
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Qu et al. BMC Cancer          (2023) 23:549 
https://doi.org/10.1186/s12885-023-10900-8

BMC Cancer

*Correspondence:
Xiaorong Sun
xrsun@sdfmu.edu.cn
Ligang Xing
xinglg@medmail.com.cn
1Department of Radiation Oncology, Shandong Cancer Hospital and 
Institute, Shandong First Medical University, Shandong Academy of 
Medical Science, Jinan 250117, Shandong, China
2Department of Nuclear Medicine, Shandong Cancer Hospital and 
Institute, Shandong First Medical University, Shandong Academy of 
Medical Sciences, Jinan 250117, Shandong, China

Abstract
Background Immune-related genes (IRGs) have been confirmed to play an important role in tumorigenesis and 
tumor microenvironment formation in hepatocellular carcinoma (HCC). We investigated how IRGs regulates the HCC 
immunophenotype and thus affects the prognosis and response to immunotherapy.

Methods We investigated RNA expression of IRGs and developed an immune-related genes-based prognostic index 
(IRGPI) in HCC samples. Then, the influence of the IRGPI on the immune microenvironment was comprehensively 
analysed.

Results According to IRGPI, HCC patients are divided into two immune subtypes. A high IRGPI was characterized by 
an increased tumor mutation burden (TMB) and a poor prognosis. More CD8 + tumor infiltrating cells and expression 
of PD-L1 were observed in low IRGPI subtypes. Two immunotherapy cohorts confirmed patients with low IRGPI 
demonstrated significant therapeutic benefits. Multiplex immunofluorescence staining determined that there were 
more CD8 + T cells infiltrating into tumor microenvironment in IRGPI-low groups, and the survival time of these 
patients was longer.

Conclusions This study demonstrated that the IRGPI serve as a predictive prognostic biomarker and potential 
indicator for immunotherapy.

Keywords Immune-related genes-based prognostic index, Hepatocellular carcinoma, Tumor microenvironment, 
Prognosis, Immunotherapy
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Introduction
Hepatocellular carcinoma (HCC) is the most prevalent 
primary liver cancer and a leading cause of cancer-associ-
ated deaths across the globe. The incidence of hepatocel-
lular carcinoma ranked sixth among all malignant tumors 
worldwide in 2020, although the mortality rate ranked 
third. [1]. Due to the gradual development of HCC, most 
patients have indeed missed the opportunity for surgery 
by the time they are diagnosed with HCC, resulting in a 
five-year survival rate of less than 30% across the globe. 
China, the country with the highest number of HCC 
cases, has a five-year survival rate of only 14.1% [2]. 
Early-stage patients who undergo surgical resection are 
often accompanied by a high recurrence rate [3]. Hence, 
developing new diagnostic and therapeutic strategies to 
predict and improve HCC prognosis is necessary.

Several breakthroughs have been made in the field of 
HCC treatment in recent years. Immunotherapy rep-
resented by immune checkpoint inhibitors (ICIs) has 
gained considerable attention in the treatment of HCC 
[4]. Meta-analyses have shown that ICIs can significantly 
improve overall survival (OS), progression-free survival 
(PFS), and overall response rate (ORR) compared with 
standard therapies [5–7]. The US Food and Drug Admin-
istration (FDA) has approved the targeted drug lenvatinib 
and the PD-1 blocker pembrolizumab for the first-line 
treatment of patients with advanced unresectable HCC 
that is not suitable for localized treatment [8]. However, 
only a small number of patients respond to ICIs. In HCC, 
the response rate to ICIs monotherapy is 15-23%, which 
increases to about 30% after combination therapy [9]. In 
addition, the price of immunotherapy is expensive, which 
may impose a heavy economicburden on some patients. 
Hence, there is a need to explore for identifying ideal 
cancer patients who may benefit from ICIs.

The biomarkers currently used, such as PD-L1 expres-
sion and tumor mutation burden (TMB), have their 
own limitations in predicting the efficacy of ICIs [10]. 
For example, patients with PD-L1 positivehave higher 
response rate to ICIs. However, some patients whose dis-
ease is PD-L1-negative by immunohistochemistry can 
still clinical benefit with anti-PD-1 or anti-PD-L1 thera-
pies [11–13]. A clinical study showed that high TMB 
was not correlated with objective response to ICIs [14]. 
Moreover, the efficacy of ICIs depends not only on the 
features of tumor cells, but also on triggering the immune 
system to develop a long-lasting antitumor response [15]. 
Reported studies have revealed that the development of 
immune-related adverse events (irAEs) was associated 
with clinical benefits for HCC patients who were treated 
with ICIs [16]. Tumor-infiltrating lymphocytes (TILs) are 
an important component in the tumor microenvironment 
and that facilitates the anti-tumor immune response. The 
density of TIL in the tumor microenvironment has been 

verified to be closely related to the efficacy of ICIs [17]. 
The density of TIL in the tumor microenvironment has 
been verified to be closely related to the efficacy of ICIs 
[17]. In addition, the upregulation of immune-related 
genes such as T cell and NK cell proliferation genes indi-
cates that ICIs have a more beneficial effect [18, 19]. 
These evidences suggest that immune-related genes may 
affect the efficacy of immunotherapy by regulating the 
number and activity of TILs. The immune microenviron-
ment of HCC is extremely complex,[20]. so we aim to 
explore the relationship between immune related genes 
and immune microenvironment, prognosis and effect of 
immunotherapy in HCC. In this study, we used compu-
tational algorithms to analyze the gene-expression pro-
files of HCC and acquire an immune-related genes-based 
prognostic index (IRGPI). Besides, we classified the HCC 
into two subtypes as per the IRGPI. Conclusively, we 
established the IRGPI to characterize the clinical features 
and the various intra-tumoral immune landscape, which 
may precisely predict patient outcome and response to 
immunotherapy.

Materials and methods
Data collection and integration
We downloaded an RNA-seq transcriptome profil-
ing dataset including 374 HCC and 50 normal samples, 
somatic structural variation and matching clinical infor-
mation including age, sex, stage, tumor-node-metastasis 
classification over survival time and survival status of 
HCC from TCGA (https://portal.gdc.cancer.gov/). After 
removing invalid or partial data from the TCGA data-
base, a total of 365 HCC patient transcriptome and clini-
cal data were included in the training set for subsequent 
analysis (Table 1).

Moreover, 1,811 unique immune-related genes (IRGs) 
were obtained from the Immunology Database and Anal-
ysis Portal (ImmPort) database (https://www.immport.
org/home) [21].

IMvigor210 dataset contains the transcriptome data 
and clinical information of 298 urothelial cancer patients 
who received PD-L1 antibodies. The dataset can be 
downloaded from http://research-pub.gene.com/IMvig-
or210CoreBiologies. In addition, we also collected infor-
mation from 39 patients who used PD-1 antibodies from 
GSM1648114 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSM1648114) and GSE18220 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220) 
datasets. We analyzed these patients to determine 
whether the model can predict the effectiveness of ICIs.

Biological function analysis of differentially 
expressed immune-related genes (DEIRGs)We 
retrieved immune-related gene expression data of HCC 
patients from the TCGA databases after gene name con-
version and rectification of transcriptome data. DEIRGs 

https://portal.gdc.cancer.gov/
https://www.immport.org/home
https://www.immport.org/home
http://research-pub.gene.com/IMvigor210CoreBiologies
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between tumor tissues and normal tissues were identi-
fied by R package “limma” [22]. Heatmaps were drawn to 
visualize the differential expression of immune-related 
genes between tumor and normal tissues.

Next, we performed functional enrichment analysis on 
these genes to clarify the biological functions of DEIRGs, 
including Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG). According to the crite-
ria of false discovery rate (FDR) < 0.05, the top 10 most 
significant GO terms and KEGG signaling pathways were 
visualized by the R package “ggplot2” [23].

Weighted gene co-expression network analysis (WGCNA)
We evaluated the 555 differentially expressed immune-
related genes (DEIRGs) and constructed a gene co-
expression network by R package “WGCNA”. [24]. Genes 
with a high level of topological overlap similarity would 
be integrated into a module in this network. Genes in the 
same module usually have a high degree of co-expres-
sion. In this study, we used two methods to identify the 

modular genes that have the most significant impact 
on clinical characteristics. The module eigengene (ME) 
represents the first principal component of the module, 
which is usually used to describe the expression pattern 
of the module. Module membership (MM) refers to the 
correlation coefficient between each gene in the same 
module, which is usually used to describe the reliability of 
a gene belonging to a module. Finally, we calculated the 
correlation between each module and the clinical charac-
teristics to determine the module genes closely relevant 
to the clinical characteristics for subsequent analysis.

Immune-related gene signature development and 
reliability evaluation
To explore IRGs highly related to overall survival (OS) 
and assess the prognostic evaluation, univariate Cox 
proportional hazard regression analysis was performed. 
With the cutoff value of P < 0.05, the prognosis-related 
IRGs were identified. of the optional IRGPI model 
based on prognosis-related IRGs was constructed using 
the Least Absolute Shrinkage and Selection Operator 
(LASSO) penalized Cox proportional hazards regres-
sion via R package ”glmnet” [25]. The IRGPI score of each 
HCC patient was calculated by the following formula:

 
IRGPIscore =

n∑

i=1

Coefi ∗ Xi

(Herein, Coefi is the coefficient of each selected gene, 
while Xi is the expression value of IRGs.)

Each patient’s IRGPI score can be calculated using this 
formula. Patients with IRGPI score ≥ median value were 
classified as the IRGPI-high group, while those patients 
whose IRGPI score < median value were classified as the 
IRGPI-low group. Then, using the R package “survival”, a 
Kaplan-Meier analysis was used to compare the survival 
of IRGPI-high and IRGPI-low groups [26]. The IRGPI 
model’s independent prognostic relevance was further 
investigated using multivariate Cox regression.

Analysis of gene mutation between IRGPI-high and low 
group
Based on the somatic mutation data downloaded from 
the TCGA database, we calculated the total number of 
non-synonymous mutations of each patient to obtain 
the TMB. The HCC driver genes were identified by the 
R package “maftool” [27]. We evaluated the frequency of 
driver gene mutations in the IRGPI-high and IRGPI-low 
groups, and the top 20 genes with the highest mutation 
frequency were designated as potential driver genes for 
HCC.

Table 1 Clinical characteritics of patients with HCC in TCGA 
database
Clinical information Number Percentage
Total cases 365 100

Age
< 65 233 63.84

≥ 65 132 36.16

Gender
Male 248 67.95

Female 117 32.05

Grade
G1 55 15.07

G2 175 47.95

G3 121 33.15

G4 14 3.83

Stage
Stage I 174 47.67

Stage II 86 23.56

Stage III 86 23.56

Stage IV 5 1.37

Unknow 14 3.84

Tumor
T1 184 50.41

T2 90 24.66

T3 78 21.37

T4 13 3.56

Node
N0 256 70.14

N1 4 1.09

Unknow 105 28.77

Metastasis
M0 269 73.70

M1 5 1.37

Unknow 91 24.93
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Evaluation of tumor-infiltrating immune cells and immune 
function in the tumor microenvironment
The R package “CIBERSORT”, which is based on the 
principle of linear support vector regression, was used 
to calculate infiltration levels for different immune cells 
and immune function in HCC [28]. Immune and stromal 
contents for each HCC patient were evaluated by ESTI-
MATE [29]. The hierarchical agglomerative clustering of 
HCC was executed as per the tumor-infiltrating immune 
cells of each patient. Finally, a box plot was used to show 
the difference in immune infiltrating cells and immuno-
logical function between the IRGPI-high and IRGPI-low 
groups.

Tumor Immune Dysfunction and Exclusion (TIDE)
TIDE is a computational framework to identify factors 
that underlie immune-dysfunction and immunosuppres-
sion of tumor immune escape. The TIDE score calculated 
by the computational framework consists of two parts: 
dysfunction score and exclusion score. The dysfunction 
and exclusion score can be calculated by multiplying the 
expression of immune-dysfunction and immunosup-
pression genes by their respective weight coefficients. 
Compared with the currently widely used biomarkers 
for evaluating the efficacy of immune checkpoint inhibi-
tors (TMB, PD-L1 expression and IFN-γ), the TIDE score 
can better evaluate the efficacy of anti-PD-1 and anti-
CTLA-4 treatments. To test the efficacy of ICIs, we cal-
culated TIDE scores for patients in the IRGPI-high and 
low groups to examine whether there were any differ-
ences in TIDE scores between subgroups. The underlined 
study was conducted using the TIDE online application 
of ICIs response prediction, which is freely accessible 
with any modern web browser http://tide.dfci.harvard.
edu/ [30].

Multiplex immunofluorescence staining and quantitative 
analysis
30 surgical specimens of HCC from the Shandong Can-
cer Hospital and Institute and performed multiplex 
immunofluorescence staining. In order to ensure suf-
ficient follow-up time and eliminate the shortened sur-
vival time caused by other reasons, all patients have good 
nutritional status, normal liver function and an estimated 
survival time of more than two years (Table  2). Tissue 
Sect. 4 μm thick were deparaffinized in xylene and then 
rehydrated in 100, 90, and 70% alcohol successively. 
Antigen retrieval was performed with boiling in antigen 
retrieval solution EDTA, endogenous peroxidase was 
inactivated by incubation in 3% H2O2 for 15 min. Next, 
the sections were pre-incubated with 10% normal goat 
serum and then incubated two hours or overnight with 
primary antibodies: MAPT (1:100 dilution, ab92676, 
Abcam), GHR (1:200 dilution, ab209790, Abcam), CD5L 
(1:200 dilution, ab45408, Abcam), CD8 (1:300 dilution, 
ab199016, Abcam), CCL14 (1:150 dilution, 14216-1-
AP, proteintech). Subsequently, the sections were incu-
bated with anti-mouse or anti-rabbit HRP-conjugated 
Polymer (Vector Lab, CA) for 10 min at room tempera-
ture. The antigenic binding sites were visualized using 
the OPAL dye. OPAL-520 (PerkinElmer Inc.), OPAL-
690(PerkinElmer Inc.), OPAL-570(PerkinElmer Inc.), 
OPAL-780(PerkinElmer Inc.), OPAL-620(PerkinElmer 
Inc.) were applied to each antibody, respectively. After 
staining, all slides were counter-stained with DAPI for 
five minutes and mounted in Pro-Long Diamond Anti-
fade Mountant (Thermo Fisher).

Table 2 Clinical characteristics of patients with HCC in hospital 
database
IRGPI group IRGPI-low IRGPI-high
Total cases 15 15

Age
< 65 10 7

≥ 65 5 8

Gender
Male 13 14

Female 1 2

Grade
G1 6 3

G2 5 2

G3 4 7

G4 0 3

Stage
Stage I 13 11

Stage II 2 4

Tumor
T1 5 6

T2 10 9

Node
N0 15 15

N1 0 0

Metastasis
M0 15 15

M1 0 0

Liver Function
Child-Pugh Score

Child-Pugh A 15 15

Platelet Count

(100–300) ×109/L 15 15

Albumin

(35–50) g/L 12 14

(28–35) g/L 3 1

Prothrombin Time

11-13s 15 15

Hepatitis-B infection
Yes 12 9

No 3 6

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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To obtain multispectral images, the stained slides were 
scanned using the Akoya CODEX system (Akoya Biosci-
ences). Images were analyzed and quantified by Pheno-
chart software (v.1.0.12, PerkinElmer Inc.). AI-assisted 
analyses using Phenochart software were performed to 

determine the recognition and levels of MAPT, GHR, 
CD5L, CCL14. In order to avoid bias caused by tumor 
heterogeneity, ten regions were selected randomly from 
each sample for fluorescence intensity analysis. The 
average fluorescence intensity of each protein in the ten 
regions was determined the expression level. Although 
bias cannot be completely eliminated, we are trying to 
reduce it. Individual cells were identified using the DAPI 
nucleus staining. CD8+ T cells were quantified and its 
percentages in each patient were calculated.

Statistical analysis
All statistical analyses were carried out using R v 4.1.1 
(www.r-project.org/), GraphPad Prism version 7.0 and 
SPSS version 21.0 software (IBM Corporation, Armonk, 
NY, USA). The Kruskal-Wallis test was used to com-
pare differences between more than two groups, while 
the Wilcoxon test was used to compare two groups. The 
overall survival time of the two subgroups was evaluated 
by the Kaplan-Meier method and visualized by the sur-
vival curve. The statistically significant differences were 
evaluated by the log rank test. The correlation between 
IRGPI subtypes and clinical features was evaluated using 
the chi-square test, and the correlation coefficient was 
determined using the Spearman analysis. A p-value < 0.05 
indicated statistical significance.

Results
Establishment of IRGPI in HCC
The TCGA database was used to obtain RNA-seq tran-
scriptomic data, and the expression levels of immune-
related genes in tumor and normal tissues were analyzed. 
The results showed that out of 1811 immune-related 
genes, 555 genes were found to be differentially expressed 
in tumor and normal tissues (P < 0.05) (Fig.  1A). These 
results suggested that immune-related genes play an 
indispensable role in the occurrence and development of 
HCC.

To further clarify the function of these genes, the 
underlined immune-related genes were selected as can-
didates for Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analysis. 
GO analysis explains the roles of these genes using three 
aspects: cellular component (CC), molecular function 
(MF), and biological process (BP). The results of GO anal-
ysis suggest that the functions of these genes are mainly 
focused on the positive regulation of immunity such as 
cell proliferation, cytokine secretion and cell chemotaxis 
(Fig.  1B). KEGG analysis was performed to investigate 
the pathways involved in the regulation of downstream 
genes by immune-related genes. The anti-tumor immune 
response is closely associated with mitogen-activated 
protein kinase (MAPK) and antigen processing and pre-
sentation, which are the most critical pathways (Fig. 1C).

Fig. 1 Different expression and function analysis of immune-related 
genes: (A) Different expression heatmap of 555 immune-related genes in 
normal and tumor tissues. (B) Go analysis indicated that these immune-
related genes are mainly related to immune cell proliferation, cytokine re-
sponse and immune cell migration. (C) KEGG analysis indicated that the 
signaling pathway includes cytokine receptor interaction, MAPK pathway 
and antigen processing and presentation
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WGCNA was performed to identify the co-expressed 
gene modules among the 555 DEIRGs, and to investi-
gate the association between genes and HCC. The results 
obtained from WGCNA show that the genes in the blue 
module are closely related to the occurrence of HCC 
(R = 0.66, p-value = 2e-43) (Fig.  2A). Therefore, 58 genes 
from the blue module were selected for further study.

Univariate Cox proportional hazard regression analy-
sis identified 13 genes that are closely associated with 
the prognosis of HCC (p-value < 0.05, Fig.  2B). LASSO 
regression prevents overfitting through variable selec-
tion and regularization, which helps to improve the 
accuracy of the model. After minimizing overfitting by 
LASSO regression, 4 genes were selected as hub IRGs of 
the model: MAPT, CCL14, GHR and CD5L. Therefore, 
IRGPI was derived by multiplying hub IRGs with the 
univariate COX regression coefficient as follows: IRGPI 
score = [expression of MAPT × 0.401232]. + [expression 
of CCL14 × -0.22304]. + [expression of GHR × -0.19147]. 
+ [expression of CD5L × -0.09349].

IRGPI predicts survival for HCC patients
According to the median IRGPI score, 374 HCC patients 
from the TCGA database were classified into IRGPI-low 
and IRGPI-high subgroups. Finally, a survival-progno-
sis model was established, using Kaplan-Meier (K-M) 
method. The K-M survival analysis of the model showed 
that the survival period of patients in the IRGPI-low 
group was significantly longer than that of the IRGPI-
high group, which implied a remarkable ability in dif-
ferentiating good or poor clinical outcomes among the 
two subgroups (Fig. 2C). Moreover, based on the 4 hub 
genes in the model, we divided patients into high and 
low-expression groups, followed by performing sur-
vival analysis. The results showed that patients with high 
expression of MAPT had a poor prognosis, while patients 
with high expression of the other three genes had a lon-
ger survival time. Consistent with the results of the above 
Univariate Cox regression analysis, the obtained results 
reveal that MAPT is a high-risk gene while the remaining 
genes are low-risk genes (Fig. 2D-G).

We further used univariate and multivariate indepen-
dent prognostic analyses to evaluate the predictive value 
of the prognostic model. All independent prognostic 
analysis results were consistent, which shows that the 
IRGPI can be independent of other clinical characteris-
tics as an independent prognostic factor (Fig. 2H, I).

IRGPI significantly related to the disease progression, TMB 
and driver gene mutations
The correlation analysis was performed via a chi-square 
test to explore the possible correlation between IRGPI 
and clinicopathologic factors. The results showed that 
patients in the IRGPI-high group have higher tumor 

Fig. 2 Construction of IRGPI: (A) Weighted Gene Co-expression Network 
Analysis (WGCNA) immune-related genes and their four modules based 
on their degree of co-expression. The number in the module indicates the 
correlation between the module genes, HCC, and the p-values. (B) Uni-
variate Cox proportional hazard regression analysis screens out the genes 
that have the greatest impact on the survival time of HCC and hazard ratio. 
(C) K-M curves for high and low IRGPI groups in the TCGA cohort. Log rank 
test, p < 0.001. (D) K-M curves for high and low MAPT expression groups in 
the TCGA cohort. Log rank test, p < 0.001. (E) K-M curves for high and low 
CCL14 expression groups in the TCGA cohort. Log rank test, p < 0.001. (F) 
K-M curves for high and low GHR expression groups in the TCGA cohort. 
Log rank test, p < 0.001. (G) K-M curves for high and low CD5L expression 
groups in the TCGA cohort. Log rank test, p < 0.001. (H, I) Univariate and 
multivariate independent prognostic analyses of IRGPI.
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pathological grades, which implied a higher degree of 
tumor malignancy (Fig.  3A). Furthermore, patients in 
the IRGPI-high group have higher clinical stages and a 
higher tumor infiltration area (Fig. 3B, C). This suggests 
that IRGPI-high patients had more aggressive tumors, 
faster tumorigenesis, and a poorer prognosis.

Herein, this study identified the 20 most often mutated 
genes as driver genes for HCC by studying the somatic 
structural variation of HCC. Moreover, the frequency 
of driver gene mutations in the IRGPI-high group was 
found to be significantly higher than that in the IRGPI-
low group, with a higher TMB (Fig. 3D, E).

IRGPI predicts tumor infiltrating immune cells and immune 
function in the microenvironment
Immune infiltrating cells is one of the important fac-
tors affecting immunotherapy. It is necessary to study 

the abundance and function of immune infiltrating cells 
between the two groups [17]. CIBERSORT was used to 
evaluate the relative proportion of 29 types of immune 
cells and immune function influencing the procedure 
of anti-tumor immune response in HCC. It is a useful 
tool for analyzing immune infiltrating cells in the tumor 
microenvironment. The results showed that the number 
of tumor-infiltrating cells in the IRGPI-low group was 
significantly greater than that of the IRGPI-high. Among 
the 14 immune infiltrating cells, patients in the IRGPI-
low group have a higher abundance of B cells, CD8+ T 
cells, mast cells, neutrophils, NK cells, and T helper cells, 
but the abundance of macrophages is lower. In terms of 
immune function, patients in the IRGPI-low group are 
more active than IRGPI-high group, such as cytolytic 
activity, inflammation-promoting, and response to inter-
feron (IFN) (Fig. 4A).

Fig. 3 Clinical features and drive gene mutation in IRGPI-low and IRGPI-high groups: (A-C) The relationship of IRGPI and clinical characteristics in HCC. (D) 
Twenty genes, mutation types and TMB with the highest mutation frequency in the IRGPI-high group. (E) Twenty genes, mutation types and TMB with 
the highest mutation frequency in the IRGPI-low group
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Herein, the survival of patients was analyzed based 
on immune cells. According to the obtained results, the 
effector cells in anti-tumor immune response such as B 
cells, CD8+ T cells, NK cells, T helper cells and TILs were 
associated with a good prognosis. Furthermore, mac-
rophages that can secrete immune negative regulatory 
factors to promote tumor cell immune escape predicted 
poor survival. (Fig. 4B-G) The underlined results are also 
supported by preliminary research [31–34]. Further-
more, the impact of immune function on the prognosis 
was analyzed which revealed that the pro-inflammatory 
factors that promote the activity of immune cells in the 
tumor microenvironment are related to a good prognosis 
(Fig. 4H-K).

The immunogenicity of more than 10,000 tumor sam-
ples of 33 cancers from TCGA has already been reported, 
calculating the correlation coefficients among 160 
immune characteristics. Furthermore, cluster analysis 
was performed to obtain the immune expression charac-
teristics of 5 core modules. According to these 5 immune 
expression characteristics, all non-hematological tumors 
in the TCGA database are clustered into 6 immune sub-
types: wound healing, IFN-γ dominant, inflammatory, 
lymphocyte depleted, immunologically quiet, and TGF-β 
dominant (C1-C6). The survival analysis of 6 immune 
subtypes revealed that C3 had the best prognosis, fol-
lowed by C1 and C2, and C4 and C6 had the worst prog-
nosis [35]. Matching the IRGPI group with the TCGA 
immune subtypes, we found that half of the patients in 
the low-IRGPI group belonged to the C3 with the best 
prognosis. Three-quarters of patients in the high-IRGPI 
group are C1, C2, or C4 with relatively poor prognoses 
(Fig. 5A).

IRGPI predicts responses of immunotherapy
To verify whether the score can accurately predict the 
patient’s response to ICIs, herein, the difference between 
traditional biomarkers and the TIDE score between the 
IRGPI-low group and the high were analyzed. The results 
showed that the TMB of the IRGPI-high group is greater 
than the IRGPI-low group. (Fig.  5B) Regarding the 
expression of immune checkpoint molecules, the expres-
sion of programmed cell death-ligand 1 (PD-L1, CD274) 
was considerably higher in the IRGPI-low group than in 
the IRGPI-high group. However, the expression of cyto-
toxic T-lymphocyte-associated protein 4 (CTLA-4) was 
the opposite (Fig. 5C, D).

Recent studies have revealed that tumors have two dif-
ferent immune escape mechanisms. Even when a sub-
stantial number of cytotoxic T lymphocytes infiltrate the 
microenvironment of certain cancers, their functions are 
vague under the influence of immunosuppressive mol-
ecules [36]. In some tumors, immune-negative regula-
tory cells and factors can eliminate T cells infiltrating the 

Fig. 4 The landscape of immune cell infiltration in the tumor microenvi-
ronment of HCC: (A) Differences in immune infiltrating cells and immune 
function in tumor microenvironment between IRGPI-high and low group. 
*, p < 0.05; **, p < 0.01; ***, p < 0.001. (B-G) K-M curves for high and low 
immune infiltrating cells in the TCGA cohort. (H-I) K-M curves for high and 
low immune function in the TCGA cohort
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tumor tissues and form a state of immune exclusion [37]. 
Therefore, the researchers have designed a new comput-
ing architecture: the TIDE score. It is also believed that 
TIDE score values can replace a single biomarker pre-
dicting the efficacy of ICIs [30]. Herein, TIDE scores were 
performed on all patients which revealed that patients 
in the IRGPI-high group had higher immune exclusion 
levels. (Fig. 5E) The finding indicated that fewer immune 
cells were infiltrating the tumor microenvironment, 
which was consistent with the outcomes of our analy-
sis of immune cells. However, patients in the IRGPI-low 
group are more in an immune dysfunction state. (Fig. 5F) 
Previous studies have shown that patients with immune 
exclusion are resistant to ICIs, and the treatment effect is 

not as good as that of immune dysfunction [38]. Further-
more, the TIDE score of the IRGPI-high group was sig-
nificantly higher than the IRGPI-low group, which means 
that the immunotherapy effect of the high-risk group is 
poor (Fig. 5G).

To further validate the accuracy of the model’s abil-
ity to predict the effect of immunotherapy, we analyzed 
three immunotherapy datasets. The IMvigor210 cohort 
contains 298 patients with urothelial cancer treated with 
PD-L1 blockers. Each patient was scored and assigned 
to IRGPI-high and low groups according to the median 
value. Patients with complete response (CR) and partial 
response (PR) were defined as a response, and patients 
with stable disease (SD) and progressive disease (PD) 
were defined as a non-response. Notably, the objective 
response rate (ORR) of the PD-L1 blocker was higher 
in the IRGPI-low than in the IRGPI-high group in the 
IMvigor210 cohort (chi-square test, P = 0.008), and the 
IRGPI of non-responders were significantly higher than 
responders (Wilcoxon, p-value < 0.001) (Fig.  6A-C). A 
similar outcome was observed in the GSE78220 and 
GSE67501 cohort, which contains 39 patients with mela-
noma and non-small cell lung cancer (NSCLC) treated 
with PD-1 therapy (chi-square test, P = 0.043) (Fig.  6D-
F). Taken together, the IRGPI can effectively predict the 
response to ICIs.

Clinical verification
Immunostaining on the HCC cohort further confirmed 
that CD8+ T cells were more abundant in IRGPI-low 
group, while the tumor microenvironment of IRGPI-
high group presents a scene of immune desert (Fig. 7A, 
B). Statistical analysis of the number of CD8+ T cells 
showed that the proportion of CD8+ T cells in the IRGPI-
low group was significantly increased than that in the 
IRGPI-high group (Fig. 7C). The results of survival analy-
sis showed that the survival time of IRGPI-low group 
was longer that IRGPI-high group (Fig.  7D). Together, 
these results indicate that IRGPI-low group has a unique 
immune ecosystem, with increased CD8+ T cells. This 
is one reason why patients in the IRGPI-low group 
responded better to ICIs.

Discussion
With major advances in immunotherapy for progres-
sive solid tumors in recent years, clinical investigators 
have conducted numerous explorations in HCC. Rang-
ing from KEYNOTE-524 and IMbrave-150, the indica-
tions of immunotherapy in HCC have been broadened 
from second/third-line treatment to first-line [8, 39]. 
Consequently, the rapid development of immunotherapy 
will potentially transform HCC into a chronic condition 
with a long-life expectancy. However, a significant limi-
tation of immunotherapy in HCC is that only a minority 

Fig. 5 The correlation between the IRGPI and immune subtype, im-
mune checkpoint and immune escape: (A) The distribution of patients 
in IRGPI-high and low groups in different TCGA immunotypes. C1:wound 
healing; C2: IFN-γ dominant; C3: inflammatory; C4: lymphocyte depleted. 
chi-square test, p < 0.001. (B) TMB difference in the IRGPI-high and low 
subgroups. Wilcoxon test, p = 0.038. (C) PD-L1 (CD274) expression differ-
ence in the IRGPI-high and low subgroups. Wilcoxon test, p < 0.001. (D) 
CTLA-4 expression difference in the IRGPI-high and low subgroups. Wil-
coxon test, p = 0.013. (E) Immune exclusion score in the IRGPI-high and 
low subgroups. Wilcoxon test, p < 0.001. (F) Immune dysfunction score in 
the IRGPI-high and low subgroups. Wilcoxon test, p < 0.001. (G) TIDE score 
in the IRGPI-high and low subgroups. Wilcoxon test, p < 0.001
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of patients have benefitted from it. Even the Society for 
Immunotherapy of Cancer (SITC), who published the 
first clinical practice guideline on immunotherapy for the 
treatment of HCC, has emphasized that suitable patients 
for immunotherapy should be identified [40]. Immune-
related genes have been confirmed to play an important 
role in tumorigenesis and tumor microenvironment for-
mation [41]. For HCC, the influence of immune-related 
genes on prognosis and response to immunotherapy is 

Fig. 7 Two different tumor microenvironment of CD8+T cells infiltrated 
in IRGPI-high and IRGPI-low: (A, B) Representative multiplex immunofluo-
rescence images to show the distribution of CD8 + T cells in IRGPI-low and 
IRGPI-high, respectively: MAPT (green), GHR (red), CD5L (yellow), CCL14 
(orange), CD8 (white) and DAPI (blue). Scale bar, 50 μm. (C) Statistical 
graphs to show the proportion of CD8 + T cells between IRGPI-low and 
IRGPI-high groups. p = 0.0328; Wilcoxon test. (D) K-M curves for IRGPI-high 
and low in the hospital cohort. p = 0.025

 

Fig. 6 The role of IRGPI in the prediction of ICIs benefits: (A) The response 
of IRGPI-high and IRGPI-low urothelial carcinoma patients to PD-L1 inhibi-
tors. chi-square test, p = 0.008. (B) The proportion of patients in IRGPI-high 
and low groups who responded to PD-L1 inhibitors. (C) IRGPI of patients 
in the PD-L1 inhibitor response and non-response group. Wilcoxon test, 
p < 0.0001. (D) The response of patients with melanoma and NSCLC in the 
IRGPI-high and low group to PD-1 inhibitors. chi-square test, p = 0.043. (E) 
The proportion of patients in IRGPI-high and low groups who responded 
to PD-1 inhibitors. (F) IRGPI of patients in the PD-1 inhibitor response and 
non-response group. Wilcoxon test, p < 0.0001
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worth exploring. In this study, we used a bioinformatic 
methodology to establish a prognostic model: IRGPI. 
The outcome of our subsequent analysis revealed that the 
IRGPI is a potential biomarker in assessing the prognosis 
and response to immunotherapy in HCC.

As compared to other tissues, liver tissue expresses 
GHR abundantly. In the liver, GHR downregulation may 
interfere with the GH signaling pathway. Study found 
that the expression of GHR and CDKN1A, one of the 
key inhibitors of cell cycle, were significantly down-
regulated in hepatocellular carcinoma [42]. Further-
more, GH-mediated STAT5 prevent cell proliferation by 
activating CDKN1A and CDKN2B transcription [43]. 
CD5L, also know as apoptosis inhibitor of macrophages 
(AIM), has been observed to be down-regulated in HCC 
and associated with poor prognosis [44]. CD5L can pro-
mote the cell death of HCC through complement activa-
tion [45]. CCL14 inhibits the proliferation and promotes 
apoptosis of HCC by modulating the activation of Wnt 
/ β-catenin pathway [46]. Microtubule-associated pro-
tein tau (MAPT), play a key role in tubulin assembly and 
microtubule stabilization,[47]. MAPT is overexpressed in 
a variety of tumor cells, including HCC, which promotes 
tumor cell proliferation and metastasis and induces 
tumor cell resistance to paclitaxel [48–50].

According to the IRGPI, HCC patients was catego-
rized into distinct subtypes. Compared with the IRGPI-
high group, the IRGPI-low group has lower pathological 
grade, clinical stage and longer survival time. The fre-
quency of driver gene mutations such as TP53, CTNNB1 
and LRP1B in the IRGPI-high group was found to be sig-
nificantly higher than that in the IRGPI-low group. Pre-
vious study indicated that TP53 or LRP1B mutations are 
associated with higher TMB and worse survival in HCC 
[51]. CTNNB1 mutation-associated aldolase A (ALDOA) 
phosphorylation promotes HCC cell proliferation, which 
can be mutually verified with the results of our survival 
analysis [52].

Conventional biomarkers for predicting the efficacy 
of immunotherapy such as PD-L1 expression, TMB, 
and MSI usually focus on the expression of tumor cell 
immunosuppressive molecules and the formation of 
neoantigens. The effectiveness of immunotherapy needs 
the support from the immune system, which leads 
to insufficient accuracy of traditional biomarkers. In 
HCC, tumoral PD-L1 expression was not predictive 
for response to nivolumab or pembrolizumab [53, 54]. 
HCC is usually accompanied by low TMB, and TMB as 
a biomarker to predict response to immunotherapy in 
HCC is not supported by available data [55]. Similarly, 
the prevalence of MSI-high status is rare in HCC [56]. 
Notably, high TMB is not necessary associated with bet-
ter response to ICIs. One reason is that a large number 
of passenger mutations in the genome cannot produce 

tumor-specific antigen peptides that can be recognized 
by the immune system. A study found that of the 75,179 
unique neoantigens were identified in tumor cells, only 
28 (0.04%) occurred in patients who were benefited from 
ICIs [57].These findings indicated that most neoantigens 
correlated with immunotherapy benefit are patient spe-
cific. In addition, neoantigens needs to be processed and 
presented by antigen presenting cells (APC) to effectively 
activate CD8+ T cells, which indicates that the number 
and function of infiltrating immune cells in tumor micro-
environment are more important for the effectiveness of 
immunotherapy [58]. As a result, the efficacy prediction 
of immunotherapy must be considered from multiple 
perspectives. Whether there are sufficient quantity and 
quality of immune cells in the tumor microenvironment 
to produce a killing effect on the tumor is more impor-
tant. Herein, we used R packages “CIBERSORT” and 
“ESTIMATE” to systematically analyze the immune infil-
trating cells and immune function in the tumor microen-
vironment. In addition, we also evaluated the expression 
of immune checkpoint molecules between different 
groups. The results showed that two groups had differ-
ent immune landscapes. The immune microenvironment 
in the IRGPI-low group has sufficient immune cell infil-
tration and is inflammation-promoting, which is condu-
cive to the progress of the anti-tumor immune response. 
According to a synergistic analysis with immunosuppres-
sive molecules, tumor cells of IRGPI-low group typically 
exhibit a high level of PD-L1. This implies that immune 
cells in the tumor microenvironment are functionally 
suppressed, and ICIs can effectively awaken immune 
effector cells to kill tumors.

In the IRGPI-high group, the abundance of immune 
infiltrating cells in the tumor microenvironment is low 
and the expression of CTLA-4 is increased. CTLA-4 is an 
inhibitory receptor constitutively expressed by regulatory 
T cells (Tregs) that suppresses effector T cell prolifera-
tion, activation and migration [59]. Due to the structural 
similarity, CTLA-4 can competitively bind ligand with 
CD28, thus inhibiting the transmission of T cell activa-
tion signal. In addition, CTLA-4 can also interfere with 
signal transduction of TCR/CD3 through dephosphory-
lation [60]. Blockage of activation signal transduction 
leads to the reduction of T cell proliferation and cytokine 
secretion, which leads to T cell inactivation and inability 
to maintain anti-tumor activity. [61]. CTLA-4 can also 
reduce the adhesion ability of T cells by down-regulat-
ing the expression of adhesionmolecules, making T cells 
more difficult to infiltrate into the tumor microenviron-
ment [62]. IRGPI-high patients are usually accompanied 
by higher frequency of CTNNB1 mutation. CTNNB1 
mutation can significantly reduce the number of acti-
vated immune cells and secretion of immune-stimulating 
molecules in HCC. In contrast, the number of M2-type 
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macrophages and active immunological depletion path-
ways increased significantly with CTNNB1-mutant [63]. 
These findings may help explain why IRGPI-high patients 
have higher immune exclusion scores and are insensitive 
to immunotherapy. Instead of blindly employing ICIs in 
IRGPI-high patients, increasing the number of immune 
infiltrating cells in the tumor microenvironment should 
be emphasized. Therefore, patients in the IRGPI-high 
group may require pretreatment with other treatments to 
transform cold tumors into hot tumors before using ICIs. 
Radiotherapy and anti-angiogenesis therapy can increase 
the number of immune cells by destroying the immune 
barrier and reshaping the tumor microenvironment [64]. 
The complementary effects of the two immunological 
up-regulated pathways (CTLA-4 and PD-1/PD-L1) may 
result in a synergistic impact when different ICIs are 
combined. The multi-ICIs or the combination of ICIs 
and other therapies has become a novel strategy to treat 
HCC [65]. The IRGPI-high group has high expression 
of CTLA-4 and a small number of CD8 + T cells in the 
tumor microenvironment, which may be an indication 
for a combination of anti-PD-1/PD-L1 and anti-CTLA-4. 
Currently, several clinical trials combining PD-1 and 
CTLA-4 inhibitors have shown promising results, sug-
gesting a novel strategy for overcoming the ineffective-
ness of single ICIs [66, 67].

There are certain limitations of this study. Because 
there is no dataset on immunotherapy for HCC, the 
model to predict response to immunotherapy can only be 
verified by other types of tumors. This method is mainly 
based on the special pharmacological effect of immuno-
therapy. The mechanism of immunotherapy is to restore 
the anti-tumor activity of the immune system sup-
pressed by immune checkpoint. The anti-tumor activ-
ity is non-specific, which is why immunotherapy have a 
broad-spectrum therapeutic effect. Although the tumor 
type and microenvironment are not the same, atezoli-
zumab has been approved for the treatment of urothe-
lial carcinoma and HCC. The finding of the investigation 
demands clinical trial-based verification in a larger HCC 
cohort receiving immunotherapy.

In summary, we comprehensively analyzed the 
immune-related genes of HCC, providing a clear picture 
of immune landscape in HCC. The difference in immune-
related gene patterns was found to be correlated to tumor 
heterogeneity and microenvironment complexity. Thus, 
our systematic analysis of immune-related gene pattern 
has crucial clinical implications. In addition, IRGPI can 
facilitate the identification of potential candidates for 
immunotherapy.

Conclusion
In this study, we established a prognostic model based on 
immune-related genes. This model can predict the prog-
nosis of patients with HCC, and more importantly, can 
examine the response to ICIs. In addition, we also ana-
lyzed the influence of IRGPI on immune infiltrating cells 
in the tumor microenvironment and the association with 
other biomarkers. Hence, IRGPI can be as a potential 
biomarker to help clinicians better identify HCC patients 
who could benefit from immunotherapy.
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