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Abstract 

Objectives  To evaluate the discriminatory capability of spectral CT-based radiomics to distinguish benign from 
malignant solitary pulmonary solid nodules (SPSNs).

Materials and methods  A retrospective study was performed including 242 patients with SPSNs who underwent 
contrast-enhanced dual-layer Spectral Detector CT (SDCT) examination within one month before surgery in our 
hospital, which were randomly divided into training and testing datasets with a ratio of 7:3. Regions of interest (ROIs) 
based on 40-65 keV images of arterial phase (AP), venous phases (VP), and 120kVp of SDCT were delineated, and 
radiomics features were extracted. Then the optimal radiomics-based score in identifying SPSNs was calculated and 
selected for building radiomics-based model. The conventional model was developed based on significant clinical 
characteristics and spectral quantitative parameters, subsequently, the integrated model combining radiomics-based 
model and conventional model was established. The performance of three models was evaluated with discrimination, 
calibration, and clinical application.

Results  The 65 keV radiomics-based scores of AP and VP had the optimal performance in distinguishing benign 
from malignant SPSNs (AUC​65keV-AP = 0.92, AUC​65keV-VP = 0.88). The diagnostic efficiency of radiomics-based model 
(AUC = 0.96) based on 65 keV images of AP and VP outperformed conventional model (AUC = 0.86) in the identifi-
cation of SPSNs, and that of integrated model (AUC = 0.97) was slightly further improved. Evaluation of three mod-
els showed the potential for generalizability.

Conclusions  Among the 40-65 keV radiomics-based scores based on SDCT, 65 keV radiomics-based score had the 
optimal performance in distinguishing benign from malignant SPSNs. The integrated model combining radiomics-
based model based on 65 keV images of AP and VP with Zeff-AP was significantly superior to conventional model in the 
discrimination of SPSNs.
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Introduction
At present, radiomics research based on traditional CT 
has revealed the potential to differentiate benign and 
malignant pulmonary nodules [1–9]. So far, few radiom-
ics-based studies have applied different Dual-energy-CT 
(DECT) images for characterizing tumors, where the rich 
and additional quantitative information on the energy-
dependent attenuation changes in different tissues could 
potentially improve performance of predictive models 
[10–12]. As an emerging and exciting DECT, Dual-layer 
Spectral Detector CT (SDCT) is proved to be a promising 
technology in oncologic identification [13–16]. Firstly, it 
collects high and low energy information and acquires 
in-phase, temporally synchronized, and homologous 
photons in a conventional CT scanning, which improves 
the accuracy of data collection. Secondly, SDCT exploits 
anti-correlated noise suppression [17], leading to a con-
stantly low noise level [18]. Thirdly,  SDCT eliminates 
the requirement to pre-select patients or change clinical 
workflow [19], permitting evaluation of incidentally dis-
covered findings. Recent studies have shown that spectral 
quantitative parameters could further improve the dis-
criminative ability of pulmonary nodules [20–24], such as 
CT values of 40  keV monochromatic  images (CT40 keV), 
the slope of the spectral Hounsfield Unit curve (λHU), 
iodine concentration (IC), normalized iodine concen-
tration (NIC), and the differences in NIC between the 
proximal and the distal regions in pulmonary nodules 
(dNIC). IC reflects the difference of blood supply within 
the lesions [22, 25, 26], and λHU  presents the attenua-
tion characteristics of different tissues [27]. Although the 
role of both in identifying benign and malignant nodules 
has been widely mentioned, studies on the selection of 
the optimal sequence of virtual monochromatic images 
(VMI) remain rare. Hence, we aimed to select the opti-
mal sequence of VMI based on the latest SDCT for the 
first time and develop a spectral CT radiomics-based sig-
nature to differentiate solitary pulmonary solid nodules 
(SPSNs).

Materials and methods
Patients
The study population was retrospectively enrolled SPSNs 
patients who underwent contrast-enhanced SDCT 
examination within one month before  surgery  from our 
hospital between January 2016 and December 2020. Ulti-
mately, 242 patients (average age 59.90 ± 10.55  years) 
were included. We collected 6 clinical risk factors includ-
ing age, sex, smoking, carcinoembryonic antigen (CEA), 
cytokeratin 19 fragment 21–1 (CYFRA21-1), and neu-
ron-specific enolase (NSE). The final cohort was ran-
domly divided into training (n = 168) and testing datasets 

(n = 74) with a ratio of 7:3. An overview workflow of this 
study was shown in Fig. 1.

Image acquisition
Contrast-enhanced chest scans were performed in both 
arterial phase (AP) and venous phase (VP) on dual-
layer spectral detector  CT (IQon Spectral CT, Philips 
Healthcare, Best, The Netherlands). The range of scan 
was from the thoracic inlet to the bottom of the thoracic 
cavity in order to cover all lung tissues. After a native 
chest scan, contrast agent (Iodixanol, 350  mg/mL, GE 
Healthcare, Ireland) was injected via the cubital vein with 
a power injector (Ulrich REF XD 2051), at a volume of 
80 ml and flow rate of 2.5 mL/s. AP and VP scans were 
acquired at 25 and 60  s after the contrast agent injec-
tion. Spectral CT scan parameters were as follows: 
tube voltage = 120  kV;  automatic tube current expo-
sure control [Dose Right Index (DRI)] = 22;  tube rota-
tion time = 0.5  s; detector collimation = 64 × 0.625  mm; 
a reconstructed  slice thickness = 0.9  mm;  slice incre-
ment = 0.45  mm;  field of view = 250 × 250  mm;  image 
reconstruction matrix = 512 × 512. All original images 
were reconstructed as Spectral Base Image (SBI) datasets 
with reconstructed slice thickness of 1  mm and incre-
ment of 1  mm,  then were transmitted to a dedicated 
post-processing workstation of spectral CT (IntelliSpace 
Portal 6.5, Philips Healthcare, Best, The Netherlands) for 
image analysis.

Spectral quantitative parameter measurement
Quantitative parameters of spectral CT were measured 
on the best-displayed plane and the relative homogene-
ous area of lesions in  40-65  keV images of AP, VP, and 
conventional 120kVp in the dedicated post-processing 
workstation (IntelliSpace Portal 6.5, PhilipsHealthcare, 
Best, The Netherlands). The following quantitative meas-
urements were performed twice, and the average value 
was calculated. Quantitative parameters were as follows: 
(I) IC of the lesion (IClesion) and IC in the same layer of 
aorta (ICaorta), calculated NIC = IClesion/ICaorta; (II) effec-
tive atomic number (Zeff); (III) CT values of 40  keV 
(CT40keV) and 80  keV monochromatic  images (CT80keV); 
(IV) λHU =|CT40keV − CT80keV|/(80–40).

Images segmentation
The original CT images were imported into the image 
preprocessing module of Artificial Intelligence Kit (A.K., 
GE Healthcare, China), then which were preprocessed to 
ensure that the voxel points of the images were isotropic. 
The preprocessed images were uploaded to ITK-SNAP 
software (http://​www.​itksn​ap.​org), and the two-dimen-
sional region of interest (ROI) was manually delineated 
on the single representative section that had the largest 

http://www.itksnap.org
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nodule area on CT images of 40  keV by a radiologist 
(with 14 years of experience in chest imaging diagnosis) 
who was blinded to the clinical data and histopathologic 
results. The copy-and-paste function was used to ensure 
that the position and size of the ROIs were consistent 
between different VMIs of SDCT.

Feature extraction, selection, and screen of the optimal 
sequence of VMI
Radiomics features were  extracted  from ROIs with 
the reference of the image biomarker standardization 
initiative (IBSI) [28] using an artificial intelligence kit 
(A.K., GE Healthcare), and the data was standardized. 
In order to ensure stability and robustness of the radi-
omics features, 30 cases were randomly selected in a 
blinded manner. The same image segmentation process 

and feature extraction were conducted among the 30 
cases by another radiologist (with 7  years of experi-
ence in chest imaging diagnosis). The intraclass cor-
relation coefficient (ICC) was calculated to test the 
interobserver reproducibility of the radiomics features. 
Features with ICC value > 0.75 were considered a good 
agreement and were used for subsequent analysis [29]. 
The least absolute shrinkage and selection operator 
(LASSO) regression was conducted to select the opti-
mal radiomics features with non-zero coefficients via 
ten-fold cross-validation. Finally, a total of 14 radiom-
ics-based scores were respectively calculated based on 
optimal radiomics features of 40-65 keV images of AP, 
VP, and conventional 120kVp by multivariate  logis-
tic  regression, then the optimal radiomics-based score 
was screened for subsequent modeling. A radiomics 
workflow was shown in Fig. 2.

Fig. 1  Overview workflow of this study. SDCT, dual-layer Spectral Detector CT; SPSN, solitary pulmonary solid nodule; VMI, virtual monochromatic 
images
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Models building
Significant clinical features and spectral CT quantita-
tive parameters which were selected by univariate logis-
tic regression and Spearman correlations analysis [30], 
were used to construct  the clinical features and spec-
tral CT quantitative parameters-based model. Then we 
defined it as conventional model. The above-mentioned 
optimal radiomics-based score was used to establish a 
radiomics-based model through multivariate logistic 
regression. Finally, an integrated model incorporating 
radiomics-based model with conventional model was 
built  by univariate and multivariate logistic regression 
with stepwise selection method.

Statistical analysis
All statistical analyses were performed with R software 
(version 3.5.1; http://​www.​Rproj​ect.​org). Quantitative 
data with normal distribution was presented as mean 
S ± SD; quantitative data with abnormal distribution 
was presented as median (25th, 75th percentile). Cat-
egorical variables were  compared by  chi-square test 
or the Fisher exact test; either Student’s t-test or Mann-
Whitney U test was used for the continuous variables 
as appropriate. The level of significance was p ＜ 0.05.

Receiver-operating characteristic (ROC) curves were 
applied to assess the predictive ability of the models 
in  distinguishing benign from malignant SPSNs, and 
accuracy, sensitivity, specificity, and the area under the 
curve (AUC) were calculated respectively. The DeLong 
test was used to compare the AUC between differ-
ent models or different datasets. Calibration curves 
were plotted and the Hosmer-Lemeshow test was used 
to  assess the  fitness of the models. Decision curves 
were used to compare the clinical usefulness of models.

Results
Patient characteristics
A total of 242 patients’ clinical characteristics and spec-
tral quantitative parameters from SDCT in the training 
and testing datasets were detailed in Table 1. There were 
61 benign SPSNs and 181 malignant SPSNs in this cohort 
(Supplementary Materials).

Feature selection and optimal VMI sequence screening
A total of 107 radiomics features with interobserver 
ICC value > 0.75 were extracted from ROIs based on 
40-65  keV images of AP, VP, and conventional 120kVp 
respectively. Then the optimal radiomics features of each 
sequence remained respectively after LASSO, which 
were devoted to calculating 14 radiomics-based scores by 
multivariate logistic regression.

The diagnostic performance of 14 radiomics-based 
scores was detailed in Supplementary Table A2. Among 
these, the diagnostic performance based on 65  keV 
images in both AP and VP was the best in differentiating 
benign and malignant SPSNs in the training (AUC​65keV-

AP = 0.94, AUC​65keV-VP = 0.92) and testing datasets (AUC​
65keV-AP = 0.92, AUC​65keV-VP = 0.88), respectively. The 
optimal  radiomics features of 65  keV radiomics-based 
scores in AP and VP were displayed respectively in Sup-
plementary Table A3.

Models building
Among the 16 clinical characteristics and spectral 
quantitative parameters, 14 features were selected by 
univariate logistic regression, eight features (CEA, 
Zeff-AP, age, CYFRA21-1, NSE, CT40keV-VP, NICAP, 
NICVP) were remained after  redundancy with Spear-
man correlation analysis, which were used to establish 
conventional model. The radiomics-based scores based 

Fig. 2  A flow chart displaying the process of building radiomics-based model in this study. AP, arterial phase; VP, venous phase; SDCT, dual-layer 
Spectral Detector CT; SPSN, solitary pulmonary solid nodule; ROI, region of interest

http://www.Rproject.org
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on 65 keV images of AP and VP were combined to build 
the radiomics model by multivariate logistic regression. 
Combined conventional model with radiomics model, 
eight features (CEA, age, CYFRA21-1, CT40keV-VP, 
score of radiomics model65keV, Zeff-AP, NICVP, NSE) 

were selected by univariate logistic regression, two 
features (score of radiomics model65keV, Zeff-AP) were 
remained after multivariate logistic regression, which 
were committed to developing an integrated model. We 
presented it as a nomogram in Fig.  3. The calculation 

Table 1  Clinical risk factors of the study population and quantitative parameters from SDCT in the training and testing datasets

SDCT Dual-layer spectral detector CT, CEA Carcinoembryonic antigen, CYFRA21-1 Cytokeratin 19 fragment 21-1, NSE Neuron-specific enolase, IC Iodine concentration, 
NIC Normalized iodine concentration, CT40keV CT values of 40 keV monochromatic images, λHU Dual-energy curve slope value, Zeff Effective atomic number, AP Arterial 
phase, VP Venous phase

p values reflected the differences between benign SPSNs and malignant SPSNs, p values reflected the differences between the training and testing datasets, and 
p values and p values were computed by using Student’s t-test or Mann-Whitney U test for continuous variables and chi-square test or the Fisher exact test for 
categorical data
*  in the upper right indicates p < 0.05

Variables Training Dataset (N = 168) Testing Dataset (N = 74) p value

Benign SPSNs (N = 42) Malignant SPSNs 
(N = 126)

p value Benign SPSNs (N = 19) Malignant SPSNs 
(N = 55)

p value

Male 15(35.71%) 70(55.56%) 0.026* 11(57.89%) 27(49.09%) 0.508 0.914

Age 58.00(49.95, 63.00) 62.00(54.95, 67.00) 0.035* 54.26 ± 11.32 60.87 ± 9.11 0.013* 0.559

Smoking 12(28.57%) 60(47.62%) 0.031* 8(42.11%) 25(45.45%) 0.800 0.802

CEA 2.40(1.40, 3.08) 4.36(2.20, 24.25)  < 0.001* 1.99(1.57, 3.06) 4.36(2.53, 25.51)  < 0.001* 0.836

CYFRA21-1 2.48(2.10, 2.88) 3.42(2.45, 6.16)  < 0.001* 2.20(1.71, 3.62) 3.99(2.31, 5.83) 0.001* 0.975

NSE 14.20(12.31, 15.81) 14.96(13.10, 19.00) 0.018* 13.76(12.48, 14.34) 14.90(12.87, 17.54) 0.089 0.399

ICAP 0.86(0.42, 1.57) 1.23(0.98, 1.66) 0.004* 0.84(0.64, 1.31) 1.36(1.17, 1.90)  < 0.001* 0.254

ICVP 1.23 ± 0.89 1.60 ± 0.52 0.014* 0.99 ± 0.68 1.82 ± 0.68  < 0.001* 0.302

NICAP 0.10(0.04, 0.17) 0.13(0.10, 0.16) 0.010* 0.10(0.05, 0.13) 0.15(0.11, 0.19)  < 0.001* 0.293

NICVP 0.27 ± 0.17 0.36 ± 0.10 0.003* 0.20 ± 0.12 0.41 ± 0.15  < 0.001* 0.567

CT40keV-AP 107.00(68.95, 152.96) 142.30(119.78, 181.00) 0.001* 105.40(78.08, 145.90) 154.10(130.84, 196.44)  < 0.001* 0.304

CT40keV-VP 137.94 ± 77.43 172.64 ± 44.60 0.008* 114.26 ± 61.03 187.63 ± 49.54  < 0.001* 0.551

λHU-AP 1.45(0.70, 2.39) 2.08(1.64, 2.76) 0.003* 1.43(1.09, 2.19) 2.28(1.96, 3.17)  < 0.001* 0.247

λHU-VP 2.05 ± 1.51 2.62 ± 0.88 0.026* 1.63 ± 1.14 3.03 ± 1.14  < 0.001* 0.235

Zeff-AP 7.87(7.60, 8.18) 8.07(7.94, 8.27) 0.002* 7.81 ± 0.33 8.22 ± 0.36  < 0.001* 0.164

Zeff-VP 7.92(7.58, 8.33) 8.18(8.06, 8.38) 0.001* 7.81(7.68, 8.20) 8.32(8.14, 8.48)  < 0.001* 0.239

Fig. 3  Developed integrated model nomogram. The integrated model nomogram was built in training dataset with Zeff-AP and a Rad-score of the 
selected radiomics features incorporated. Zeff-AP, effective atomic number in arterial phase; Rad-score, the score of spectral CT-based radiomics 
model combining radiomics scores based on 65 keV images of arterial phase and venous phase
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formulas for three models were shown in Supplemen-
tary Materials.

Performance evaluation
The  diagnostic performance of three models in differ-
entiating between benign and malignant SPSNs was 
shown in Table  2. ROC curves demonstrated that radi-
omics model (AUC​training = 0.96, AUC​testing = 0.96) out-
performed conventional model (AUC​training = 0.88, AUC​
testing = 0.86) (DeLong test, Ptraining < 0.01, Ptesting < 0.05) in 
differentiating benign and malignant SPSNs in the train-
ing and testing datasets, while the integrated model was 
further slightly improved (AUC​training = 0.97, AUC​test-

ing = 0.97) (Fig.  4 a, b), but there was no significant dif-
ference (DeLong test, Ptraining = 0.51, Ptesting = 0.72) of 
discriminating ability between radiomics model and 
integrated model. DeLong test revealed that there was 
no statistical difference in the diagnostic efficacy of three 
models between the training and testing datasets with p 
values of 0.65, 0.84, and 0.89, respectively. Through the 
Hosmer-Lemeshow test, calibration curves indicated that 
there was a good  fitness between prediction and obser-
vation for the discrimination probability of SPSNs (Fig. 4 
c, d). Decision curves suggested that radiomics model 
and integrated model had higher clinical net benefit than 
conventional model (Fig. 4 e, f ).

Discussion
The results of our study showed that radiomics scores 
based on 65 keV images of AP and VP from SDCT had 
the optimal performance within the range of 40-65 keV 
in the discrimination of benign and malignant SPSNs. 
Furthermore, we developed and validated a radiomics-
based model based on optimal radiomics-based scores 
derived from 65 keV images of AP and VP, which had bet-
ter diagnostic performance than conventional model, and 
the integrated model combining radiomics model and 
Zeff-AP that was retained by multiple features screenings 

of clinical features and spectral quantitative parameters 
could further improve the discriminating ability slightly.

To the best of our knowledge, this is the first time to 
compare the performance of radiomics scores based on 
different keV VMIs of SDCT to distinguish benign and 
malignant SPSNs. Currently, in view of clinical need 
for  image  quality and  resolution, we could obtain 161 
monochromatic images between 40-200 keV from spec-
tral CT. Low keV images could improve the density 
resolution of images and help optimize the display of 
low-contrast structures, as one of the important clinical 
applications of VMIs. Given that the reconstruction of 
70 keV VMIs is roughly equivalent to a standard spectral 
CT acquisition performed at 120 kVp [31, 32], our study 
selected 40-65 keV VMIs to perform radiomics analysis. 
According to our results, radiomics-based scores varied 
with different energy levels, the higher energy level, the 
better diagnostic performance. We did not observe con-
ceivable benefits of greater iodine-related attenuation 
at lower energy  levels  when noise tends to be constant 
low [17, 18] in our radiomics study. It was inconsistent 
with the assessment by Wen et  al. [20] who confirmed 
that VMIs at 40 keV from SDCT may be an effective way 
to characterize solitary pulmonary nodules.  It may be 
that overhigh contrast within the lesions covers sub-
tle changes of features, which leads to the error of pixel 
information extraction in our radiomics study.

An additional important observation was that radi-
omics  model was significantly better than conventional 
model, indicating the advantages of radiomics  features 
obtained from SDCT in the identification of SPSNs. 
The top two radiomics features with the greatest rela-
tive weights obtained from training dataset in radiom-
ics model were GLCM-Cluster-Prominence of AP and 
GLRLM-Short-Run-High-Gray-Level-Emphasis of VP. 
The former revealed larger asymmetry [33] and the latter 
revealed higher and more heterogeneous iodine uptake, 
and greater images roughness [34, 35], which indicated 
more complex histological architecture with  malignant 

Table 2  Comparison of AUCs between the radiomics model, conventional model, and integrated model

AUC​ Area under ROC curve, 95% CI 95% confidence interval, SEN Sensitivity, SPE Specificity, ACC​ Accuracy, Radiomics model The model combining optimal radiomics 
scores based on 65 keV images of AP and VP, Conventional model The model based on significant clinical characteristics and spectral quantitative parameters, 
Integrated model The model combining radiomics model and Zeff-AP

Model Cut-off Training dataset Testing dataset

AUC (95%CI) SEN SPE ACC​ AUC (95%CI) SEN SPE ACC​

Radiomics model 0.91 0.96
(0.925–0.996)

0.94 0.91 0.92 0.96
(0.914–0.996)

0.87 0.90 0.87

Conventional model 0.60 0.88
(0.823–0.941)

0.86 0.81 0.84 0.86
(0.767–0.948)

0.82 0.70 0.76

Integrated model 1.01 0.97
(0.940–0.997)

0.91 0.93 0.91 0.97
(0.928–1.000)

0.91 0.95 0.92
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Fig. 4  The performance of three models in distinguishing benign from malignant SPSNs. ROC curves for radiomics model, conventional model, 
and integrated model in training (a) and testing datasets (b). Calibration curves for radiomics model, conventional model, and integrated model 
in training (c) and testing datasets (d). The calibration curves described a good fitness of three models between prediction and observation of the 
benign and malignant SPSNs. The gray line represented the perfect prediction. A closer fitness to the gray line represented a well-calibrated model. 
Decision curves for radiomics model, conventional model, and integrated model in training (e) and testing datasets (f). Integrated model and 
radiomics model had higher net benefit than conventional model. SPSN, solitary pulmonary solid nodule
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SPSNs. In our study, radiomics  model also displayed 
higher diagnostic efficacy than previous conventional CT 
radiomics-based  models  regarding  the  qualitative  diag-
nosis of pulmonary nodule [4, 5, 7–9], whose comparison 
was detailed in Supplementary Table A4. Among them, 
the deep learning model [4, 7],  the machine learning 
model built with intranodular and perinodular features 
combined [4], and the contrast-enhanced CT radiomics-
based model [5] all failed to increase more valid discrimi-
nating capability of the nature of SPSNs then spectral 
CT radiomics-based model. The above results may be 
attributed to two major points: Firstly, spatial and tempo-
ral alignment completely is ideal for data collection. Sec-
ondly, the combination of radiomics  features in AP and 
VP can more comprehensively reflect the mixed distribu-
tion state of different nodules owing to vascular perme-
ability or inflammatory components.  It may be possible 
to contribute to selecting radiomics features, and increase 
the efficiency of identification in benign and malignant 
SPSNs. However, Zhuo et al. [6] generated a more predic-
tive radiomics model in differentiating nature of SPSNs 
including adenocarcinoma and tuberculosis, which may 
be attributed to the fact that our study involved more 
clinically relevant samples with multiple types of SPSNs, 
not limited to the distinction between tuberculosis and 
adenocarcinoma. Besides,  the patient population ratio 
of adenocarcinoma was lower than tuberculosis in their 
study, which  went against the usual constituent ratio in 
clinical, in which pulmonary nodules with fewer signs of 
malignant are generally less likely to undergo a biopsy or 
surgery.

Moreover, we developed an integrated model based 
on radiomics model and Zeff-AP, which were combined 
together for the first time, the accuracy was improved 
from 87% to 92%, and the sensitivity and specificity were 
improved from 87% and 90% to 91% and 95%, respec-
tively.  Zeff is a quantitative index derived from atomic 
number, representing the composite atom for a mixture 
or compound of various materials, and it can be calcu-
lated from dual-energy spectral computed tomography 
data [36] and applied to identify substance composi-
tion. The role of Zeff in differentiating benign and malig-
nant lung tumors was firstly reported by Gonzalez-perez, 
V. et  al. [36]. Subsequently, the values of Zeff in detect-
ing tumor progression [37], evaluating histological types 
of lung cancer [21, 38], as well as taking part in gene 
expression [39] were discovered. The above results also 
remained that traditional spectral quantitative param-
eters may still reveal utility in differentiating benign and 
malignant SPSNs. Consequently, multi-dimensional con-
sideration and analysis are required.

This study still has some limitations. Firstly, the sam-
ple size of our study was relatively small along with a 

large proportion of malignant SPSNs (75%) in our 
cohort, which may result in selection bias and exagger-
ate the diagnostic efficacy of predictive models to some 
extent, the efficacy of our models needs to be further 
validated in a large population.  Secondly, the clinical 
application of our predictive models to general popu-
lations was limited to a single-center study, thus there 
is still a requirement for further verifying our models 
in a multi-center and independent validation cohort. 
Thirdly, no subgroup analysis of SPSNs was conducted 
in this study, further research based on spectral CT 
radiomics in the differentiation of tumor subtyping will 
be carried out. Finally, retrospective data collection 
may also lead to sample bias, and further prospective 
studies are still required.

Conclusion
Among the 40-65  keV radiomics scores based on 
SDCT, 65  keV radiomics-based score had the optimal 
performance in distinguishing benign from malignant 
pulmonary nodules. The developed integrated model 
based on radiomics model and Zeff-AP was significantly 
superior to conventional model in the discrimination of 
SPSNs. This method had the potential to reveal the het-
erogeneity  of nodules and provided accurate informa-
tion for the nature of SPSNs, which would serve to 
provide individual medical services for patients with 
SPSNs efficiently and scientifically.
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