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Abstract 

Background The origin recognition complex (ORC), a six-subunit DNA-binding complex, participates in DNA replica-
tion in cancer cells. Specifically in prostate cancers, ORC participates the androgen receptor (AR) regulated genomic 
amplification and tumor proliferation throughout the entire cell cycle. Of note, ORC6, the smallest subunit of ORC, has 
been reported to be dysregulated in some types of cancers (including prostate cancer), however, its prognostic and 
immunological significances remain yet to be elucidated.

Methods In the current study, we comprehensively investigated the potential prognostic and immunological role 
of ORC6 in 33 human tumors using multiple databases, such as TCGA, Genotype-Tissue Expression, CCLE, UCSC Xena, 
cBioPortal, Human Protein Atlas, GeneCards, STRING, MSigDB, TISIDB, and TIMER2 databases.

Results ORC6 expression was significantly upregulated in 29 types of cancers compared to the corresponding 
normal adjacent tissues. ORC6 overexpression correlated with higher stage and worse prognostic outcomes in most 
cancer types analyzed. Additionally, ORC6 was involved in the cell cycle pathway, DNA replication, and mismatch 
repair pathways in most tumor types. A negative correlation was observed between the tumor endothelial cell infiltra-
tion and ORC6 expression in almost all tumors, whereas the immune infiltration of T regulatory cell was noted to be 
statistically positively correlated with the expression of ORC6 in prostate cancer tissues. Furthermore, in most tumor 
types, immunosuppression-related genes, especially TGFBR1 and PD-L1 (CD274), exhibited a specific correlation with 
the expression of ORC6.

Conclusions This comprehensive pan-cancer analysis revealed that ORC6 expression serves as a prognostic bio-
marker and that ORC6 is involved in the regulation of various biological pathways, the tumor microenvironment, and 
the immunosuppression status in several human cancers, suggesting its potential diagnostic, prognostic, and thera-
peutic value in pan-cancer, especially in prostate adenocarcinoma.
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Introduction
The origin recognition complex (ORC) is a six-subu-
nit DNA-binding complex crucial for the initiation of 
DNA replication in eukaryotes, as its binding to origin 
sequences triggers the replication process [1]. ORC6 is 
the smallest subunit of the ORC. Interestingly, ORC6 can 
bind to DNA independently in human cells, indicating its 
ORC-independent functions [2, 3]. ORC6 is involved in 
the tumorigenic process of a limited number of cancer 
types [4–7]. In colorectal cancer, the ORC6 expression is 
upregulated, while a lower ORC6 expression correlates 
with a favorable long-term cancer prognosis, indicat-
ing that ORC6 may act as an oncogene in the early stage 
but exert the suppressor effects in the advanced stage [4]. 
Furthermore, it has been reported that decreased ORC6 
expression may sensitize colon cancer cells to 5-Fluo-
rouracil and cisplatin [6]. In hepatocellular carcinoma, 
it has been demonstrated that ORC6 may promote the 
tumor proliferation, migration, and invasion [5].

In prostate cancers, androgen receptor (AR) overex-
pression allows the cancer cells to advance to androgen 
castration stages. Prostate cancer cells with AR ampli-
fication can endure with androgen deprivation thera-
pies, progressing to castration resistant prostate cancer 
(CRPC) [8]. Accumulative evidence have showed that, 
during early G1-phase of the cell cycle, nuclear AR in 
metastatic CRPC (mCRPC) cells binds to DNA at origins 
of replication sites (part of the ORC) needed for licens-
ing DNA replication in the S-phase [9, 10]. Also, AR, as 
a licensing factor, remains to be associated with the ORC 
during the entire cell cycle progression until the late 
mitosis phase before its degradation, which allows again 
relicensing to occur in the next cell cycle [9]. Specifically, 
ORC6 may also participate in the tumorigenesis, while 
the detailed function is unclear [11].

Owing to the development of bioinformatic tools, the 
identification and characterization of novel pan-cancer 
genes through several public databases, including The 
Cancer Genome Atlas (TCGA) and Genotype-Tissue 
Expression (GTEx), become efficient methods to iden-
tify new potential drug targets [12–15]. In the current 
study, we planned to use multiple databases to clarify 
the landscape of ORC6 status in 33 most common types 
of cancer and to perform a comprehensive analysis of 
the influence of ORC6 on prognosis across these cancer 
types. The relationships between the ORC6 expression 
and tumor clinical stage, prognostic significance, biologi-
cal pathways, tumor mutational burden (TMB), micros-
atellite instability (MSI), expression level of genes related 
to mismatch repair (MMR), immune subtype, tumor 
immune cell infiltration, and immune checkpoint genes 
in diverse cancers (especially prostate cancer) were also 
investigated.

Materials and methods
ORC6 mRNA expression levels in pan‑cancer
We obtained the ORC6 mRNA expression levels and 
clinical data of TCGA and GTEx cohorts from the 
UCSC Xena database (https:// xenab rowser. net/ datap 
ages/). p-values < 0.05 (two-tailed) were regarded as sta-
tistically significant (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and 
∗∗∗∗p < 0.0001). Then, we downloaded the ORC6 mRNA 
expression data for diverse cancer cell lines from the 
Cancer Cell Line Encyclopedia (CCLE) database (https:// 
porta ls. broad insti tute. org/ ccle/ data) and the DNA copy 
number and methylation information from the cBioPor-
tal database (https:// www. cbiop ortal. org/).

Immunohistochemical (IHC) staining and subcellular 
localization of ORC6 
We further evaluated the ORC6 protein levels based 
on the IHC staining data provide by the Human Pro-
tein Atlas (HPA) database (https:// www. prote inatl as. 
org/). Subcellular localization of ORC6 was observed in 
the GeneCards database (https:// www. genec ards. org/). 
The data from the STRING database (https:// string- db. 
org/) was built for the protein–protein interaction (PPI) 
network.

Prognostic value of ORC6
In order to explore the association between ORC6 
expression and prognostic information, Kaplan–Meier 
analysis of the TCGA datasets was performed. Four sur-
vival indicators, including the overall survival (OS), dis-
ease-specific survival (DSS), disease-free interval (DFI), 
and progression-free interval (PFI), were enrolled in the 
analysis. We set up univariate Cox regression analyses 
to evaluate the prognostic significance of ORC6 in pre-
dicting these four survival indicators in these 33 types of 
cancers. The results of the regression analyses are shown 
using a forest plot.

Correlation between ORC6 expression and TMB, MSI, 
and MMR gene expression
The TMB analysis was conducted with the R package 
(edgeR) using the human pan-cancer somatic data (MAF 
data) from TCGA database. The MSI score was used as 
per a published study [16]. Both TMB and MSI were cal-
culated using the Pearson’s method. The “Gene_Corr” 
module of TIMER2 was utilized to analyze MMR gene 
expression levels in the TCGA database. Five important 
MMR genes, including MutL protein homolog 1 (MLH1), 
MutS protein homolog 2 (MSH2), MutS homologue 6 
(MSH6), epithelial cell adhesion molecular (EPCAM), 
and PMS1 homolog 2 (PMS2) were selected for the cor-
relation analysis. The correlation degree was calculated 
with purity-adjusted Spearman and plotted in a heatmap.

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://portals.broadinstitute.org/ccle/data
https://portals.broadinstitute.org/ccle/data
https://www.cbioportal.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.genecards.org/
https://string-db.org/
https://string-db.org/
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Functional enrichment analysis of ORC6 across cancers 
First, we used the data from the TCGA database to 
explore the potential biological and molecular functions 
of ORC6 via both the Gene Set Enrichment Analysis 
(GSEA) and Gene Set Variation Analysis (GSVA). The 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway database was selected for GSEA enrichment 
analyses with the R package “clusterProfiler” [17–20]. 
Then, we screened and demonstrated the top 20 most 
significant positive correlated pathways. In addition, we 
performed the GSVA with the R package “GSVA” using 
hallmark pathways from the MSigDB database (https:// 
www. gsea- msigdb. org/ gsea/ msigdb/ index. jsp).

Immune association analysis of ORC6 
The ORC6 expression stratified by the immune subtypes 
across cancers was investigated in the TISIDB data-
base (http:// cis. hku. hk/ TISIDB/). The influence of ORC6 
expression on immune cell infiltration was analyzed using 
the datasets from the TIMER2 database (http:// timer. cistr 
ome. org/). Cancer-associated fibroblasts, tumor endothe-
lial cells, T regulatory (Treg) cells, and  CD8+ T cells were 
selected for detailed analysis. The EPIC, MCP-counter, 
xCELL, CIBERSORT, CIBERSORT-ABS, quanTIseq, and 
TIMER algorithms were utilized to evaluate endemic 
tumor cell types in TCGA. The Spearman correlation anal-
ysis between the ORC6 expression and immune check-
point-associated genes was conducted using the TCGA 
pan-cancer data and visualized using a heatmap.

IHC analysis of ORC6, FOXP3 and CD4 expressions 
in prostate cancer
A total of 19 formalin-fixed and paraffin-embedded 
prostate adenocarcinoma tumor tissue samples were 
rehydrated and incubated with the anti-ORC6 (1:400; 
Genetex, USA), anti-FOXP3 (1:400; Genetex, USA), 
and anti-CD4 (1:400; Thermo Fisher Scientific, USA) 
antibodies in a humid box at 4  °C. Three representa-
tive 500 × 430 µm areas with more than 50% tumor cell 
and more than 30 CD4 + cells were enrolled for stain-
ing analysis. The expression level of ORC6 was evalu-
ated based on the tissue immunostaining score (TIS), 
which was defined as the product of the intensity score 
(IS) and quantity score (QS) (i.e., TIS = IS × QS). The 
positive staining of ORC6 in tumor cells and FOXP3 in 
CD4 + cells was regarded as the staining percentage. 
The staining percentage scores and the staining inten-
sity scores were calculated as previously published [21]. 
For the FOXP3 and CD4, positive staining cells were 
counted for the Treg and CD4 + T cells. Mann–Whitney 
U test was applied to calculate the relationship between 
the ORC6 expression and Treg and CD4 + T cell number 

with the GraphPad Prism 8 (GraphPad Software, USA). 
All p-values < 0.05 (two-tailed) were regarded as statis-
tically significant, and denoted as ∗ p < 0.05, ∗  ∗ p < 0.01
, ∗  ∗  ∗ p < 0.001, and ∗  ∗  ∗  ∗ p < 0.0001, respectively. We 
obtained written informed consent from all patients and 
implemented all procedures under the Declaration of 
Helsinki.

Results
ORC6 mRNA expression in pan‑cancer
We first investigated the ORC6 status in pan-cancer 
by analyzing the available data from TCGA, encom-
passing 33 most common types of cancers, including 
BLCA, CESE, and DLBC (Table 1). The increased ORC6 

Table 1 Abbreviations of 33 cancer types

Cancer name Abbreviations

Adrenocortical carcinoma ACC 

Bladder urothelial carcinoma BLCA

Breast invasive carcinoma BRCA 

Cervical squamous cell carcinoma CESC

Cholangiocarcinoma CHOL

Colon adenocarcinoma COAD

Lymphoid neoplasm diffuse large B-cell lymphoma DLBC

Esophageal carcinoma ESCA

Glioblastoma GBM

Head and neck squamous cell carcinoma HNSC

Kidney chromophobe KICH

Kidney renal clear cell carcinoma KIRC

Kidney renal papillary cell carcinoma KIRP

Acute myeloid leukemia LAML

Brain lower grade glioma LGG

Liver hepatocellular carcinoma LIHC

Lung adenocarcinoma LUAD

Lung squamous cell carcinoma LUSC

Mesothelioma MESO

Ovarian serous cystadenocarcinoma OV

Pancreatic adenocarcinoma PAAD

Pheochromocytoma and paraganglioma PCPG

Prostate adenocarcinoma PRAD

Rectum adenocarcinoma READ

Sarcoma SARC 

Skin cutaneous melanoma SKCM

Stomach adenocarcinoma STAD

Testicular germ cell tumors TGCT 

Thyroid carcinoma THCA

Thymoma THYM

Uterine corpus endometrial carcinoma UCEC

Uterine carcinosarcoma UCS

Uveal melanoma UVM

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://cis.hku.hk/TISIDB/
http://timer.cistrome.org/
http://timer.cistrome.org/
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expression was observed in 29 types of cancers, including 
BLCA, CESE, and PRAD, compared to the corresponding 
normal adjacent tissues while decreased ORC6 expres-
sion was observed only in LAML (Fig. 1A). The highest 
ORC6 expression levels were found in TGCT, CESC, and 
UCS (Fig. 1B). According to the ORC6 expression levels 
in normal human tissues based on the GTEx database, 
ORC6 was mainly expressed in the bone marrow, testis, 
and spleen (Fig. 1C). According to the information about 
distinct cell lines extracted from the CCLE database, the 
highest ORC6 expression levels were found in ALL (acute 
lymphoblastic leukemia), normal breast (NB), and DLBC 
cells (Fig.  1D). Further analysis of TCGA data revealed 
that ORC6 expression was significantly increased in 
tumor tissues versus adjacent normal tissues in 18 types 
of cancers, including BLCA, BRCA, and PRAD (Supple-
mentary Fig. 1). Further comparison of the ORC6 expres-
sion according to the TCGA database revealed that ORC6 
expression was significantly increased in higher-stage 
tumor tissues than in lower-stage tumor tissues in 11 
types of cancers, including ACC, KICH, and LUAD; how-
ever, it was decreased in OV and SKCM tissues (Fig. 2).

Genetic alterations of ORC6 in pan‑cancer
Genetic alterations in ORC6 were investigated in the 
cBioPortal database. Patients with PRAD and SARC 
harboured a high frequency of gene alterations, among 
which gene amplification was most commonly observed 
(Supplementary Fig. 2A). Additionally, the ORC6 mRNA 
expression level was positively correlated with copy num-
ber alteration (CNA) in 21 types of cancers, including 
BRCA, PRAD, and UCS (Supplementary Fig. 2B). More-
over, the DNA methylation level of the ORC6 promoter 
was negatively correlated with ORC6 mRNA expression 
level in DLBC, ESCA, PCPG, PRAD, TGCT, THCA, and 
UCS (Supplementary Fig. 2C).

Protein expression level and subcellular localization 
of ORC6
Data regarding ORC6 protein levels in various tumors 
and normal tissues were obtained from the HPA data-
base (Supplementary Fig. 3). The ORC6 protein level was 
highest in head and neck cancer and testis cancer but 
lowest in renal cancer (Supplementary Fig.  3A). In nor-
mal tissues, the ORC6 was overexpressed in the bone 

Fig. 1 Pan-cancer ORC6 mRNA expression level. A ORC6 mRNA expression across cancers. B Mean ORC6 mRNA expression level in tumor tissues 
from TCGA database. C Mean ORC6 expression in normal tissues from GTEx database. D Mean ORC6 mRNA expression in tumor cell lines from the 
Cancer Cell Line Encyclopedia database (CCLE) database. *p < 0.05, **p < 0.01, ****p < 0.0001, ns: not significant
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Fig. 2 ORC6 mRNA expression level in diverse tumor stages. A–Z ORC6 mRNA expression level in diverse stages of indicated tumor types from 
TCGA database. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: not significant
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Fig. 3 Overall survival (OS) Analysis dependent on ORC6 expression. A–T Kaplan–Meier curves of OS in diverse types of cancers from TCGA 
database. Statistically non-significant results are not shown
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marrow, lymph node, stomach, duodenum, tonsil, colon, 
pancreas, and testis (Supplementary Fig.  3B). Typi-
cal IHC staining figures of ORC6 in 17 pairs of tumors 
(including BLCA, BRCA, and PRAD) and corresponding 
normal tissues were shown in Supplementary Fig. 4. Tis-
sues of normal bladder, breast, cervix, colon, oral tissue, 
kidney, cerebral cortex, liver, lung, ovary, pancreas, pros-
tate, rectum, stomach, testis, thyroid, and endometrium 
had negative or moderate ORC6 IHC staining, while the 
corresponding tumor tissues had moderate or strong 
staining. These results were consistent with the results of 
ORC6 mRNA expression data from the TCGA database. 
The ORC6 was mainly located in the nucleus (Supple-
mentary Fig.  3C). Additionally, the PPI network analy-
sis using the tool STRING identified that ORC6 closely 
interacted with ORC1-5, CDT1, CDC6, MCM4, MCM5, 
and MCM7 (Supplementary Fig. 3D).

Prognostic significance of ORC6 in pan‑cancer 
Subsequently, we estimated the survival indicators, 
including OS, DSS, DFI, and PFI. The OS analysis dem-
onstrated that ORC6 expression level was as an unfavora-
ble indicator for patients with 18 types of cancers (e.g., 
KIRC, KIRP and PRAD), and a protective marker only for 
patients with OV and THYM (Fig. 3). Higher expression 
of ORC6 was significantly associated with worse progno-
sis in DSS for patients with 17 types of cancers (e.g., ACC, 
LGG and PRAD), while lower expression of ORC6 was 
only negatively correlated with the prognosis of COAD, 
OV, and THYM (Supplementary Fig.  5). According to 
DFI analysis, ORC6 high expression level was as an unfa-
vorable indicator for patients with BRCA, COAD, KIRP, 
LIHC, LUAD, PAAD, PRAD, SARC, and THCA, and a 
protective marker for patients with OV (Supplementary 
Fig.  6). Finally, according to PFI analysis, ORC6 high 
expression level acted as an unfavorable indicator for 
patients with 23 types of cancers (e.g., KIRP, LIHC and 
PRAD), and as a protective marker only in patients with 
GBM, OV, STAD, and THYM (Supplementary Fig. 7).

To further explore the influence of ORC6 on OS, the 
univariate Cox regression analysis was performed. The 
results indicated that high ORC6 expression level was 
simultaneously associated with low OS and DSS in 13 
types of cancers (e.g., KIRC, KIRP and PRAD), while low 
ORC6 expression was associated with low OS and DSS in 
patients with OV (Fig. 4A-B). Based on DFI analysis, high 
ORC6 expression was as an unfavorable indicator for 

patients with BRCA, KIRP, LIHC, PAAD, PRAD, SARC, 
and THCA, but a protective marker in OV (Fig.  4C). 
Finally, the high expression level of ORC6 was associated 
with a decreased PFI in 13 types of cancers, including 
KIRP, LIHC, and PRAD (Fig. 4D). In summary, ORC6 sig-
nificantly influenced all survival metrics of only five types 
of cancers (i.e., BRCA, KIRP, LIHC, PAAD, and PRAD).

Evaluation of ORC6 expression and TMB, MSI, and MMR 
genes expression 
ORC6 expression level was positively correlated with 
TMB in 10 types of cancers, including LUAD, PRAD and 
STAD (Fig.  5A). Additionally, it was significantly posi-
tively correlated with MSI in 10 types of cancers, includ-
ing PRAD, SARC and STAD, but negatively correlated 
with MSI in DLBC (Fig.  5B). Five MMR gene expres-
sion levels were significantly positively correlated with 
ORC6 expression level in most cancers analyzed (e.g., 
MLH1: 65.6%; MSH2: 96.9%; MSH6: 90.6%; PMS2: 71.9%; 
EPCAM: 62.5%) (Fig. 5C).

GSEA and GSVA of ORC6 
The potential biological pathways associated with ORC6 
was predicted through the KEGG pathway analysis, and 
the top 20 pathways are shown in Fig. 6 and Supplemen-
tary Fig.  8. The high ORC6 expression was significantly 
associated with the cell cycle and DNA replication related 
pathways (Fig. 6 and Supplementary Fig. 8). It is notewor-
thy that ORC6 was also involved in the MMR pathway in 
14 types of cancers, including ESCA, GBM and PRAD 
(Fig. 6). These results indicate a potential role of ORC6 in 
adjusting the tumor microenvironment. The GSVA score 
revealed that ORC6 was positively correlated with some 
cell proliferation pathways (e.g., G2M checkpoint, E2F tar-
gets and MYC targets v1–2), “DNA Repair” pathway and 
“unfolded protein response” pathway in almost all cancers 
(Fig.  7). These pathways have been identified to be cor-
related with the advanced stage of cancers and may ben-
efit from immunotherapy [22, 23]. In addition, ORC6 was 
negatively correlated with several immune pathways (e.g., 
IL2-STAT5 signaling, inflammatory response and IL6-
JAK-STAT3 signaling) in the majority of cancers (Fig. 7).

Correlations of ORC6 expression with immune 
characteristics
Six immune subtypes (e.g., C1: wound healing; C2: IFN-γ 
dominant; C3: inflammatory; C4: lymphocyte depleted; 

Fig. 4 Univariate Cox regression analysis of ORC6. A Forest plot demonstrated the hazard ratios of OS correlated with ORC6 expression in diverse 
types of cancers from TCGA database. B Forest plot demonstrated the hazard ratios of DSS correlated with ORC6 expression in diverse types of 
cancers from TCGA database. C Forest plot demonstrated the hazard ratios of DFI correlated with ORC6 expression in diverse types of cancers 
from TCGA database. D Forest plot demonstrated the hazard ratios of PFI correlated with ORC6 expression in diverse types of cancers from TCGA 
database. The red frame highlights the significant results

(See figure on next page.)
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Fig. 4 (See legend on previous page.)



Page 9 of 16Lin et al. BMC Cancer          (2023) 23:285  

C5: immunologically quiet; C6: TGF-β-dominant) pre-
sented significantly different ORC6 expression levels in 
15 types of cancers, including BRCA, LIHC, LUAD and 
PRAD (Supplementary Fig.  9). No differences in ORC6 
expression levels in immune cells were observed in the 
other types of cancers.

According to the TCGA database, the ORC6 expres-
sion level was inversely related to the infiltration level 
of cancer-related fibroblasts in seven types of cancers, 
including BRCA, LUSC, STAD, and TGCT (Fig.  8A). 

In contrast, a negative correlation was found in KICH 
(Fig. 8A). Additionally, ORC6 expression level was nega-
tively correlated with tumor endothelial cell infiltration in 
11 types of cancers, including ESCA, KIRC, LUAD, LUSC 
and STAD, while a positive correlation was observed in 
LGG (Fig.  8B). Furthermore, a negative correlation was 
detected between ORC6 expression level and Treg cell 
infiltration in ESCA and LUSC, whereas a positive corre-
lation was observed in PRAD (Fig. 8C). Finally, a positive 
correlation was found between ORC6 expression level 

Fig. 5 Tumor mutation burden (TMB) and microsatellite instability (MSI) analysis of ORC6 expression level across cancers. A TMB analysis of ORC6 
expression level in 33 TCGA tumor types. B MSI analysis of ORC6 expression in 33 TCGA tumor types. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
C Correlation between five MMR gene expression with ORC6 expression level in various tumor types
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and CD8 + T cell infiltration in KIRC and UVM (Fig. 8D). 
Furthermore, to validate the correlation between ORC6 
expression and Treg cell infiltration, IHC staining of 
FOXP3, which serves as a lineage specification factor 
of Treg cells, was performed in tumor samples from 19 
patients with prostate adenocarcinoma. Since the median 
TIS of ORC6 was 6, we stratified the patients into ORC6 

TIS ≤ 6 group and TIS > 6 group. The number of Treg in 
ORC6 TIS > 6 group is more than that of ORC6 TIS ≤ 6 
group (mean 7.43 vs 5.47, p = 0.021, Fig. 8E), while there 
is no difference of CD4 + T cell numbers between the 
two groups (mean 51.57 vs 50.69, p = 0.757, Fig. 8F). Of 
note, the FOXP3 + /CD4 + ratio was also higher in ORC6 
TIS > 6 group than that of ORC6 TIS ≤ 6 group (mean 

Fig. 6 Gene Set Enrichment Analysis (GSEA) of ORC6 across cancers. A‑N KEGG results of ORC6 GSEA in indicated tumor types using pan-cancer 
data from TCGA 



Page 11 of 16Lin et al. BMC Cancer          (2023) 23:285  

0.14 vs 0.11, p = 0.757, Fig.  8G). Representative staining 
images are shown in Fig. 8H–K.

The association between ORC6 expression and immune 
related genes expression levels was then evaluated. ORC6 
expression level was significantly correlated with the 
expression level of a majority of immunosuppressive and 
immunostimulatory markers in BRCA, DLBC, KIRC, 

LIHC, LUSC, OV, PAAD, PRAD, THCA, and UVM 
(Fig. 9 and Supplementary Fig. 10). Interestingly, in most 
tumor types, immunosuppression-related genes, espe-
cially TGFBR1 and PD-L1 (CD274), exhibited a specific 
correlation with the ORC6 expression (Fig. 9). Altogether, 
these results indicate that ORC6 may promote immuno-
suppression in a wide array of cancer types.

Fig. 7 Gene Set Variation Analysis (GSVA) of ORC6 across cancers in MSigDB database
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Discussion
Previous studies have demonstrated that ORC6 is 
involved in a range of biological events during tumor pro-
gression [24, 25]. However, the prognostic value of ORC6 
expression levels and its potential effect on processes 
related to tumor development, such as the regulation of 
the tumor microenvironment and immunosuppression, 
in a number of human cancers remain unknown and 
require further study. As far as we know, this is the first 
comprehensive analysis of the expression and biological 
function of ORC6 from a pan-cancer perspective.

The pan-cancer analysis demonstrated that ORC6 
expression was significantly upregulated in 29 types of 
cancers, including BLCA, CESE and PRAD. Analysis of 
ORC6 protein levels using IHC staining results revealed 
similar results, confirming that ORC6 broadly partici-
pates in the tumorigenesis of different types of cancers. 
Previous studies demonstrated that ORC6 may irreplace-
ably promote the cell proliferation through coordinating 
chromosome replication and segregation with cytoki-
nesis [26, 27]. Interestingly, we found that ORC6 plays 
multifaceted roles during tumorigenesis, inhibiting or 
promoting tumor progression depending on the specific 
types of cancers. The ORC6 overexpression is correlated 
with worse prognostic outcomes in the majority of can-
cers (e.g., KIRC, LIHC, and PRAD) whereas it correlated 
with a better prognosis in COAD, OV and THYM. Sev-
eral previous studies also verified our results [4, 7, 27]. 
The atypical correlation between ORC6 overexpression 
and prognosis in OV may be attributed to the fact that 
ORC6 is under-expressed exists in the higher stage of OV 
tumor tissues compared to the lower stage. Altogether, 
these results imply that ORC6 expression level may pre-
dict the prognosis of cancer patients. Nonetheless, the 
precise molecular mechanism of action of ORC6 in these 
cancers remains to be elucidated.

The TMB represents the number of somatic gene muta-
tions existed in the cancer cells [28]. MSI refers to genetic 
instability caused by impaired DNA MMR [29]. MMR 
maintains the integrity and stability of the whole genome 
by correcting DNA replication or recombination errors 
[30]. Several studies have identified that both TMB and 
MSI can be useful predictive biomarkers for response to 

immunotherapy [31–35]. Additionally, MMR deficiency 
is a sensitive predictor of anti-PD-1/PD-L1 immunother-
apy efficacy in multiple cancers [36]. Our study revealed 
that ORC6 expression level was closely related with TMB 
in 10 types of cancers (e.g., LUAD, PRAD and STAD), 
with MSI in 11 types of cancers (e.g., PRAD, SARC and 
STAD), and with the expression of 5 MMR genes in a 
majority of cancers (e.g., HNSC, LIHC and PRAD). Our 
data showed that GSEA demonstrated a strong correla-
tion between ORC6 and MMR pathways in 14 types of 
cancers (e.g., PRAD, STAD, and KIRC). Therefore, ORC6 
might be a potential therapeutic marker for immuno-
therapy response. The development of immunotherapy 
has permitted to greatly improve the perspective of can-
cer patients at an advanced stage of cancer in recent years 
[37–40]. Nonetheless, the success of immunotherapy is 
influenced and sometimes compromised due to tumor-
immune system interaction [41]. Our data showed that 
ORC6 expression level was significantly related to differ-
ent immune subtypes in 15 types of cancers (e.g., BRCA, 
LIHC, and PRAD); these data may partially explain why 
ORC6 plays different roles in the prognosis and immuno-
therapy response of diverse cancers.

Accumulative evidence have showed that, immune 
microenvironment is significantly associated with 
tumor prognosis[42, 43]. Immune cell infiltration is 
considered to be an indicator of the immune micro-
environment within tumors [44–46]. We report herein 
for the first time a statistical association between 
ORC6 expression level and immune cell infiltra-
tion. We identified a positive correlation between 
ORC6 expression and the immune infiltration level of 
CD8 + T-cells in tumors of KIRC and UVM, while a 
statistical negative correlation between ORC6 expres-
sion and the immune infiltration level of cancer-asso-
ciated fibroblasts, tumor endothelial cells, and Treg 
cells in certain tumors by means of multiple immune 
deconvolution methods. Previous studies have demon-
strated that immune cell infiltration may contribute to 
tumorigenesis, development, and metastasis [47–49]. 
Cancer-associated fibroblasts are the most abundant 
cancer stromal cells that induce tumor cell prolif-
eration, therapeutic resistance and immune exclusion 

Fig. 8 Association between ORC6 expression and cancer-associated fibroblast, tumor endothelial cell, T regulatory (Treg) cell, and CD8 + T cell 
infiltration. A Association between ORC6 expression and cancer-associated fibroblast infiltration using TIMER2 database. B Association between 
ORC6 expression and tumor endothelial cell infiltration using TIMER2 database. C Association between ORC6 expression level and Treg cell 
infiltration using TIMER2 database. D Association between ORC6 expression level and CD8 + T cell infiltration using TIMER2 database. Red frame 
highlights the significant results. E The association between the ORC6 expression and FOXP3 + cell number based on immunohistochemical (IHC) 
results. F The association between the expression of ORC6 and CD4 + T cell number based on immunohistochemical (IHC) results. G The association 
between the ORC6 expression and FOXP3 + /CD4 + ratio based on immunohistochemical (IHC) results. H Hematoxylin and eosin staining of 
prostate adenocarcinoma tissue. I IHC staining of ORC6 in prostate adenocarcinoma tumor tissue. J IHC staining of CD4 in prostate adenocarcinoma 
cancer tissue. K IHC staining of FOXP3 in CD4 + T cells which were infiltrated in prostate adenocarcinoma cancer tissue

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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[50, 51]. Tumor endothelial cells play a crucial role in 
tumor angiogenesis and the suppression of T cells in 
the tumor environment [52, 53]. Treg cells can inhibit 
T cell proliferation and secrete immunomodulatory 
cytokines [54]. Finally,  CD8+ T cells function as killer 
cells that dominate antitumor immune responses and 
greatly influence the outcome of cancer immunother-
apy [55]. The pan-cancer analysis revealed differences 
in correlation between ORC6 and infiltration of differ-
ent types of immune cells.

Of special note, our data, for the first time to the best 
of our knowledge, demonstrated that the ORC6 is asso-
ciated to Treg cell infiltration in prostate cancer. This 
effect might be attributed to the enhanced differentia-
tion of naive CD4 + T cells to Treg cells [56], which was 
supported by our results of IHC staining. Also, such a 
sophisticated mechanism may also involve the altered 
AR’s role as licensing factor during the entire cell cycle 
progression be inhibit the AR mechanism, which is 
open to be investigated in the future studies. Further-
more, our data also showed that the ORC6 expression 

level is positively correlated with immunosuppressive 
and immunostimulatory genes across cancers, hinting 
that ORC6 may act as a potential immune checkpoint. 
Altogether, ORC6 may be a potential target for immu-
notherapy, which needs to be enlightened with further 
preclinical investigations.

Several research significances and values of this study 
are worth being highlighted. Firstly, ORC6 plays an 
important role in tumorigenesis and may work as an 
independent prognostic biomarker for many types of 
cancers. Secondly, we found ORC6 may affect genetic 
stability by regulating MMR pathways and genes. Thirdly, 
ORC6 was identified to influence the tumor immune 
microenvironment by adjusting the immune cell infiltra-
tion. Finally, ORC6 may tune the therapeutic outcome 
of immunotherapy via regulating immunomodulatory 
gene expression across cancers. Meanwhile, further in-
depth investigations based on the data from the present 
study are needed to explore the sophisticated functions 
of ORC6 and its relevant molecular mechanism in indi-
vidual cancer.

Fig. 9 Association between ORC6 expression and immunosuppressive genes across cancers in The Cancer Genome Atlas
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In conclusion, this pan-cancer analysis comprehen-
sively identified that the high expression of ORC6 pre-
dicts a poor prognosis, ORC6 participates in the MMR 
process, and ORC6 is correlated with immunomodula-
tory cells, cytokines, and genes. Our results prove that 
ORC6 might be a promising prognostic biomarker and 
an immunotherapeutic target for multiple cancers, espe-
cially prostate adenocarcinoma.
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