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Abstract 

Background  Breast cancer is associated with alterations in lipid metabolism. The treatment of breast cancer can also 
affect serum lipid composition. The purpose of this study was the examination of serum fatty acids (FAs) profiles in 
breast cancer survivors to assess if the FA levels normalize.

Methods  Serum levels of FAs were determined by gas chromatography–mass spectrometry in a group of breast can-
cer patients at baseline (before treatment, n = 28), at two follow-up visits at 12 months (n = 27) and 24 months (n = 19) 
after the breast cancer resection, and in the group of healthy controls (n = 25). Multivariate analysis was performed to 
assess how FA serum profile changes following treatment.

Results  Breast cancer patients’ serum FA profiles at follow-ups did not normalize to the levels of control group. The 
greatest differences were found for levels of branched-chain (BCFA), odd-chain (OCFA) and polyunsaturated (PUFAs) 
FAs, all of which were significantly increased 12 months after the surgery.

Conclusions  After treatment for breast cancer, the patients’ serum FA profile differs from the profile before treatment 
and from controls, especially 12 months after treatment. Some changes may be beneficial – increased BCFA and OCFA 
levels, and improved n-6/n-3 PUFA ratio. This may reflect lifestyle changes in breast cancer survivors and have an 
impact on the risk of recurrence.
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Background
The female breast cancer (BC) is the most commonly 
diagnosed type of cancer worldwide [1]. The high inci-
dence coupled with increased use of diagnostic screen-
ing mammography and improvement in breast cancer 

treatment resulted in increased numbers of breast cancer 
survivors [2]. However, patients may experience several 
adverse effects during the course of and after treatment 
[3]. The negative effect of chemotherapy on the cardio-
vascular system is a well-known issue [4]. Among the 
comorbidities and adverse health effects associated with 
breast cancer are those associated with lipids metabo-
lism. Available evidence suggests that BC survivors are 
at increased risk for the development of cardiovascular 
disease [5], metabolic syndrome [6, 7], diabetes and/or 
dyslipidemia [8, 9]. These come either as a direct result of 
cancer treatment or due to and in combination with fac-
tors such as obesity, weight gain and nutritional factors, 
physical activity levels or age [10–13], all of which can 
influence mortality in BC survivors [14] Chemotherapy 
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seems to worsen dyslipidemia in breast cancer patients 
[15, 16]. In contrast, tamoxifen treatment [17] and radio-
therapy [18] were suggested to have a moderate benefi-
cial effect on serum lipids in breast cancer patients.

Alteration in lipid metabolism is a known feature 
of cancer cells. The frequent association of obesity 
and overweight with an elevated risk of breast cancer, 
observed in epidemiological studies, highlighted the 
notion that adipose tissue and adipocytes interact with, 
and greatly influence the tumor microenvironment [19]. 
Although most of the attention so far has been given 
to enhanced de novo fatty acid (FA) synthesis in cancer 
cells, the exogenous lipids utilization for energy in cancer 
cells and oncogenic lipid signaling molecules, show the 
importance of adipose tissue and dietary intake of lipids 
in cancer [19, 20].

Most of the available evidence of lipid disturbances 
observed in BC survivors focuses on concentrations of 
triacylglycerols (TGs), cholesterol and its fractions [7, 
15–18, 21]. However, lipids are a diverse class of com-
pounds, each with unique properties and physiological 
roles. FAs serve as building blocks for complex lipids 
and influence their hydrophobicity, depending on the 
number of fatty acyl chains in lipid molecule, FA length 
and their degree of saturation. Different backbones of 
glycerolipids, sphingolipids, glycerophospholipids, and 
saccharolipids confer further unique properties to these 
classes, making them more or less amphiphilic. Gen-
erally, lipids serve as membrane components, energy 
sources and storage and have a role in molecular sign-
aling. The length of the Fas’ acyl chain modulates the 
functional roles of lipids. For example, the presence of 
methyl branches affects membrane fluidity and perme-
ability [22], the chain length in ceramide species changes 
their properties from pro-apoptotic to antiapoptotic [23], 
and the location of double bonds determine pro- or anti-
inflammatory properties of the FA metabolites [24] The 
identification of specific FA provided useful insight into 
therapeutic strategies or biomarker identification in lung 
[25], colorectal [26, 27] or breast [28] cancer. Lastly, there 
is an increased interest in the health benefits of underre-
ported FA classes, namely branched-chain FAs (BCFAs) 
[22] and odd-chain FAs (OCFAs) [29] in cancer patients.

Lifestyle interventions such as dietary guidance and/
or exercise regimen can improve the quality of life [30]. 
FA alterations after BC treatment may have an impact 
on the general health and/or the disease recurrence. BC 
survivors are at increased risk of cardiovascular events 
[31], diabetes [9], inflammation and chronic fatigue 
[32]. These adverse effects are in turn frequently associ-
ated with specific FAs/FA groups [33–35] and could be 
potentially addressed with nutritional changes or sup-
plementation of FAs. But providing reliable guidelines 

for lipid intervention, requires a clearer picture of 
specific FAs in the serum of BC survivors. This study 
aimed to characterize the changes in the FA composi-
tion of BC survivors and to identify FA disturbances 
that might be addressed either with therapeutic or die-
tary interventions.

Methods
Patients
The study was conducted according to the guidelines of 
the Declaration of Helsinki and approved by Independ-
ent Bioethics Committee for Scientific Research at the 
Medical University of Gdansk, Poland (protocol code: 
NKBBN/526/2013). Informed consent has been obtained 
from the patients. The control group (n = 25) were 
healthy females with a mean age of 44 ± 10 years. We have 
recruited patients from oncological out-patients’ clinics 
in the Pomeranian region of Poland with a histopatholog-
ically confirmed breast carcinoma (according to a thick 
needle biopsy, clinical stage I- III), who were referred to 
the Department of the Surgical Oncology Medical Uni-
versity of Gdansk. Before the operation, clinical and 
pathological data such as age, histological type of breast 
cancer and clinical staging according to TNM classifica-
tion, presence/lack of estrogen or progesterone receptors 
were collected. We included patients that were qualified 
for the following operations: breast-conserving therapy 
with sentinel lymph node, breast-conserving therapy 
with auxiliary lymph node dissection, and radically modi-
fied breast amputation with or without immediate breast 
reconstruction. After the operation, the following data 
were collected: pathological TNM classification, includ-
ing in particular immunohistochemical results of the 
tumor. All patients were treated according to current 
world therapeutic standards both by using neoadjuvant 
therapy or by adjuvant therapy, depending on the stage 
of cancer. Five patients received neoadjuvant chemo-
therapy (paclitaxel/carboplatin); eight patients received 
neoadjuvant radiotherapy, which lasted up to six months 
post-surgery. Endocrine therapy regimens (tamox-
ifen) also ended at the longest at 6 months post-surgery 
with an exception of two HER + patients, for whom the 
tamoxifen + herceptin treatment duration was 5  years 
after the surgery. The clinical characteristics of patients 
are gathered in Table 1. Most of the patients included in 
this study presented with ER/PR-positive HER2-negative 
tumors, which reflects the commonality of this subtype 
in the overall population. The follow-up serum could not 
be obtained from 1 patient at the 12-month point (12 M 
follow-up), and 9 patients at 24 months (24 M follow-up). 
Patients were not specifically advised to use fish oil or 
similar supplements.
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Determination of lipidogram in patients
Lipid profile, including total cholesterol (TC), TG, HDL-
C, and LDL-C parameters were measured in patient 
serum using an Automated Photometer (ERBA XL-180, 
Erba Diagnostics Mannheim Gmbh, Mannheim, Ger-
many) and specific ERBA kits according to the manu-
facturer’s instructions. Non-HDL-C was calculated by 
subtraction of HDL-C concentration from TC.

GC–MS analysis of serum fatty acids
Total lipid were extracted from 200 µl aliquots of serum 
with the chloroform–methanol mixture following the 
method of Folch et al. [36]. The lipids were then hydro-
lyzed by incubation at 90 °C for 3 h with KOH in metha-
nol and FAs were extracted with water/n-hexane. The FA 
methyl esters (FAMEs) were obtained via the derivatiza-
tion with 10% boron trifluoride-methanol solution for 
1.5 h at 55 °C, and after addition of 1 mL H2O to reaction 
mixture the FAMEs were extracted thrice with n-hexane, 
solvent was evaporated under nitrogen stream and sam-
ples were stored at -20 °C until analysis.

The FAMEs were analyzed with GC-EI-MS QP-
2010SE (Shimadzu, Kyoto, Japan). The separation was 

achieved on Zebron ZB-5MSi capillary column (30  m 
length × 0.25 mm i.d. × 0.25 μm film thickness). Samples 
were injected in dichloromethane. The GC oven tem-
perature was set at 60–310 °C (4 °C/ min, 5 min hold at 
310 °C) with overall run time of 67.5 min. The carrier gas 
applied was helium at column head pressure of 100 kPa. 
Mass spectrometry detection was conducted in full scan 
mode, with the mass scan range set at m/z 45–700 with 
an electron impact source operating at 70 eV. 19-methyl-
arachidic acid was used as an internal standard. FAs iden-
tification was aided by the standards reference mixture 
(37 FAME Mix, Sigma-Aldrich) and reference library 
NIST 2011.

Univariate and multivariate analysis
The statistical significance of the differences for tested 
parameters of preoperative group vs 12  M follow-up, 
preoperative group vs 24  M follow-up, and 12  M fol-
low-up vs 24  M follow-up were verified with a paired 
t-Student’s test for data with normal distribution, and a 
Wilcoxon Signed Rank Test for non-parametric data. For 
multiple group comparison One Way Analysis of Vari-
ance (ANOVA) was performed with all pairwise multi-
ple comparison procedure—Tukey Test for parametric 

Table 1  Characteristics of breast cancer patients before, 12, and 24 months after treatment

Results are mean ± SD

ER estrogen receptor, HER2 human epidermal growth factor receptor 2, PR progesterone receptor, TNBC triple-negative breast cancer
a The expression of estrogen, progesterone receptors and involved lymph nodes are presented as a percentage of a positive result (cells or tissues) in clinical trials

Parameter Preoperative
n = 28

12 M follow-up
n = 27

24 M follow-up
n = 19

Age [years] 56 ± 11 56 ± 12 56 ± 11

Stage [number of patients]

  I 14 14 11

  II 11 10 6

  III 2 2 1

unknown 1 1 1

Histological type [number of patients]

  Ductal 21 20 14

  Lobular 3 3 3

  Papillary 1 1 1

  unknown 3 3 1

Involved lymph nodes [%]a 12.5 ± 23.6 9 ± 15.8 13.2 ± 26

Number of tumor foci 1.3 ± 0.6 1.3 ± 0.6 1.4 ± 0.7

Expression of estrogen receptors [%]a 66.9 ± 41 66.5 ± 41.9 81.9 ± 29.2

Expression of progesterone receptors [%]a 41.9 ± 40.7 39.9 ± 40.3 54.8 ± 41.9

ER + , PR + , HER2- 19 18 16

ER-, PR-, HER2 +  0 0 0

TNBC (ER-, PR-, HER2-) 5 5 1

ER + , PR-, HER2- 1 1 1

TPBC (ER + , PR + , HER2 +) 2 2 0
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data and Kruskal–Wallis ANOVA on ranks followed by 
all pairwise multiple comparison procedure using Dunn’s 
Method for data with non-normal distribution. Exclusion 
of data followed the 1.5*IQR (interquartile) rule. All sta-
tistical tests were performed with the significance level of 
α = 0.05 and results were deemed significant if power of 
applied test was above 0.800. A priori calculated ANOVA 
power was 0.897. Results are given as mean ± standard 
error of the mean (SEM). Spearman’s Rank or Pearson 
correlation coefficient was calculated. All univariate cal-
culations were carried out with SigmaPlot software (Sys-
tat, Software Inc., San Jose, CA, USA).

The multivariate data analysis was performed with 
SIMCA software (version 16 Sartorius Stedim Data Ana-
lytics AB, Umeå, Sweden). Pareto scaling was applied to 
data and for skewed variables log transformation was 
performed. The unsupervised Principal Component 
Analysis (PCA) was performed to reveal natural cluster-
ing of samples. The PCA biplot was constructed from 
the first two components, with Hotelling’s T2 range of 
95% applied. Supervised, partial least squares analy-
sis (PLS-DA) was performed on significant variables 
selected based on the results of paired t-tests, variables 
with p < 0.05 were chosen. The PLS-DA models under-
went cross-validation analysis of variance (CV-ANOVA) 
to assess their reliability. The variables most important 
in PLS-DA analysis were those with variable impor-
tance score (VIP) above 1.0. For both PCA and PLS-DA 
models variables with > 50% missing values (FAs that 
were detected in trace amounts) were excluded from the 
analysis.

Results
The blood lipid profile analysis showed no significant 
differences in TC and LDL-C concentrations across 
study groups (Table  2). Patients with breast cancer dis-
played significantly elevated serum TG concentrations 
when compared to the control group at all time points 
(Table  2). Also, the breast cancer patients were charac-
terized by lower HDL-C concentrations in the blood than 
the control group, which was significant at 12  M and 
24 M follow-up.

The unsupervised multivariate analysis by PCA, which 
included all measured FAs as variables, was performed to 
verify the natural clustering of the study subject’s groups 
based on serum FA profiles (Fig.  1). The resulting two-
component model accounted for 74.3% variability in the 
samples and showed a large scattering of study subjects 
without clear grouping trends across PC1 and PC2. This 
indicates heterogeneity in FA profiles of BC survivors. 
The PCA model summary is given in Table S1. Subse-
quently, to consider differences between patients’ FA pro-
files at different periods after surgery, the PCA models 

were built for paired samples from patients before opera-
tion and at 12  M follow-up (Fig.  2A), before operation 
and at 24 M follow-up (Fig. 2B) and at 12 M and 24 M 
follow-up (Fig. 2C). The highest tendency to separate was 
observed for comparison between preoperative and 12 M 
follow-up patients (84.4% of total variance across PC1 
and PC2), however, the separation was not complete. 
The FA profiles measured at 12  M and 24  M clustered 
together, with no apparent grouping trends. Similarly, the 
PCA models were built for breast cancer patients before, 
12 and 24 months after the surgery and the control group 
(Fig. 2D-F). The 12 M follow-up (Fig. 2E) and 24 M fol-
low-up (Fig. 2F) groups exhibited clearer separation from 
control subjects than preoperative patients from con-
trols (Fig.  2D). Taken together, this results show that at 
12 months serum FA profiles of BC patients are most dis-
similar to both preoperative and control profiles.

When considering the effect of the treatment of breast 
cancer patients on the total contents of the main groups 
of FA, we observed the largest number of differences at 
12  M follow-up compared to preoperative results. We 
found increased levels of even chain FAs (ECFA), OCFA, 
BCFA and the sum of all saturated FAs (SFAs) 12 months 
after surgery (Fig. 3). After 24 months we did not find any 
significant changes in any FA group compared to 12  M 
or preoperative results. The results for specific FAs from 
studied groups are presented in Table S2, and confirmed 
that the most numerous differences among specific FA 
were at 12 M follow-up when compared to preoperative 
results. Since the control group and BC patients differed 
in age, we have additionally reduced the control group 
to the population of 18 subjects whose age was not sig-
nificantly different from BC patients, to verify if the age 
might significantly contribute to the FA differences The 
comparison of FA composition within these groups has 
been presented in Table S3 in the revised manuscript. 
Still, comparing FA profiles in BC patients to this lim-
ited control group have led to similar conclusions, thus 
we decided to use the entire control group for analyzes to 
increase the power of the tests.

When comparing breast cancer patients to controls, 
the preoperative breast cancer patients were character-
ized by elevated monounsaturated FAs (MUFAs) and 
n-3 PUFAs content, whereas the n-6 PUFAs were sig-
nificantly decreased when compared to control serum 
(Fig.  3). Essential n-6 PUFA – linoleic acid (LA, 18:2 
n-6) serum content as well as n-6/n-3 ratio was sig-
nificantly lower in preoperative breast cancer patients 
when compared to the control group (Table S2). Lev-
els of other significantly different PUFAs—20:2 n-6 
and long-chain n-3 PUFAs – eicosapentaenoic acid 
(EPA, 20:5 n-3) and docosapentaenoic acid (DPA, 22:5 
n-3) were higher in preoperative breast cancer patients 
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when compared to controls (Table S2). The differences 
described above persisted in the breast cancer patients 
12 and 24 months after breast cancer resection (Fig. 3 

and Table S2). More differences were identified when 
comparing control subjects with patients at 12  M and 
24 M follow-ups, including (in addition to those listed 

Fig. 1  The results of principal component analysis based on whole fatty acid profiles in serum of breast cancer patients at different stages of 
therapy and healthy controls

Fig. 2  Unsupervised principal component analysis (PCA) for two group comparisons. Models including whole serum FA profiles from (A) 
preoperative patients and 12 M follow-up (n = 27), B preoperative patients and 24 M follow-up (n = 19), C patients at 12 M follow-up and 24 M 
follow-up (n = 18), D preoperative patients (n = 28) and controls (n = 25), E patients at 12 M follow-up (n = 27) and controls (n = 25), F patients at 
24 M follow-up (n = 19) and controls (n = 25)
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Fig. 3  The serum fatty acid content [%] of main fatty acid groups in the serum of study subjects. p-values from All Pairwise Multiple Comparison 
Procedures (Tukey Test) or from Kruskal–Wallis One Way Analysis of Variance on Ranks followed by All Pairwise Multiple Comparison Procedures 
(Dunn’s Method). BCFA: branched chain fatty acids; ECFA: even chain saturated fatty acids; MUFA: monounsaturated fatty acids; OCFA: odd chain 
saturated fatty acids; PUFA: polyunsaturated fatty acids; VLCFA – very long chain saturated fatty acids with > 20 carbons in acyl chain
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above) increased ECFA (12  M), OCFA (12  M, 24  M), 
and BCFA (12  M) (Fig.  3). This trend can be also 
observed when analyzing the specific FA from these 
groups (Table S2). Interestingly, we were able to detect a 
higher amount of very long chain FAs (VLCFAs, C > 20) 
in the serum of breast cancer patients 12 months after 
surgery comparing them both to healthy subjects and 
their preoperative results (Fig. 3).

The analysis of a wide FA profile in serum allows for the 
estimation of the whole-body activity of enzymes which 
metabolize FAs by calculating the ratios of products to 
substrates. The stearoyl-CoA desaturase-1 (SCD-1) activ-
ity index was assessed as an 18:1 to 18:0 ratio and showed 
significantly higher activity in patients before treatment 
when compared to both the control group and patients in 
follow-up (Table S2). The delta-5 desaturase activity was 
assessed using the ratio of arachidonic (ARA, 20:4 n-6) 
to dihomo-γ-linolenic acid (DGLA, 20:3 n-6) content and 
was lower in breast cancer patients than in the control 
group, albeit non-significantly, and there was a trend to 
decrease in patients in subsequent follow-ups (Table S2). 
Conversely, the delta-6 desaturase index, calculated as 
DGLA to LA ratio, was the lowest in the control group 

and tended to increase in breast cancer patients in fol-
low-ups (Table S2).

Additionally, since in the unsupervised PCA analysis 
did not allow for grouping of patients based on whole FA 
serum profiles (Figs.  1 and 2A-C), the supervised PLS-
DA was performed for comparison between each two 
groups of patients. The variables for this analysis were 
selected based on the significance (p-values) of paired 
t-tests performed for each comparison (Tables S4-S6), 
and the most promising FAs/FA groups, which dif-
fered statistically between compared groups (p < 0.05) 
were included. This type of analysis allows also for the 
identification of parameters with the highest impact 
on the separation of the groups of data based on vari-
able importance in projection (VIP) scores. Similarly, 
to PCA models, the best separation in PLS-DA mod-
els was observed for comparison between preoperative 
and 12 M follow-up patients (Fig. 4A), differences were 
also observed for the preoperative vs 24  M follow-up 
model (Fig.  4B); however, the PLS-DA model for 12  M 
vs 24 M follow-up (Fig. 4C) comparison did not pass the 
ANOVA cross validation (Table S7). The cross-validated 
R2 values obtained for the PLS-DA models indicated a 

Fig. 4  Results from partial least squares supervised analysis (PLS-DA). Models built using significantly different serum fatty acids in (A) preoperative 
patients and 12 M follow-up (n = 27), B preoperative patients and 24 M follow-up (n = 19), C patients at 12 M and 24 M follow-up (n = 18), 
D preoperative patients (n = 28) and control (n = 25), E patients at 12 M follow-up (n = 27) and controls (n = 25), F patients at 24 M follow-up (n = 19) 
and controls (n = 25). Fatty acids included as variables were selected based on significance in paired t-tests for comparisons between preoperative 
patients and follow-ups (see Tables S4, S5 and S6 respectively) or two-way t-Student’s test for comparisons between breast cancer patients and 
controls (Table S8)
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good description of data, but the predictability of these 
models is poor (Q2 < 0.4) (Table S7).

The PLS-DA models were also built using variables 
that differed significantly between the control group and 
breast cancer patients (Table S8). The PLS-DA analy-
sis allowed for better separation between preopera-
tive patients and the control group (Fig.  4D), however, 
the predictive value of the model was non-satisfactory 
(Q2 = 0.411) (Table S7). This model revealed good sepa-
ration between controls and patients at 12 M and 24 M 
follow up (Fig.  4E, F) with high Q2 (0.815 and 0.847 
respectively) (Table S7).

For significant PLS-DA models (comparisons between 
preoperative vs 12  M, preoperative vs 24  M, control vs 
preoperative, control vs 12  M and control vs 24  M) the 
VIP scores was used to assess the importance of the given 
variable in variance explanation for each analysis, and the 
percentage contents for FAs/FA groups with VIP scores 
above 1.00 are shown in Figure S1.

Discussion
The main finding of this study is the lack of normalization 
of the FA profiles in the serum of BC patients after breast 
cancer resection. Even 24  months after surgery patients 
exhibited altered levels of long-chain SFAs/MUFAs and 
still heightened levels of most analyzed PUFAs (Table 
S2). The patients’ serum FA contents were markedly dif-
ferent from those of the healthy control group at both 
follow-up time points as evidenced by the number of 
differences in individual FA levels (Table S2) and sepa-
ration of groups in unsupervised PCA models (Figs.  1 
and 2) as well as in PLS-DA analysis (Fig. 4). The differ-
ences in FA profiles between healthy control subjects and 
patients 12 and 24  months after tumor resection were 
more pronounced than between controls and patients 
before surgery. The supervised PLS-DA analysis allowed 
us to identify FA with the highest impact on the separa-
tion. These were 18:0, 14:0, 18:1, 20:1 and LA, for models 
differentiating BC patients before resection and in subse-
quent follow-ups (Figure S1A and B). Additionally, EPA 
and docosahexaenoic acid (DHA, 22:6 n-3) proved to be 
important in separation between breast cancer patients 
and healthy control subjects (Figure S1C and E). The dif-
ferences in FA profiles between healthy subjects and BC 
patients and the changes found between stages of treat-
ment, may be caused by modification of lifestyle factors, 
different expression patterns of enzymes involved in lipid 
metabolism and used therapy, however, such analysis 
was beyond the aims of this study and requires further 
research.

In past years numerous studies suggested the associa-
tion between blood lipid profile and increased risk of var-
ious cancers [37]. In this study, the patients’ blood lipid 

profile was unfavorable [38] at baseline when compared 
to the control group, and did not change significantly 
during at 24 M. Our patients presented with higher TG 
and lower HDL-C. The role of lipoproteins in BC devel-
opment is still debated, with studies showing divergent 
results [39–41]. One meta-analysis found an inverse 
correlation between serum TG levels and BC risk; how-
ever, this association seems to disappear when adjusted 
for major dietary factors [39]. Another meta-analysis 
revealed higher TG and lower HDL levels in breast can-
cer patients compared with healthy controls [40], which is 
in line with our results. HDL cholesterol and apolipopro-
tein A1, were indicated to be involved in tumorigenesis 
through the regulation of proliferative and inflammatory 
pathways [42]. Tian et  al. reported that chemotherapy 
impacts negatively TG, LDL and HDL values, with high 
TG levels persisting six months after therapy comple-
tion [43]. Another study reported that dyslipidemia per-
sists even up to 12 months [16]. However, Arpino et al. 
suggested that the observed changes in blood lipid pro-
file may be merely a result of lifestyle changes following 
diagnosis rather than a consequence of the therapeutic 
regimen [44]. Nevertheless, it seems reasonable to intro-
duce appropriate treatment in dyslipidemic breast cancer 
patients to normalize their lipidogram.

Enhanced de novo lipogenesis emerged as a hallmark 
of many types of cancer, especially those associated with 
obesity [19, 45, 46]. Studies report upregulated fatty acid 
synthase (FASN) expression in cancer and pre-cancer 
cells [47–49]. Since we did not directly evaluate FASN 
expression in the cancer tissue of patients, we cannot 
conclude that FASN activity is changed in preoperative 
BC patients. Contrary to some studies [48, 50, 51], we did 
not find increased levels of blood SFAs in preoperative 
patients when compared to the control group. However, 
SFA levels were increased in 12 M follow-up compared to 
preoperative results. A meta-analysis conducted by Bren-
nan et al. [52] suggests that a high intake of saturated fat 
is associated with higher breast cancer-specific death. 
In primary mouse embryonic fibroblasts SFAs were 
shown to have a negative influence on the DNA damage 
response pathway, possibly promoting cell transforma-
tion and contributing to tumor progression and growth 
[49]. Xu et  al. [48] reported that FASN overexpression 
may promote tumor development and enhance cancer 
cell proliferation by providing FAs for membrane forma-
tion; and migration by increasing levels of SFAs involved 
in lipid signal transduction. Higher levels of SFAs due to 
dietary intake may have a similar effect. Thus, increased 
SFA 12  M after surgery in BC patients may potentially 
increase the risk of the recurrence of the disease, and 
reduction of SFA intake may constitute a therapeutic tar-
get for patients during treatment.
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A surprising result of this study is elevated levels of 
saturated VLCFAs sub-group in follow-up patients when 
compared to baseline, with differences most pronounced 
in 12 M follow-up. VLCFAs are highly hydrophobic and 
confer unique properties, altering membranes fluidity, 
permeability, lipid microdomain formation or clustering 
[53]. Acyl chain elongation has also been identified as a 
potential diagnostic trait [26] or target for treatment [25] 
in different cancers. We did not detect significant differ-
ences, only a trend to increase, of circulating VLCFAs 
in preoperative patients compared to controls. How-
ever, after 12  months serum VLCFA were significantly 
increased in breast cancer patients compared to preop-
erative results.

In recent years BCFAs have been recognized as an 
underexplored bioactive FA class. They sparked a grow-
ing research interest due to their potential beneficial 
effects on health in obesity [54], anti-inflammatory 
effects [55], glucose metabolism maintenance [56] and 
anti-cancer activity [57–60]. The main sources of BCFAs 
are dairy products and ruminant meats, although humans 
are capable of endogenous synthesis [22]. Incorporation 
of BCFAs into cell membranes can modulate their flu-
idity and lead to disruption of membrane integrity, cell 
dysfunction and death. The magnitude of this effect is 
determined by the structure of BCFA, with iso-BCFAs 
showing greater cytotoxicity than anteiso-BCFAs [59]. 
Iso-BCFAs show cytotoxicity towards BC cell lines, with 
iso-16:0 exhibiting the highest activity [58]. In SKBR-3 
breast cancer cells, iso-15:0 was shown to incorporate 
into glycerophospholipids and trigger apoptosis [57], 
that may protect patients from disease recurrence. We 
observed an increase in iso-15:0 serum content in 12 M 
follow-up. However, after 24  months its levels returned 
to preoperative values. Moreover, the level of iso-series 
BCFAs in our study was negatively correlated with 
serum TG in breast cancer patients at baseline (-0.434 at 
p < 0.024). We previously observed a similar association 
between serum BCFAs and TG in bariatric patients [54, 
61], supporting the idea that BCFAs are involved in the 
regulation of fat storage. The 2015 meta-analysis showed 
that high dairy consumption was linked to reduced BC 
risk [62]. To the best of our knowledge, our study is the 
first to report the levels of serum BCFAs in breast can-
cer patients. A similar scarcity of data exists for another 
bioactive group of dairy-derived FAs – OCFAs. Recently, 
there has been increased interest in OCFAs due to their 
association with reduced risk for coronary heart disease 
and type II diabetes [29, 61]. The data on OCFAs role in 
cancer pathology is extremely limited. Thus far cell stud-
ies indicated an inhibitory effect on proliferation of 19:0 
in hemo-lymphocytic cancer [63], 17:0 in non-small cell 
lung carcinoma [64] and suppression of migratory and 

invasive capability of breast cancer stem cells by 15:0 
[65]. Collectively, increased levels of OCFAs and BCFA 
found in the serum of BC patients in this study at the 
time of follow-ups, may represent beneficial change and 
perhaps even protect BC recurrence.

PUFAs have a pleiotropic effect on health due to their 
involvement in inflammation control via the generation 
of potent pro- and anti-inflammatory metabolites [24]. 
In this study, we observed a significant decrease in serum 
levels of LA, an endogenous precursor of n-6 series 
PUFAs in humans, in preoperative BC patients when 
compared to the control group and even lower, in sub-
sequent follow-ups. Low preoperative n-6 PUFAs in BC 
patients are an unexpected result, since cancer patients 
frequently present with higher or unchanged levels when 
compared to healthy controls [51, 66–69]. BC patients 
also presented with unusually high n-3 PUFAs content. 
We were not able to directly asses patients’ diets, how-
ever, a high proportion of BC patients makes voluntary 
changes in their eating habits, particularly by reducing 
the consumption of fats and fatty food [70]. This could 
account for proportions of PUFAs as well MUFAs con-
tent. Yamashita et al. [28] reported that the levels of LA 
were significantly decreased in tumor tissue when com-
pared to corresponding normal breast tissue. Tomida 
et  al. [71] reported that the ratio of 18:2- to 18:1-con-
taining lipid species in BC patients’ serum was signifi-
cantly decreased before surgery, which is consistent with 
our findings (Table S2). However, unlike in the previous 
study [71], 18:2/18:1 ratio did not normalize. The low lev-
els of LA in BC patients during therapy might be linked 
to enhanced production of oxylipins. The analysis by 
Chocholoušková et. al. [72] revealed that in BC patients 
LA-derived octadecanoids, i.e. 9-HODE and 13-HODE, 
are heavily upregulated. We have also observed a trend of 
increased levels of eicosatetraenoic acid (ETA, 20:4 n-3) 
and DHA during the treatment of BC patients. These 
trends were similar to those reported before [48, 51]. 
Studies examining the protective effects of dietary n-3 
PUFAs (EPA and DHA) against mammary carcinogen-
esis largely suggest that they are beneficial for reducing 
the BC risk [24]. Although we did not observe significant 
changes in EPA and DHA in patients during cancer treat-
ment, their levels were elevated when compared with the 
control group. A study assessing the n-3 PUFAs intake 
in early-stage breast cancer survivors participating in 
the Women’s Healthy Eating and Living (WHEL) study 
indicated that dietary n-3 PUFA intake is associated with 
reduced risk of all-cause mortality as well as recurrence 
or development of new invasive breast cancer [73]. There 
is also an ongoing clinical trial assessing the effect of sup-
plementation of EPA + DHA in breast cancer survivors 
[74]. The rationale behind increasing dietary n-3 PUFAs 
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in breast cancer patients is to decrease risk [75, 76] and 
improve outcomes [77] by elevating the levels of anti-
inflammatory n-3 PUFA metabolites relative to n-6 PUFA 
metabolites. Therefore, the decreased n-6/n-3 PUFA 
ratio in the serum of breast cancer patients at follow-up 
may represent a beneficial trend. Higher n-3 PUFA con-
sumption might be therefore favorable for BC outcomes 
for example due to the cardioprotective benefits [24, 77].

Conclusions
In this study we have found significant differences in 
serum levels of FAs in BC patients before tumor removal 
and at 12- and 24-months follow-up (summarized in 
Fig.  5). Many of those changes appear to be potentially 
beneficial, like increases in OCFA and BCFA or low-
ered n-6/n-3 PUFA ratio, some may be unfavorable, 
like increased SFA, whereas others, such as increased 

VLCFAs, warrant further explanation. The limitations 
of our study include the relatively small cohort and the 
fact that we were not able to assess the influence of diet 
on FA profiles due to the lack of nutrition data. Nonethe-
less, this study concerns the little-studied issue of serum 
FA profile changes after breast tumor resection and pro-
vides novel data on previously underreported groups of 
FAs – BCFAs and OCFAs. Additional studies on the link 
between altered FA profiles and BC survival would help 
to form dietary recommendations for patients after BC 
resection.
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Fig. 5  Alteration in selected classes of FA in breast cancer survivors suggests a therapeutic opportunity for suppressing cancer recurrence. Arrows 
up (↑:p < 0.05; ↑↑; p < 0.001) refer to a significantly higher concentration of FA and arrows down (↑:p < 0.05; ↓↓: p < 0.001) are related to a decreased 
level of FA, compared to healthy control. Mark (*) represents a contribution to tumor progression and ( +) antitumor properties of specific FA. 
Created with BioRender.com (accessed on 31 October 2022)
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