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Abstract 

Objectives  Preoperative evaluation of axillary lymph node (ALN) status is an essential part of deciding the appropri-
ate treatment. According to ACOSOG Z0011 trials, the new goal of the ALN status evaluation is tumor burden (low 
burden, < 3 positive ALNs; high burden, ≥ 3 positive ALNs), instead of metastasis or non-metastasis.

We aimed to develop a radiomics nomogram integrating clinicopathologic features, ABUS imaging features and radi-
omics features from ABUS for predicting ALN tumor burden in early breast cancer.

Methods  A total of 310 patients with breast cancer were enrolled. Radiomics score was generated from the ABUS 
images. Multivariate logistic regression analysis was used to develop the predicting model, we incorporated the 
radiomics score, ABUS imaging features and clinicopathologic features, and this was presented with a radiomics 
nomogram. Besides, we separately constructed an ABUS model to analyze the performance of ABUS imaging features 
in predicting ALN tumor burden. The performance of the models was assessed through discrimination, calibration 
curve, and decision curve.

Results  The radiomics score, which consisted of 13 selected features, showed moderate discriminative ability (AUC 
0.794 and 0.789 in the training and test sets). The ABUS model, comprising diameter, hyperechoic halo, and retrac-
tion phenomenon, showed moderate predictive ability (AUC 0.772 and 0.736 in the training and test sets). The ABUS 
radiomics nomogram, integrating radiomics score with retraction phenomenon and US-reported ALN status, showed 
an accurate agreement between ALN tumor burden and pathological verification (AUC 0.876 and 0.851 in the training 
and test sets). The decision curves showed that ABUS radiomics nomogram was clinically useful and more excellent 
than US-reported ALN status by experienced radiologists.

Conclusions  The ABUS radiomics nomogram, with non-invasive, individualized and precise assessment, may assist 
clinicians to determine the optimal treatment strategy and avoid overtreatment.
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Background
Breast cancer is the most common malignant tumor and 
the main cause of cancer-related death among women 
[1]. The axillary lymph node (ALN) status determines the 
need for systemic therapy, the extent of surgery, recon-
struction options, and the need for radiation therapy 
after mastectomy. Accurate assessment of ALN status 
plays an important role in breast cancer treatment and 
prognosis.

Based on preoperative assessment, patients without 
suspicious ALN metastasis by ultrasound (US) should 
have a sentinel lymph node biopsy (SLNB). Patients 
with positive ALN metastasis on US are candidates for 
ultrasound-guided fine needle aspiration (FNA) or core 
needle biopsy (CNB). For a negative FNA/CNB, SLNB 
is indicated. If FNA/CNB is positive, axillary lymph 
node dissection (ALND) is indicated unless neoadjuvant 
therapy is given. ALND is associated with several com-
plications, including lymphedema (found in up to 25% of 
women after surgery), infection, shoulder motion restric-
tion, and major vascular and nerve damage [2]. Besides, 
clinical practice has demonstrated that an important 
number of patients undergo a secondary ALND when 
SLNB displays major lymph node involvement [3]. There-
fore, accurate preoperative noninvasive assessment of 
ALN status is essential.

According to the findings of the Z0011 trials, the 
American Society of Clinical Oncology updated clinical 
practice guidelines, ALND can be omitted in patients 
with breast cancer with 1–2 positive SLNs without a 
decrease in disease-free survival or overall survival [4, 5]. 
So, the new goal of the ALN status evaluation is tumor 
burden (low burden, < 3 positive ALNs; high burden, ≥ 3 
positive ALNs), instead of metastasis or non-metastasis.

Ultrasound is a widely-used tool in assessing the ALN 
status preoperatively as it is non-invasive, radiation-free, 
real-time, rapid, and convenient. Previous studies have 
proved that axillary ultrasound (AUS) may provide valu-
able information relevant to ALN status in breast cancer 
[6]. However, AUS mainly obtains visual image informa-
tion and focuses on the qualitative analysis of lesions, the 
diagnostic performances of axillary ultrasound to detect 
ALN involvement highly depends on the experience of 
radiologists [3]. Ahmed et  al. [7] showed that 43.2% of 
patients with positive ALN metastasis on US had a low 
lymph node tumor burden (ALN metastasis < 3). It means 
that almost half of patients with ALN metastasis posi-
tive US assessments are exempt from ALND, which some 
researchers believe may constitute overtreatment for 
these patients [8]. AUS may not be a reliable predictor for 
nodal metastasis [6, 9]. In the age of precision medicine, 
a more effective and individualized method is urgent to 
resolve this problem.

As an emerging three-dimensional imaging technique, 
Automated Breast Ultrasound (ABUS), addresses the 
limitations of conventional handheld ultrasound (HHUS) 
and automatically scans the breast based on special high-
frequency broadband sensors [10]. Several recent studies 
[11, 12] have shown that some unique features of ABUS, 
although they are also visual assessment and qualita-
tive descriptions, may provide additional information 
for breast lesions. Specifically, retraction phenomenon 
appears as a satellite model around the lesion, with high 
sensitivity (80%–89%) and specificity (96%–100%) for 
breast cancer [13–15]. Radiomics extracts high-through-
put quantitative features that may not be directly observ-
able with the naked eye from single or multiple medical 
images. Radiomics has been more recently applied to 
distinguish benign malignant breast lesions [16], pre-
dict lymph node status [17, 18], and even evaluate treat-
ment response [19]. According to the radiomics quality 
score proposed by Lambin et al. [20], ABUS images with 
standardized, repeatable, and high-resolution character-
istics would be fit for radiomics analysis. However, to our 
knowledge, there is no ABUS-based radiomics study to 
differentiate ALN tumor burden. For patients with high 
tumor burden can assist in identifying what kind of ini-
tial axillary surgery can overlook the SLNB and undergo 
ALND specifically and assist in employing neoadjuvant 
chemotherapy or individualized adjuvant radiotherapy. 
For patients with low ALN tumor burden, unnecessary 
treatment, and potential complications due to surgery 
can be avoided.

The purpose of this study was to develop a radiomics 
nomogram integrating clinicopathologic features, ABUS 
imaging features and radiomics features from ABUS for 
predicting ALN tumor burden in early breast cancer.

Methods
Patient selection
Ethical approval for this retrospective study was obtained 
from our institutional review board, and informed con-
sent was canceled. All the patients with breast cancer 
confirmed by pathology in our institution from Novem-
ber 2018 to January 2021 were selected. The inclusion 
criteria were as follows: (1) axillary US and ABUS exami-
nations were performed before biopsy or resection; (2) 
the ALN status of the patients was clearly verified by 
pathology after SLNB/ALND; (3) breast lesion with a 
diameter less than 5 cm (stages T1 and T2).

The exclusion criteria were as follows: (1) no complete 
clinicopathological data or axillary US and ABUS images; 
(2) the patient had undergone anticancer therapy (radio-
therapy or chemotherapy); (3) the ABUS image quality 
was poor with artifacts.
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All patients included in this study were randomly 
divided into the training and test sets at a ratio of 7:3.

Data acquisition
ABUS examination was performed by two well-trained 
technologists using the Invenia™ automatic breast 
ultrasound system with automatic 6 ~ 14  MHz lin-
ear broadband transformers (covering a volume of 
15.4 × 17.0 × 5.0  cm) (Invenia™ ABUS, automatic breast 
ultrasound system, Ge Healthcare, Sunnyvale, the United 
States). The converter could be automatically moved 
in the scanning box. The thickness of each frame was 
0.5  mm, and 330 images were collected axial. Patients 
were supine position with their arms fully raised to 
expose the breast. Meanwhile, a wedge-shaped cushion 
was placed under one side of the body that helps keep 
the breast stable with the nipple pointing towards the 
ceiling. A hypoallergenic lotion was distributed evenly 
over the breast with an additional amount over the area 
of the nipple. A disposable membrane was used to aid 
coupling and to uniformly compress the entire breast, 
enabling greater penetration, improving detail resolu-
tion at depth, and eliminating the creation of artifacts 
at the periphery. After the image collection was com-
pleted, all images were sent to the workstation for 3D 
reconstruction to obtain crown, horizontal and sagittal 
surface images. Radiologists can read all the image infor-
mation in the workstation at any time for diagnosis. For 
the target tumor, diameter was measured as the largest 
diameter found on the axial plane of ABUS. ABUS imag-
ing features were synthetically analyzed in three planes 
(axial, coronal and sagittal) using the Breast Imaging-
Reporting and Data System (BI-RADS) lexicon, including 
margin (smooth, spiculated, angular or circumscribed), 
shape (regular or irregular), echo pattern (hypoechoic or 
complex), posterior acoustic feature (no change, enhance 
or decrease), calcification (no, macro or micro), orienta-
tion (horizontal or vertical), hyperechoic halo, retraction 
phenomenon. The above assessment was done by two 
radiologists (radiologist 1 and radiologist 2, with 9 and 
15  years of experience in breast US) who were blinded 
the clinical and pathological information, and any differ-
ences were resolved through consultation.

The US-reported ALN status was obtained from the US 
reports, and axillary images including important features 
of suspicious lymph nodes were documented into the 
Picture Archiving and Communication Systems (PACS). 
It was retrospectively reviewed and verified by two 
radiologists (radiologist 1 and radiologist 2, with 9 and 
15 years of experience in breast US). Axillary US features 
of lymph nodes used to assess suspicion for malignancy 

were as follows: (1) cortical thickness of 3 mm or greater; 
(2) longest/shortest axis ratio < 2; (3) absence of fatty 
hilum [21].

Tumor segmentation and radiomics feature extraction
The three-dimensional region of interest (3D-ROI) was 
manually drawn around the boundary of the mass on 
the axial ABUS images by a radiologist with 5 years of 
experience in breast US using the SEG3D2 software 
(https://​www.​sci.​utah.​edu/​cibc-​softw​are/​seg3d.​html).

The first-order statistics, textural and wavelet features 
were extracted automatically from each ABUS image by 
pyradiomics (https://​pyrad​iomics.​readt​hedocs.​io/​en/​lat-
est/​index.​html). All the extracted features were in con-
cordance with the standard set by the Imaging Biomarker 
Standardization Initiative (IBSI) [22]. Next, all radiomic 
features were rescheduled using Z-score normaliza-
tion to facilitate subsequent statistical analysis. Figure 1 
shows the flowchart of the radiomics score workflow and 
study flowchart.

To assess the inter-observer reproducibility, another 
radiologist (with 3  years of experience in breast US) 
drew 3D-ROI from 60 randomly chosen images. Intra-
class correlation coefficient (ICC) was used to assess 
the inter-observer agreement, which was graded as 
excellent (0.90 to 1.00), good (0.75 to 0.90), moder-
ate (0.50 to 0.75),or poor (< 0.50) [23]. The stable fea-
tures with ICC > 0.75 were selected to adopt different 
segmentations.

Radiomics score
We used Pearson correlation coefficient (normally dis-
tributed data) or Spearman’s rank correlation coefficient 
(nonnormal or rank data) to evaluate the redundancy of 
the features and eliminated redundant features with cor-
relation coefficient ≥ 0.9, with only the one left for next 
analysis. Then, the least absolute shrinkage and selection 
operator (LASSO) regression using tenfold cross-test was 
applied to select the most significant ALN tumor burden 
related radiomics features.

Model construction
Univariate and multivariate logistic regression analy-
ses were performed to select the significant factors for 
ALN tumor burden. In univariate analysis, factors hav-
ing P values < 0.10 were included in the multivariate 
analysis. Then, factors having P values < 0.05 were con-
sidered independent predictors after the multivariate 
analysis. Finally, ABUS model and radiomics nomogram 
was developed by incorporating these independent 
predictors.

https://www.sci.utah.edu/cibc-software/seg3d.html
https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
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Model validation
In this study, the validity of the prediction model was 
assessed through Receiver operating characteristic 
(ROC) curve, calibration curve, and decision curve.

ROC curves were plotted to assess the performance of 
the prediction model for ALN tumor burden in the train-
ing and test sets. The relevant metrics, including areas 
under the curve (AUC), sensitivity, specificity, accuracy, 
positive predictive value (PPV), and negative predictive 
value (NPV), were also calculated.

Calibration curves were plotted to explore the predic-
tive accuracy of the radiomics nomogram in the training 
and test sets. Besides, the goodness-of-fit was evaluated 
with the Hosmer–Lemeshow test.

To demonstrate the clinical value of the radiomics 
nomogram decision curves were drawn.

Statistic analysis
Statistical analyses were performed using R software (ver-
sion 4.1.2, https://​www.r-​proje​ct.​org/). Categorical variables 

were compared using the chi-square test, and continuous 
variables were compared using the t-test or Man-Whit-
ney U test to evaluate the consistency of the factors in the 
training and test sets. The reported statistical significance 
levels were all two-sided, and p values less than 0.05 were 
considered statistically significant. R software was used to 
construct and assess the radiomics score and the prediction 
model (details shown in Additional file 1).

Results
Basic information
A total of 310 patients were enrolled and randomly 
divided into a training set (n = 213) and a test set (n = 97) 
in this study. Table 1 showed the characteristics of breast 
cancer in training and test sets. There were 41(19.2%) and 
17(17.5%) patients with ALN high tumor burden of early 
breast cancer in the training and test sets. There were no 
significant differences between the sets in the characteris-
tics (p > 0.05).

Fig. 1  Radiomics score workflow and study flowchart. Tumor was manually drawn ROI from the axis ABUS images by using the SEG3D2 
software. Next, 837 features, including first-order statistics, textural and wavelet features, were extracted by pyradiomics. ICC > 0.75, correlation 
coefficient ≥ 0.9, tenfold cross-test, and the LASSO regression were applied to data dimension reduction and select the most significant ALN 
tumor burden related radiomics features. Univariable and multivariate logistic regression analysis was used to develop the predicting model. We 
incorporated all independent predictors, and this was presented as ABUS radiomics nomogram

https://www.r-project.org/
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Table 1  Characteristics of breast cancer in training and test sets

Characteristic Training set(n = 213) Test set(n = 97) P-value

Age, mean, years 52.5 ± 10.0 55.0 ± 11.4 0.075b

Diameter(cm) 2.21 ± 0.84 2.22 ± 0.81 0.785 b

Histological type
  Invasive ductal carcinoma 190(89.2) 83(85.6) 0.521a

  Invasive lobular carcinoma 9(4.2) 4(4.1)

  Others 14(6.6) 10(10.3)

Estrogenic receptor (%)
  Positive 170(79.8) 77(79.4) 0.930a

  Negative 43(20.2) 20 (20.6)

Progesterone receptor (%)
  Positive 143(67.1) 69(71.7) 0.483a

  Negative 70(32.9) 28(28.3)

HER2 (%)
  Positive 153(71.8) 65(67.0) 0.389a

  Negative 60(28.2) 32(33.0)

Ki-67 status (%)
  Positive (≥ 14%) 133 (62.4) 62(63.9) 0.803a

  Negative (< 14%) 80(37.6) 35(36.1)

US-reported ALN status (%)
  Positive 126(59.2) 50(51.5) 0.210a

  Negative 87(40.8) 47(48.5)

Radiomics score -1.775 [-1.222, -2.168] -1.831 [-1.142, -2.359] 0.766 b

ALN tumor burden
  Low burden 172(80.8) 80(82.5) 0.718a

  High burden 41(19.2) 17(17.5)

Margin
  smooth 15(7.0) 8(8.2) 0.970a

  spiculated 110(51.6) 48(49.5)

  angular 38(17.8) 17(17.5)

  indistinct 50(23.5) 24(24.7)

Shape 0.165a

  irregular 199(93.4) 95(97.9)

  regular 14(6.6) 2(2.1)

Echo pattern 0.489a

  hypoechoic 195 (91.5) 91(93.8)

  complex 18(8.5) 6(6.2)

Posterior acoustic features 0.824a

  no change 143(67.1) 62(63.9)

  enhance 34(16.0) 16(16.5)

  decrease 36(16.9) 19(19.6)

Calcification 0.222a

  no 103(48.4) 45(46.4)

  macro 10(4.7) 1(1.0)

  micro 100(46.9) 51(52.6)

Orientation 0.443a

  horizontal 182(85.4) 86(88.7)

  vertical 31(14.6) 11(11.3)
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Radiomics score
A total of 837 features (Additional file  2) were extracted 
from each patient’s axial ABUS images, including first-
order statistics (n = 18), texture features (n = 75) and 
wavelet features (n = 738). First, in the evaluation of repro-
ducibility, 508 showing ICC more than 0.75 were used for 
subsequent analysis. Second, we eliminated redundant 
features with correlation coefficient ≥ 0.9, and only one 
was chosen. Third, after the LASSO regression and tenfold 
cross-test, 13 radiomics features with nonzero coefficients 
were chosen (Fig.  2). Then, we got the final formula for 
radiomics score.

radiomics score= -1.57486+wavelet.LLH_glcm_Imc1* 0.06655 + wavelet.LLH_gldm_DependenceVariance*-0.12317 +wavelet.LHL_glcm_JointEnergy*-0.05780

+wavelet.LHH_glcm_JointEnergy*-0.24198

+wavelet.LHH_glcm_MaximumProbability *-0.09588

+wavelet.HLL_firstorder_Kurtosis *0.23917

+wavelet.HLL_glcm_Imc2*0.06358

+wavelet.HLL_glszm_HighGrayLevelZoneEmphasis*0.60089

+wavelet.HLL_gldm_SmallDependenceHighGrayLevelEmphasis*0.03775

+wavelet.HHL_firstorder_Skewness *0.21118

+wavelet.HHL_glcm_SumEntropy*-0.28907

+wavelet.HHH_glcm_ClusterShade*-0.09944

+wavelet.LLL_glrlm_RunEntropy *0.09735

The radiomics score of the high and low tumor burden 
was calculated using 13 radiomic features, respectively. 
The violin plot (Fig.  3) showed that radiomics score in 
the high tumor burden was significantly higher than low 
tumor burden (P < 0.001).

Model construction
Univariable logistic regression analysis results showed 
in Table  2. On the multivariable analysis (Table  3) that 
included ABUS imaging features (the ABUS model), 
diameter (odds ratio [OR], 2.03, 95% CI: [1.292,3.256], 
P = 0.002), hyperechoic halo (OR, 2.48,95% CI: 

[1.149,5.388], P = 0.020), and retraction phenomenon 
(OR, 6.53, 95% CI: [2.972,15.542], P < 0.001) were inde-
pendently associated with ALN tumor burden. On 
the multivariable analysis (Table  3) that included both 
clinicopathologic features, ABUS imaging features 
and radiomics score (the radiomics model), retrac-
tion phenomenon (OR, 3.34, 95% CI: [1.413,8.229], 
P = 0.006), US-reported ALN status (OR, 7.62, 95% CI: 
[2.429,33.904], P = 0.002), and radiomics score (OR, 3.82, 
95% CI: [2.175.7.400], P < 0.001) were independently 
associated with ALN tumor burden.

The radiomics nomogram that incorporated the above inde-
pendent predictors was developed and presented as the nomo-
gram (Fig. 4).

Model validation
Figure  5 A and B showed the performance of radiom-
ics score, ABUS model, and radiomics nomogram for 
discriminating ALN status. The results of AUCs for 
radiomics score, ABUS model and radiomics nomo-
gram were 0.794(95%CI:0.709,0.879), 0.772(95%CI:0

Table 1  (continued)

Characteristic Training set(n = 213) Test set(n = 97) P-value

Hyperechoic halo 0.754a

  Yes 63(29.6) 27(27.8)

  No 150(70.4) 70(72.2)

Retraction phenomenon 0.874a

  Yes 88 (41.3) 41(42.3)

  No 125(58.7) 56(57.7)

Low burden, < 3 positive ALNs; high burden, ≥ 3 positive ALNs

Data expressed as n (%), unless otherwise

Radiomics score was represented by median(interquartile)
a by the chi-square test, b by the Man-Whitney U test

US Ultrasound, ALN Axillary lymph node
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.677,0.868),0.876(95%CI:0.815,0.937) in the training  
set and 0.789(95%CI:0.657,0.921),0.736(95%CI:0.602,0
.870),0.851(95%CI:0.738,0.964) in the test set. Moreo-
ver, the performance of the radiomics nomogram was 
significantly more excellent than radiomics score and 
ABUS model both in the training and test sets (DeLong 
test P < 0.05). The diagnostic performance of radiom-
ics score, ABUS model, and radiomics nomogram  in 
the training and test sets was shown in Table  4. Fur-
thermore, 200 times five-fold cross validation was per-
formed to prove the robustness of radiomics nomogram 

in the training set, with a mean AUC of 0.863, a mean 
sensitivity of 0.861, a mean specificity of 0.831, and a 
mean accuracy of 0.839.

The Calibration curves (Fig. 5 C and D) of the radiomics 
nomogram in the training and test sets showed an accurate 
agreement between the prediction of ALN tumor burden 
and pathological verification. The Hosmer–Lemeshow 
test showed X-squared = 5.926, P = 0.655(P > 0.05) in the 
training set and X-squared = 11.856, P = 0.158(P > 0.05) 
in the test set. It meant there is no significant difference 
between the predicted result and the actual outcome.

Fig. 2  Radiomics features selection using tenfold cross-test and LASSO regression. A Tuning parameter(λ) selection in the LASSO regression used 
tenfold cross-test based on the minimum criterion. Dotted vertical lines indicated the optimal values using the minimum criteria and the1-SE 
criteria. A λ value of 0.024(log(λ) = -3.715) was chosen (minimum criterion) according to tenfold cross-test. B A coefficient profile plot was produced 
against the log(λ) sequence. Dotted vertical lines indicated the value obtained by the above tenfold cross-test, which resulted in 13 radiomics 
features with nonzero coefficients. C After tenfold cross-test and LASSO regression, the name and coefficient of selected radiomics features showed 
by a bar diagram
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Decision curves (Fig. 6) were plotted to assess the clini-
cal value of the different models in the training set and 
test sets. If the threshold probabilities are between 0.1 to 
1, the radiomics nomogram will receive maximized net 
benefit.

To evaluate the value of the ABUS radiomics nomo-
gram in making the optimal treatment strategies. We 
compared the performance of US-reported ALN status 
with radiomics nomogram in predicting ALN tumor bur-
den (confusion matrix shown in Additional file 3). In our 
study, the false negative rates of radiologist and radiomics 
nomogram were 7.3% (3/41), 14.6% (6/41) in the train-
ing set, and 11.7% (2/17),23.5% (4/17) in the test set. The 
false positive rates of radiologist and radiomics nomo-
gram were 51.1% (88/172),17.4% (30/172) in the training 
set, and 43.8% (35/80),17.5% (14/80) in the test set.

Discussion
In the study, we constructed radiomics score based on 
ABUS image for predicting ALN tumor burden, which 
AUC values were 0.794 in the training set and 0.789 
in the test set. The ABUS model, integrating diameter, 
hyperechoic halo, and retraction phenomenon, showed 
better performance, with AUC values of 0.772 in the 
training set and 0.736 in the test set. By multivariate 
logistic regression analysis, we developed a radiomics 
nomogram integrating the US-reported ALN status, 
retraction phenomenon and radiomics score, which 
showed best performance with AUC values 0.876 in the 
training set and 0.851 in the test set.

ABUS is a breakthrough in breast ultrasound that has 
been developed to meet the limitations of HHUS. ABUS 

provides three-dimensional imaging of the entire breast 
with multiplanar reconstructions, which has been dem-
onstrated to improve diagnostic accuracy [24]. Sev-
eral studies [11, 25–31] have focused on the ability of 
diagnosing breast lesions and assessment of response 
to neoadjuvant chemotherapy by ABUS. These stud-
ies indicated good diagnostic performance of ABUS. 
Recently, several studies [12, 32] showed some ABUS 
imaging features were significantly correlated with ALN 
status. In our study, ABUS model displayed adequate 
discriminative ability (AUC 0.772 in the training set 
and 0.736 in the test set). Three ABUS imaging features, 
diameter, hyperechoic halo, and retraction phenome-
non, were obviously associated with ALN tumor burden 

Fig. 3  Distribution of radiomics score in high and low tumor burden 
patients. The patients with high tumor burden had significantly 
higher score than those with low tumor burden (P < 0.001)

Table 2  Results of univariable analysis in the training set

Characteristic Odds Ratio 95% CI P-value

Age 1.02 [0.986,1.055] 0.260

Diameter 1.71 [ 1.149.2.546] 0.008

Histological type
  Invasive ductal carcinoma Reference

  Invasive lobular carcinoma 1.22 [0.177,5.312] 0.807

  Others 1.16 [0.254,3.968] 0.820

Estrogenic receptor 1.05 [0.447,2.483] 0.905

Progesterone receptor 0.81 [0.400,1.660] 0.573

HER2 0.94 [0.442,1.982] 0.862

Ki-67 status 1.83 [0.859,3.888] 0.118

Margin
  smooth Reference

  spiculated 4.12 [0.516,32.868] 0.182

  angular 2.62 [0.288,23.886] 0.392

  indistinct 3.07 [0.357,26.469] 0.307

shape 1.15 [0.581,2.289] 0.683

Posterior acoustic features
  no Reference

  enhance 2.42 [1.013,5.784] 0.047

  decrease 2.23 [0.942,5.301] 0.068

Calcification
  no Reference

  macro 1.15 [0.583,2.278] 0.683

  micro 1.10 [0.554,2.166] 0.794

Orientation 1.27 [0.506,3.188] 0.611

Posterior acoustic features
  no Reference

  enhance 2.42 [1.013,5.784] 0.047

  decrease 2.23 [0.942,5.301] 0.068

Hyperechoic halo 2.51 [1.244,5.074] 0.010

Retraction phenomenon 5.36 [2.508,11.459]  < 0.001

US-reported ALN status 12.09 [3.595,40.663]  < 0.001

Radiomics score 5.01 [2.829,8.856]  < 0.001
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(all P < 0.05), in this study. Some studies [33] reported 
that the size of primary breast cancer was significantly 
related to ALN status. Larger breast cancers have a 
wider range of glands invaded by cancer cells, and the 
probability of ALN metastasis through lymphatic drain-
age is also higher. In our study, retraction phenomenon 
was identified to be the strongest independent predic-
tor with high diagnostic performance in differentiating 
high and low ALN tumor burden(P < 0.001). Desmo-
plastic reaction of breast malignancy, which can pro-
duce contraction of the surrounding tissues toward the 
mass and disrupt normal parallel tissue planes, might 
help explain the generation of retraction phenomenon 
[34]. The appearance of the retraction phenomenon 

indicates that breast cancer is highly aggressive and 
has poor response to treatment [35]. Jiang et  al. [36] 
and Tang et  al. [37]showed that the smaller and more 
superficial invasive carcinomas with lower histological 
grades tended to present with retraction phenomenon. 
A hyperechoic halo, also known as converging pattern, 
is caused by the compressed fibrous surrounding tissue 
or the infiltration between the tumor and the surround-
ing tissue [38, 39]. It reflects the degree of invasion of 
cancer cells and may be an important indicator of poor 
prognosis. Similarly, Tang et  al. [37] reported that the 
malignant masses were associated with retraction phe-
nomenon and discontinuous hyper-and hypoechoic rim 
(p < 0.001 for each).

Table 3  Comparison of the multivariable models for ALN tumor burden in the training set

Characteristic Beta Coefficient Odds Ratio 95% CI P-value

ABUS model
  Diameter 0.706 2.03 [1.292,3.256] 0.002

  Hyperechoic halo 0.909 2.48 [1.149,5.388] 0.020

  Retraction phenomenon 1.878 6.53 [2.972,15.542]  < 0.001

ABUS nomogram
  Retraction phenomenon 1.207 3.34 [1.413,8.229] 0.006

  US-reported ALN status 2.031 7.62 [2.429,33.904] 0.002

  Radiomics score 1.338 3.82 [2.175.7.400]  < 0.001

Fig. 4  Developed ABUS radiomics nomogram. The ABUS radiomics nomogram was developed in the training set, incorporating the radiomics 
score, US-reported ALN status and retraction phenomenon. US, ultrasound; ALN, axillary lymph node
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However, visual assessment and qualitative descrip-
tions for US features extremely rely on the personal 
clinical experience and subjective judgment of radi-
ologists. Gillies et  al. [40] have illustrated that tumor 
characteristics at the genetic and cellular levels can 
be captured from medical images by extracting and 
computing high-throughput features. Qiu et  al. [41] 

extracted radiomics features from B-mode ultrasound 
and integrated the significant clinical characteristics 
of patients to construct radiomics model for predict-
ing ALN metastasis. Therefore, this study comprised 
the radiomics signature and US-reported ALN status, 
with AUC values of 0.816 in the training cohort and 
0.759 in the validation cohort. Similarly, Gao et al. [42] 

Fig. 5  ROC Curves and Calibration curves of the model in the training and test sets. A ROC Curves of radiomics nomogram (blue, AUC:0.876), 
radiomics score (red, AUC:0.794), and ABUS model (black, AUC:0.772) in the training set. B ROC Curves of the radiomics nomogram (blue, 
AUC:0.851), radiomics score (red, AUC:0789), and ABUS model (black, AUC:0.736) in the test set. C, D Calibration curves of radiomics nomogram in 
the training (C) and test set (D). ROC, Receiver operating characteristic; US, ultrasound; ALN, axillary lymph node
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established a nomogram based on radiomics analy-
sis of primary cancer B-mode ultrasound for predict-
ing ALN tumor burden, with AUC values of 0.846 in 
the training cohort and 0.733 in the validation cohort. 
The results of above research were similar to our 
results. Jiang et  al. [43] extracted radiomics features 
from shear-wave elastography and B-mode ultrasound 
and integrated Clinical characteristics of patients to 
construct radiomics model. The research showed in 
the performance of discriminating disease-free axil-
lary (N0) and any axillary metastasis (N + (≥ 1)), it 

achieved a C-index of 0.845 for the training cohort 
and 0.817 for the validation cohort. The tool could 
also discriminate between low (N + (1–2)) and heavy 
metastatic ALN burden (N + (≥ 3)), with a C-index of 
0.827 in the training cohort and 0.810 in the validation 
cohort.

ABUS provides standardized scanning protocols and 
uncouples detection from image acquisition, hence 
improving reproducibility, reducing operator depend-
ency and radiologist workload [10]. To our knowledge, 
there is no published study that has showed whether 

Table 4  The diagnostic performance of radiomics score, ABUS model, and radiomics nomogram in the training and test sets

AUC​ Area under the receiver operating curve

95%CI 95%confidence interval

PPV Positive predictive value

NPV Negative predictive value

Variables Training set Test set

Radiomics score ABUS model Radiomics 
nomogram

Radiomics score ABUS model Radiomics 
nomogram

AUC (95%CI) 0.794 (0.709,0.879) 0.772 (0.677,0.868) 0.876 (0.815,0.937) 0.789 (0.657,0.921) 0.736 (0.602,0.870) 0.851 (0.738,0.964)

Sensitivity 0.683 0.634 0.853 0.756 0.647 0.765

Specificity 0.831 0.866 0.826 0.850 0.800 0.825

Accuracy 0.803 0.822 0.831 0.825 0.773 0.814

PPV 0.491 0.531 0.538 0.500 0.407 0.481

NPV 0.917 0.909 0.959 0.931 0.914 0.943

Fig. 6  Decision curve of the radiomics nomogram (red line), radiomics score (purple line), ABUS model (blue line) and US-reported ALN status 
(yellow line) in the training set (A) and test (B) set. The vertical axis indicates the net benefit, the x-axis indicates the threshold probability. The black 
line indicates the presume that no patients showed ALN high burden, and the grey line indicates the presume that all patients showed ALN high 
burden
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the value of radiomics score from ABUS would benefit 
prediction of ALN tumor burden in early breast cancer. 
In our study, 13 radiomics features from axial images 
were screened out and used to established radiomics 
score. The ABUS radiomics score showed moderate dis-
criminative ability (AUC 0.794 in the training set, 0.789 
in the test set).

We constructed a radiomics nomogram that inte-
grated radiomics score with retraction phenomenon 
and US-reported ALN status to improve its predictive 
accuracy for ALN tumor burden. Based on the pro-
posed risk classifier, the ABUS radiomics nomogram 
was able to classify patients into low- and high-tumor 
burden groups. According to ACOSOG Z0011 trials, 
we should pay more attention to the ALN tumor bur-
den, instead of metastasis or non-metastasis. The radi-
omics nomogram resulted in 17.4% (30/172) and 17.5% 

(14/80) false positives in the training and test sets, 
which was obviously below the rates in US-reported 
ALN status (51.1% (88/172), 43.8% (35/80) in the train-
ing and test sets). The results showed that the radiom-
ics nomogram could evidently reduce the false positive 
rate, compared with US-reported ALN status. Accu-
rate forecasting of ALN high tumor burden can assist 
in identifying what kind of initial axillary surgery can 
overlook the SLNB and undergo ALND specifically 
and assist in employing neoadjuvant chemotherapy 
or individualized adjuvant radiotherapy [44]. Besides, 
for patients with low ALN tumor burden, unnecessary 
treatment, and potential complications due to surgery 
can be avoided. Figure 7 showed an example, the pre-
diction of ALN tumor burden in patient.

Zhou et  al. [45] firstly used deep learning methods 
in the evaluation of ALN status. Which included 974 

Fig. 7  A case of radiomics nomogram. A 77-year-old woman who has a 3.1 cm diameter lesion, radiomics score = -1.301, retraction phenomenon 
positive and US-reported ALN positive, indicates a low burden, with a low probability of less than 45%. Pathology confirmed only one metastatic 
ALN in the patient. A coronal plane of ABUS examination. B axial plane of ABUS examination. C sagittal plane of ABUS examination. D Axillary US 
examination revealed suspiciously positive ALN (cortical thickening and lymphatic hilum disappeared). E The nomogram showed a low probability 
of high burden (< 45%), indicating ALN low tumor burden
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primary tumor images of 756 patients with lymph 
node-negative early breast cancer, and validated the 
model in an independent validation set of 78 patients, 
with an AUC of 0.89. However, the logic behind the 
features and decisions based on deep learning is still 
a “black box”, which means the results based on deep 
learning are difficult to interpret [46]. On the con-
trary, in our study, “wavelet.LHH_glcm_JointEn-
ergy”, “wavelet.HLL_firstorder_Kurtosis”, “wavelet.
HHL_firstorder_Skewness”, and “wavelet.HHL_glcm_
SumEntropy” were obviously associated with ALN 
tumor burden, indicating that these features strongly 
reflect ALN tumor burden. In our study, most of 
selected radiomics features are texture features after 
wavelet transform. Wavelet transform, which meas-
ures the resolution of image signals in different time, 
space, and frequency scale planes, is extremely useful 
for replaying even subtle but important texture infor-
mation that is ignored by radiologists in low-contrast 
US images. Previous researches [19, 47] have demon-
strated the texture features after wavelet transform are 
used to construct a prediction model.

There are several limitations to our study. First, the 
study was a retrospective study, inevitably there existed 
sample bias. Second, the sample originated from a sin-
gle center and lacked external validation. Therefore, the 
number of positive patients was 58 (58/310,41/213 in 
the training set and 17/97 in the test set). The difference 
between the two sets may be caused by the small num-
ber of positive patients. In the future, more patients 
(particularly more positive patients), multi-center sam-
ples, and external validation are needed. Third, the 
three-dimensional ROI was manually delineated on the 
axis ABUS image by the radiologist. However, manu-
ally delineating the ROI was extremely time-consuming 
and inevitably involved inter-observer variability. In 
the future, we should research semi-automatic or auto-
matic segmentation algorithms to overcome the above 
problems. Finally, we extracted radiomics features from 
intratumoral regions and failed to exploit peritumoral 
radiomics features in the study. The radiomics features 
of intratumoral and peritumoral regions should be inte-
grated into further research.

Conclusions
The ABUS radiomics nomogram showed favorable abil-
ity for predicting ALN tumor burden, which may provide 
additional benefits in treatment strategies for patients 
with early breast cancer, especially for patients with low 
tumor burden. With a more individualized and precise 
assessment for ALN tumor burden, radiomics nomogram 
will assist clinicians to make the optimal treatment strat-
egy and avoid overtreatment.
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