA tumors and normal samples in the TCGA 
cohort for the expression of metabolic genes. (B) Global differences 
in metabolic gene expression between tumors and normal tissues in 
the TCGA-BLCA cohort. Left: The Euclidean expression distances were 
calculated between tumors and normal tissues (green), different samples 
of tumor tissues(red), and different samples of normal tissues (blue). The 
inset summarizes the average distances between pairs of tissues as a 
percentage of the average distance between tumors and normal tissues. 
****p < 0.0001. Right: The correlation-based expression distances were 
calculated between tumors and normal tissues (green), different samples 
of tumor tissues (red), and different samples of normal tissues (blue). The 
inset summarizes the average distances between pairs of tissues as a 
percentage of the average distance between tumors and normal tissues. 
****p < 0.0001. Supplementary Figure S2. Related to Figure 1. Consen-
sus clustering matrixes of TCGA-BLCA patients using metabolic pathway 
enrichment score for k = 2 to k = 10. Supplementary Figure S3. Related 
to Figure 1. Comparison of the percentage of clinical characteristics 
between the MRS1 and MRS2 groups. Supplementary Figure S4. Related 
to Figure1 and Figure2. Metabolic-gene-based stratification of patients 
in the GSE13507 cohort. (A) UMAP visualization of metabolic subtypes in 
the TCGA cohort for the expression of metabolic genes. (B) Kaplan-Meier 
analysis in term of OS of TCGA BLCA patients. (C) Comparison of the 
ESTIMATE results between the MRS1 and MRS2 groups. Supplementary 
Figure S5. Related to Figure3. Comparison of Immune characteristics 
between the MRS1 and MRS2 groups in the TCGA-BLCA dataset. (A) 
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Comparison of the immunomodulators (chemokines, immunostimulators, 
MHC, and receptors) enrichment scores between the MRS1 and MRS2 
groups. (B) Expression levels of the immune checkpoints in the MRS1 and 
MRS2 groups. *p < 0.05, **p < 0.01, ***p < 0.0001. Supplementary Figure 
S6. Related to Figure3. Comparison of Immune characteristics between 
the MRS1 and MRS2 groups in the GSE13507 dataset. (A) Comparison 
of the immunomodulators (chemokines, immunostimulators, MHC, and 
receptors) enrichment scores between the MRS1 and MRS2 groups. (B) 
Expression levels of the gene signatures of TIICs and immune check-
points in the MRS1 and MRS2 groups. *p < 0.05, **p < 0.01, ***p < 0.0001. 
Supplementary Figure S7. Related to Figure3. Metabolic phenotypes 
predicted molecular subtypes and clinical therapy in the GSE13507 
cohort. (A) Correlations between metabolic phenotypes and molecular 
subtypes using seven different algorithms (CIT, Lund, MDA, TCGA, Baylor, 
UNC, and consensus) and BLCA signatures. (B) Expression levels of the 
gene signatures of TIICs and immune checkpoints in the MRS1 and MRS2 
groups. *p < 0.05, **p < 0.01, ***p < 0.0001. Supplementary Figure 
S8. Related to Figure 4. Annotation of cell types. (A) UMAP visualization 
of 42,658 single cells from nine BLCA patients. (B) The unsupervised 
clustering of 42,658 cells. (C) Expression levels of known markers overlaid 
on the UMAP representation. Supplementary Figure S9. Related to 
Figure5. Ligand-receptor interactions between MRS1-tumor and MRS1-
environment cells. (A) Heatmap showing the ligand-receptor interactions 
between MRS1-tumor and MRS1-environment cells. (B) Heatmap for gene 
expression levels of top 20 cell-type-specific genes. (C) UMAP visualiza-
tion of S100A7 expressed genes. (D) Comparison of S100A7 expression 
between the MRS1- and MRS2-tumor cells. Supplementary Figure S10. 
Related to Figure 5. Kaplan-Meier analysis in term of OS in the TCGA-BLCA 
and the GSE13507 cohorts. All patients were categorized into two groups 
based on the median of the gene expression. Supplementary Figure 
S11. Related to Figure 5. Correlations between S100A7 expression and 
immune-related characteristics. (A) Left: Correlations between S100A7 
expression and ESTIMATE results and immunomodulators (chemokines, 
immunostimulators, MHC, and receptors) enrichment scores in the TCGA 
cohort. Middle: Correlations between S100A7 expression and immune cell 
markers values in the TCGA cohort. Right: Correlations between S100A7 
expression and immune checkpoints values in the TCGA cohort. (B) 
Left: Correlations between S100A7 expression and ESTIMATE results and 
immunomodulators (chemokines, immunostimulators, MHC, andrecep-
tors) enrichment scores in the GSE13507 cohort. Middle: Correlations 
between S100A7 expression and immune cell markers values in the 
GSE13507 cohort. Right: Correlations between S100A7 expression and 
immune checkpoints values in the GSE13507 cohort. Significantly positive 
correlations are represented by orange, significantly negative correlations 
are represented by blue. Supplementary Figure S12. Related to Figure 6. 
S100A7 knockdown inhibits BLCA cells’ proliferation. (A) The transfected 
and silencing efficiency of S100A7 in BLCA cells was assessed by qRT-PCR. 
(B) The proliferative capacity of control and S100A7-silencing BLCA cells 
was examined by CCK-8 assay. (C) The proliferative capacity of control and 
S100A7-silencing BLCA cells was examined by EdU assay.

Additional file 2: Supplementary Table S1. The results of differentially 
expression analysis performed by R package "limma" in the TCGA-BLCA 
cohort. Supplementary Table S2. Related to Figure 2. Results of GSEA 
using gene sets of metabolic pathways comparing the MRS1 group versus 
MRS2 group in the TCGA cohort. Supplementary Table S3. The results 
of differentially expression analysis performed by R package "limma" in 
GSE13057. Supplementary Table S4. Highly expressed genes in MRS1- 
and MRS2-tumor cells.
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