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Abstract 

Background  Tumor microenvironment (TME) is of great importance to regulate the initiation and advance of cancer. 
The immune infiltration patterns of TME have been considered to impact the prognosis and immunotherapy sensitiv-
ity in Head and Neck squamous cell carcinoma (HNSCC). Whereas, specific molecular targets and cell components 
involved in the HNSCC tumor microenvironment remain a twilight zone.

Methods  Immune scores of TCGA-HNSCC patients were calculated via ESTIMATE algorithm, followed by weighted 
gene co-expression network analysis (WGCNA) to filter immune infiltration-related gene modules. Univariate, the 
least absolute shrinkage and selection operator (LASSO), and multivariate cox regression were applied to construct 
the prognostic model. The predictive capacity was validated by meta-analysis including external dataset GSE65858, 
GSE41613 and GSE686. Model candidate genes were verified at mRNA and protein levels using public database and 
independent specimens of immunohistochemistry. Immunotherapy-treated cohort GSE159067, TIDE and CIBERSORT 
were used to evaluate the features of immunotherapy responsiveness and immune infiltration in HNSCC.

Results  Immune microenvironment was significantly associated with the prognosis of HNSCC patients. Total 277 
immune infiltration-related genes were filtered by WGCNA and involved in various immune processes. Cox regression 
identified nine prognostic immune infiltration-related genes (MORF4L2, CTSL1, TBC1D2, C5orf15, LIPA, WIPF1, CXCL13, 
TMEM173, ISG20) to build a risk score. Most candidate genes were highly expressed in HNSCC tissues at mRNA and 
protein levels. Survival meta-analysis illustrated high prognostic accuracy of the model in the discovery cohort and 
validation cohort. Higher proportion of progression-free outcomes, lower TIDE scores and higher expression levels 
of immune checkpoint genes indicated enhanced immunotherapy responsiveness in low-risk patients. Decreased 
memory B cells, CD8+ T cells, follicular helper T cells, regulatory T cells, and increased activated dendritic cells and 
activated mast cells were identified as crucial immune cells in the TME of high-risk patients.

Conclusions  The immune infiltration-related gene model was well-qualified and provided novel biomarkers for the 
prognosis of HNSCC.
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Background
Head and neck squamous cell carcinoma (HNSCC), a 
common and aggressive malignancy with high mor-
bidity and mortality, is one of the seven most com-
mon malignancies. Annually, there are about 800,000 
new cases and more than 400,000 deaths worldwide 
[1]. Early-stage disease (stages I and II) is treated with 
single-modality surgery or radiotherapy contributing 
to high cure rates. However, due to the complex anat-
omy of head and neck, it is difficult to perform surgery. 
When patients are diagnosed with head and neck can-
cer, more than 50% of them are in clinical stage III or 
IV and lose their best chance of operation [2]. This is 
one of the reasons why the total global survival rate 
of HNSCC is only 50%. Besides, local recurrence or 
metastasis also leads to the poor prognosis of HNSCC.

Traditional treatments are not so effective for 
HNSCC. Even with aggressive therapy, loco-regional 
and distant recurrences after treatment are common 
and thus result in poor prognosis [3]. Despite the con-
tinuous innovation of treatment methods, there are 
still problems such as insufficient efficacy and excessive 
toxicity. With the advent of molecular targeted therapy, 
it is expected to replace cisplatin chemotherapy due 
to its less toxicity. The addition of the EGFR inhibitor 
cetuximab to radiotherapy has been shown to improve 
the prognosis of HNSCC patients compared with radi-
otherapy alone [4]. However, several recent studies 
indicated poor outcomes when cetuximab was given in 
HPV-associated HNSCC [5, 6]. Since traditional treat-
ments and molecular targeted therapy cannot satisfy 
the treatment of HNSCC, immunotherapy has gradu-
ally attracted public attention. Taking the tumor heter-
ogeneity and immune states of different individuals into 
account, it is necessary to identify the immune pheno-
types of HNSCC to ensure that patients gain the maxi-
mum benefit from immunotherapy.

The tumor microenvironment (TME) is proved to be 
involved in tumor progression and treatment. Immune 
cells are most likely to be affected by TME [7]. Among 
them, tumor-infiltrating cells have attracted a lot of 
attention because of their duality and importance. They 
can target tumor cells and show anti-tumor activity. On 
the contrary, they can also exhibit pro-tumor activity and 
promote tumor development and metastases. In addi-
tion, regulatory T cells (Tregs) are considered to secrete 
suppressive cytokines such as TGF-β and IL-10, express 
cytotoxic T lymphocyte–associated protein 4 (CTLA-
4), and significantly correlate with tumor progression 
in HNSCC [8]. Therefore, the investigation of TME in 
HNSCC to reveal the underlying mechanisms is impor-
tant for the improvement of the diagnosis and treatment 
of HNSCC.

In the present study, we used weight gene co-expression 
network analysis (WGCNA) to identify immune infiltra-
tion-related gene modules in HNSCC and constructed a 
prognostic model based on LASSO Cox regression analy-
sis. Nine genes in our risk model significantly influenced 
patients’ survival, and were effectively validated in the 
expression levels of mRNA and protein using GEPIA, 
HPA database and immunohistochemical method. We 
further investigated the landscape of immune infiltration, 
immunotherapy sensitivity and tumor mutation in two 
risk groups. Our results might help us deeply understand 
how TME affects patient’s clinical outcome and offer 
novel prognostic and therapeutic target of HNSCC.

Methods
Dataset acquisition and preparation
The RSEM normalized RNA-seq data of the TCGA 
HNSCC cohort was retrieved from the Broad GDAC fire-
hose (http://​gdac.​broad​insti​tute.​org/). The clinical phe-
notype of HNSCC patients was obtained from the UCSC 
Xena (https://​xenab​rowser.​net/). Data with incomplete 
clinical information, overall survival less than 30 days 
and outliers identified by clustering algorithm were 
deprecated. Total 491 qualified HNSCC patients were 
included in our study. The validation datasets (GSE65858, 
GSE41613, GSE686) and cohort treated with immunother-
apy targeting PD-1/PD-L1 (GSE159067) were retrieved 
from GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/), and 
underwent the same preparation procedures. The expres-
sion array of GSE65858 was based on GPL10558 (Illumina 
HumanHT-12 V4.0 expression beadchip) and included 
267 qualified HNSCC patients. The expression array of 
GSE41613 was based on GPL570 (Affymetrix Human 
Genome U133 Plus 2.0 Array) and included 97 qualified 
HNSCC patients. The expression array of GSE686 was 
based on GPL503 (Agilent Human 1 cDNA Microarray) 
and included 71 qualified HNSCC patients. The relevant 
clinical characteristics was presented in Table 1.

The dataset used in this study was public and open 
access and all procedures followed the data access poli-
cies and publication guides of the database. For the study 
on public data, no approval or informed consent by local 
ethics committee was required. The complete procedures 
used in this study are displayed as a flow chart in Fig. 1.

Investigation of the association between tumor 
microenvironment and prognosis
To evaluate the tumor microenvironment of HNSCC 
patients, the Estimation of Stromal and Immune cells in 
Malignant Tumors using Expression data (ESTIMATE) 
was used to calculate the immune score and ESTIMATE 
score for each sample via R package “estimate” [9]. 
According to these scores, HNSCC patients were divided 

http://gdac.broadinstitute.org/
https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
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into the high group (score > 75 percentile) and the low 
group (score < 25 percentile). R package “survminer” was 
used to plot Kaplan-Meier survival curves for the groups 
of different scores.

Gene set enrichment analysis (GSEA) and gene set 
variation analysis (GSVA)
To discover the differences in immune-related, tumor-
related and signaling pathways between HNSCC samples 
and normal samples, we performed GSEA and GSVA 
analysis on HNSCC samples and normal samples from 

TCGA using the R software packages “clusterprofiler” 
and “GSVA” respectively. The gene sets for these func-
tions and pathways were obtained from the GSEA web-
site (https://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp).

Construction of weighted gene co‑expression network
The weighted gene co-expression network analysis 
(WGCNA) was used to build gene co-expression net-
work via R package “WGCNA” [10]. The RSEM normal-
ized matrix with top 5000 variable genes was input. First, 
the absolute value of the correlation coefficient between 
every two genes was calculated to build a gene expres-
sion similarity matrix, which was then transformed into 
an adjacency matrix. The optimal soft thresholding β was 
selected to ensure scale independence over 0.90 for the 
construction of a scale-free co-expression network. Next, 
the adjacency matrix was converted in a topological 
overlap matrix (TOM) to store the connectivity between 
genes. Finally, hierarchical clustering and the method of 
dynamic cut tree was applied to identify co-expression 
gene modules. Significant gene modules positively cor-
related with immune score were defined as immune 
infiltration-related gene modules. The module-trait rela-
tionship analysis calculated the module member (MM) 
and gene significance (GS) to evaluate the correlation 
between specific gene modules and phenotypes.

Functional enrichment analysis of immune 
infiltration‑related gene modules
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment of the 
intriguing modules from WGCNA were performed 
using R package “clusterProfifiler”. Enriched terms with 
adjusted P value < 0.05 and gene counts ≥3 were consid-
ered significant. The Benjamini and Hochberg method 
was used to adjust P value.

Nine‑gene model of HNSCC based on immune 
infiltration‑related prognostic genes
We used univariate, the least absolute shrinkage and 
selection operator (LASSO), and multivariate cox 
regression to filter significant prognostic genes from 
immune infiltration-related gene modules. First, uni-
variate cox regression was applied to identify genes 
significantly correlated with overall survival (P < 0.05). 
LASSO is a linear regression algorithm using shrinkage 
for survival analysis [11]. LASSO cox regression further 
narrowed the number of immune infiltration-related 
prognostic genes in HNSCC cohort. Ten-fold cross 
validation was performed to minimize the instability 
of the results and the optimal parameter lambda was 
selected based on 1-SE (standard error). Then multiple 
cox regression was used to evaluate the independence 

Table 1  Clinical characteristics of HNSCC patients in TCGA and 
validation dataset

Variables TCGA-HNSCC
(n = 491)

GSE65858
(n = 267)

GSE41613
(n = 97)

GSE686
(n = 71)

Age
   ≤ 60 244 (49.7%) 156 (58.4%) 50(51.55%) 49 (69.01%)

   > 60 247 (50.3%) 111 (41.6%) 47 (48.45%) 22 (30.99%)

Gender
  Female 131 (26.7%) 47 (17.6%) 31 (31.96%) 8 (11.27%)

  Male 360 (73.3%) 220 (82.4%) 66 (68.04%) 63 (88.73%)

Vital status
  Alive 280 (57.0%) 176 (65.9%) 46 (47.42%) 53 (74.65%)

  Dead 211 (43.0%) 91 (34.1%) 51 (52.58%) 18 (25.35%)

Histologic grade
  G1 54 (11.0%) NA NA NA

  G2 293 (59.7%) NA NA NA

  G3 120 (24.4%) NA NA NA

  G4 7 (1.4%) NA NA NA

  GX 17 (3.5%) NA NA NA

Stage
  I 20 (4.1%) 17 (6.3%) 41 (42.27%) 0

  II 96 (19.5%) 37 (13.9%) 12 (16.90%)

  III 103 (21.0%) 37 (13.9%) 56 (57.73%) 18 (25.35%)

  IV 272 (55.4%) 176 (65.9%) 41 (57.75%)

T classification
  T1 34 (6.9%) 34 (12.7%) NA NA

  T2 147 (29.9%) 80 (30.0%) NA NA

  T3 132 (26.9%) 57 (21.3%) NA NA

  T4 178 (36.3%) 96 (36.0%) NA NA

N classification
  N0 240 (48.9%) 93 (34.8%) NA NA

  N1 79 (16.1%) 32 (12.0%) NA NA

  N2 155 (31.6%) 130 (48.7%) NA NA

  N3 9 (1.8%) 12 (4.5%) NA NA

  NX 8 (1.6%) 0 NA NA

M classification
  M0 475 (96.7%) 261 (97.8%) NA NA

  M1 6 (1.2%) 6 (2.2%) NA NA

  MX 10 (2.0%) 0 NA NA

https://www.gsea-msigdb.org/gsea/index.jsp
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of reserved genes from LASSO. Considering the pre-
diction performance and variable independence in the 
meantime, a nine-gene signature model was finally 
established. The risk score of each patient was calcu-
lated as the coefficients from multivariate cox regres-
sion of genes multiplied by their expression levels. 
Nomogram is an analogue tool to combine complex and 
multiple variables into a simple chart for the prediction 
of overall survival [12]. In our study, basic clinical fea-
tures and the risk score from the nine-gene signature 
model were included to build a nomogram which can 
predict the survival probability at 1 year, 3 years, and 
5 years. The ROC analysis was also used to access the 
sensitivity and specificity of the nomogram.

Comparison of expression differences and survival analysis 
for model candidate genes
Gene expression profiling interactive analysis (GEPIA, 
http://​gepia.​cancer-​pku.​cn/) was used to visualize the 
expression level of model candidate genes in tumor and 
normal samples from TCGA HNSCC dataset. Differen-
tially expressed genes were identified under the criterion 
of logFC > 0.5 and P value < 0.01. The Kaplan-Meier sur-
vival curves for each model candidate gene were plot by 
R package “survminer”.

Meta‑analysis of the nine‑gene prognostic model
A meta-analysis was performed using the “meta” R pack-
age and 4 HNSCC datasets from TCGA and GEO were 
included. Heterogeneity among the datasets was assessed 

using the Chi2 and the I2 statistic. p-values < 0.05 were 
considered statistically significant.

Immunohistochemical validation of clinical specimens
To validate the different expression of model candidate 
genes at protein level, clinical specimens of HNSCC 
patients and the human protein atlas (HPA, http://​www.​
prote​inatl​as.​org) were used for immunohistochemical 
analysis. Tumor tissues were collected from 8 HNSCC 
patients diagnosed in the Third Xiangya Hospital from 
January 2020 to December 2020. These tissues were 
formalin-fixed and paraffin-embedded. This study was 
approved by the Ethics Committee of the Third Xiangya 
Hospital (No. 21158), and the study was in accordance 
with the principle of the Helsinki Declaration II. Immu-
nohistochemical procedures were performed as previ-
ously described [13]. The following antibodies were used 
in our immunohistochemistry experiments: Anti-ISG20 
antibody (1:300 dilution; ab135842; Abcam Biochemi-
cals); Anti- CTSL antibody (1:200 dilution; 10,938–1-
AP; Proteintech). IHC results for ISG20 and CTSL were 
assessed by ImageJ software, optical density (OD) was 
measured, and immune response scores were assessed 
with the IHC Profiler plugin. The IHC Profiler uses the 
average gray value (staining intensity) and the percentage 
of positive area (staining area) of positive cells as the indi-
cators of IHC, and finally obtains four scores: High posi-
tive (3+), Positive (2+), Low Positive (1+) and Negative 
(0) [14]. The Human Protein Atlas (HPA, https://​www.​
ptrot​inatl​as.​org/) provided us with immunohistochemical 

Fig. 1  Basic flow chart of this study

http://gepia.cancer-pku.cn/
http://www.proteinatlas.org
http://www.proteinatlas.org
https://www.ptrotinatlas.org/
https://www.ptrotinatlas.org/
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data for TBC1D2, WIPF1, TMEM173 and C5orf15 in 
HNSCC and normal tissues. The degree of staining is 
divided into four levels: high, medium, low, and not 
detected. All methods were carried out in accordance 
with relevant guidelines and regulations.

Prediction of immunotherapy sensitivity of HNSCC patients
The filtered immunotherapy-treated cohort, GSE159067 
included 101 HNSCC patients receiving PD-1/PD-L1 
inhibitors, whose treatment outcomes were divided 
into progressive disease (PD), stable disease (SD), par-
tial response (PR), and complete response (CR). The risk 
scores and groups of each patient were calculated for fur-
ther statical comparisons. Through the online platform 
TIDE (http://​tide.​dfci.​harva​rd.​edu), we used the Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm 
to predict the response of TCGA-HNSCC patients to 
immune checkpoint blockade (ICB) therapy, and investi-
gated their correlation with the risk score of the immune 
infiltration-related gene prognostic model [15].

Landscape of immune cell infiltration in HNSCC
CIBERSORT were applied to evaluate the characteristics 
of immune cell infiltration in TCGA HNSCC cohort, so as 
to seek for the potential association with risk groups and 
model genes. CIBERSORT calculates immune cell composi-
tion in each HNSCC patient based on a deconvolution algo-
rithm [16]. The correlation analysis of immune cell types 
and risk score model was performed by R package “corrplot”.

Somatic mutation analysis of HNSCC patients
The genomic mutation data were retrieved from R pack-
age “TCGAmutations” and visualized by the functions of 
R package “maftools”. The tumor mutation burden (TMB) 
scores of HNSCC patients were downloaded from a pub-
lished study [17].

Statistical analysis
Most analyses were conducted in R version 4.0.5 
(https://​www.r-​proje​ct.​org/) and online analytical 
websites. Kruskal-Wallis nonparametric test was used 
to judge the statistic difference between more than two 
groups under undetermined variances, and Wilcoxon 
rank sum test was used for pairwise comparisons. In 
two-group comparison, t test was only applied to con-
tinuous variables with normal distribution and equal 
variance. The overall survival of risk groups was com-
pared using log-rank test. The significance level was 
set as 0.05.

Results
Association between immune microenvironment 
and tumor progression in HNSCC
Biological processes related to immune microenviron-
ment and tumor progression were enriched in TCGA-
HNSCC cohort according to GSEA (Fig.  2A-B). The 
results of GSVA between HNSCC and adjacent normal 
tissues showed prominent activation of immune- and 
tumor-related pathways (Fig. 2C). The ESTIMATE algo-
rithm assigned scores of tumor microenvironment to 
each patient based on their expression profiles, and the 
immune score and ESTIMATE score were statistically 
compared between tumor stages and grades. As shown 
in Fig. 2D, the immune score was significantly correlated 
with histological grade (p = 0.047) and the ESTIMATE 
score was correlated with tumor stage (p = 0.037). The 
immune score in G3 & G4 was significantly higher than 
that in G2 (mean 590.37 (SD 849.84) vs. mean 386.80 
(SD 751.48), p < 0.05). Besides, the ESTIMATE score in 
Stage IV was significantly higher than that in Stage III 
(mean 192.72 (SD 1336.30) vs. mean 181.70 (SD 1328.08), 
p < 0.05). Furthermore, Kaplan-Meier survival curves of 
patient groups based on several scores revealed better 
survival in patients with lower immune scores (Fig.  2E, 
log-rank p = 0.041).

Identification of immune infiltration‑related gene modules 
by WGCNA
Since immune scores were associated with patients’ sur-
vival in HNSCC, we investigated related co-expression 
genes using the WGCNA algorithm. The optimal soft 
threshold β was selected to achieve ideal scale independ-
ence and mean connectivity before constructing the 
weighted network with efficiency (Fig.  3A-B). Cluster-
ing dendrogram was calculated to generate co-expres-
sion gene modules (Fig.  3C). Based on the correlation 
between gene modules and the immune score in module-
trait relationship heatmap, pink and green modules were 
considered as immune infiltration-related gene modules 
and enrolled in further analysis (Fig.  3D). The eigen-
gene dendrogram indicated the most significant correla-
tion between immune score and the two gene modules 
(Fig.  3E). Both modules exhibited significant module 
membership relevance to gene significance (Fig.  3F-G, 
cor = 0.97, p = 6.1e− 75 for the pink module; cor = 0.58, 
p = 2.1e− 15 for the green module). The adjacency heat-
map also supported the high correlation between the 
two modules and the immune score (Fig. 3H). Total 277 
genes in the pink and green modules were then extracted 
for functional enrichment analysis. The GO enrich-
ment of biological processes was focused on response to 
interferon-gamma, type I interferon and virus (Fig.  3I). 

http://tide.dfci.harvard.edu
https://www.r-project.org/
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Fig. 2  The landscape of immune infiltration microenvironment delineated by GSEA, GSVA and ESTIMATE analysis in HNSCC. A, B The GSEA results 
of significant pathways related to immune response and tumor microenvironment. C The heatmap of GSVA scores of biological processes involving 
immune response and tumor microenvironment in HNSCC and adjacent tissues. D The boxplot and statistical comparisons of immune and 
ESTIMATE scores of different tumor stages or grades. E The survival curves based on immune and ESTIMATE scores
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Fig. 3  Identification of immune infiltration-related gene modules by WGCNA. A, B Screening of the most suitable soft threshold to build a 
scale-free network with ideal scale independence and mean connectivity. C Clustering dendrogram of co-expression gene modules. D The 
correlation between modules and traits. The correlation coefficient and p-value are presented in each cell. E Eigengene dendrogram of gene 
modules and immune score. F, G Correlation scatter plots of module membership and gene significance in immune infiltration-related gene 
modules. H The eigengene adjacency heatmap of gene modules and immune score colored by white. I Functional enrichment of immune 
infiltration-related gene modules by GO and KEGG analysis. The top 10 biological processes and pathways are displayed. J Cnetplot of enrichment 
pathways and annotated genes
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Results of KEGG enrichment showed that immune infil-
tration-related genes were significantly associated with 
diseases and pathways including: EB virus infection, anti-
gen processing and presentation, phagosome, human 
papillomavirus infection, Th1 and Th2 cell differentiation 
(Fig. 3I-J).

Construction of a nine‑gene prognostic model for survival 
prediction of HNSCC
To screen prognostic immune infiltration-related genes, cox 
regression analysis was applied for genes in the pink and green 
modules. First, univariate cox regression identified 52 signifi-
cant prognostic genes and genes with p < 0.01 were visualized 
by forest plot (Fig. 4A). LASSO cox regression was used to fil-
ter the most stable prognostic genes with optimal parameter 
lambda, which ensured that the sum of LASSO regression 
coefficients was below a fixed threshold. Cross validation was 
performed to prevent the model from over-fitting (Fig. 4B-C). 
Considering the prognostic effect of the entire model and the 
independence of members, nine genes were finally reserved to 
build an immune infiltration-related gene prognostic model. 
The hazard ratios of candidate genes calculated by multi-
variate cox regression were shown in Fig. 4D. In these model 
genes, MORF4L2, CTSL1, TBC1D2, C5orf15, and LIPA were 
risk genes (HR > 1), while WIPF1, CXCL13, TMEM173, and 
ISG20 were associated with low risk (HR < 1). Based on the 
coefficients derived from the multivariate cox regression and 
the expression levels of nine candidate genes, risk scores were 
estimated for each patient: risk score = 0.42049 × expression 
of MORF4L2 + 0.15774 × expression of CTSL1 + 0.24388 ×  
expression of TBC1D2 + − 0.17454 × expression of WIPF1 + 
 − 0.05195 × expression of CXCL13 + − 0.16907 × expression 
 of TMEM173 + 0.46373 × expression of C5orf15 + 0.20081 ×  
expression of LIPA + − 0.14594 × expression of ISG20. Fur-
thermore, the multivariate cox regression of clinical factors 
demonstrated that the risk score was an independent prog-
nostic factor for HNSCC (Fig. 4E, p < 0.001).

On the basis of risk scores calculated before, 491 
HNSCC patients in TCGA were divided into high-risk 
group and low-risk group via the maximally selected 
rank method (Fig. 4F). The expression profiles of immune 
infiltration-related gene modules and model candidate 

genes through PCA indicated distinct immune pheno-
types in risk groups (Fig.  4G). Besides, the model gene 
expression heatmap along with the distribution of risk 
scores and survival status in two patient groups was 
shown in Fig. 4H. Kaplan-Meier survival curves showed 
a significant difference between two risk groups, and the 
prognosis of patients in the high-risk group was signifi-
cantly worse (Fig. 4I, log-rank p < 0.05). ROC curves with 
1-, 3-, and 5-year AUC were also plotted to evaluate the 
prediction efficacy of the risk model. The AUCs corre-
sponding to 1, 3, and 5 years of survival were 0.698, 0.715, 
0.661, respectively, which suggested high sensitivity and 
specificity of the nine-gene prognostic model (Fig. 4J). To 
enhance the clinical usability of the nine-gene prognostic 
model, we developed a nomogram with five independ-
ent factors including gender, age, TNM stage, histologi-
cal grade, and risk score in TCGA cohort (Fig. 4K). The 
ROC curve showed that the 1-, 3-, and 5-year AUCs were 
0.711, 0.720, 0.658, respectively, which represented a bet-
ter predictive ability compared with risk score (Fig. 4L).

Expression difference and prognostic effect of model 
candidate genes
We used GEPIA, an analytical website of TCGA data-
base, to investigate the dynamic expression changes 
of nine model genes in tumor and adjacent normal tis-
sues. Results showed that the expression level of genes 
including MORF4L2, CTSL1, WIPF1, CXCL13, C5orf15, 
LIPA, and ISG20 significantly elevated in tumor tissues 
(Fig.  5A). Moreover, Kaplan-Meier survival curves were 
also drawn for candidate genes, respectively. HNSCC 
patients with high expression levels of MORF4L2, 
CTSL1, TBC1D2, C5orf15, LIPA and low expression lev-
els of WIPF1, CXCL13, TMEM173 had poor outcomes 
(Fig. 5B; log-rank p < 0.05).

Meta‑analysis of the nine‑gene prognostic model
Through the previously constructed nine-gene prognostic 
model, we risk-scored the cases in the HNSCC datasets 
included in the meta-analysis, and obtained their Kaplan-
Meier survival curve and hazard ratio(HR)(Fig.  6A-D). 
The meta-analysis based on these results confirmed that 

Fig. 4  Identification of nine immune infiltration-related prognostic genes to build a risk score model. A Forest plot of prognostic module genes 
with P < 0.01 by univariate Cox regression. B, C Ten-time cross-validation of the LASSO model and coefficient profile of filtered prognostic genes. D 
Construction of the prognostic model by multivariate Cox regression. The hazard ratios (HRs) and 95% confidence intervals (CIs) of each candidate 
gene are shown. E The multivariate cox regression of the association between clinical factors (including the risk score) and survival. F The optimal 
cut point selected by the maximum standard log-rank statistics in HNSCC cohort. G PCA based on 277 immune infiltration-related genes showing 
different immune phenotypes in two risk groups. H The model gene expression heatmap combined with the distribution of risk scores and the 
survival of patients in two risk groups. I Kaplan-Meier survival curves of two risk groups in the whole and stage-divided HNSCC cohorts. J ROC 
curves based on risk score in HNSCC cohort within 1–5 years. K Nomogram combining risk score with clinical information. L ROC curves evaluating 
the predictive efficacy of the nomogram for the overall survival within 1–5 years

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Fig. 5  Investigation of the expression difference and prognostic effect of 9 candidate genes in TCGA HNSCC cohort. A The mRNA expression levels 
of 9 candidate genes in tumor and normal samples. B Kaplan-Meier survival curves for 9 candidate genes
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Fig. 6  Meta-analysis of the nine-gene signature model. A The Kaplan-Meier survival curve and hazard ratio (HR) based on TCGA-HNSCC. B The 
Kaplan-Meier survival curve and HR based on GSE65858. C The Kaplan-Meier survival curve and HR based on GSE41613. D The Kaplan-Meier survival 
curve and HR based on GSE686. E Meta-analysis of survival data for the nine-gene signature model. TE: estimate of treatment effect; SE: standard 
error; HR: hazard ratio; CI: confidence interval
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the nine-gene prognostic model risk score was associated 
with prognosis in HNSCC (HR = 2.37, 95% CI: 1.57–3.59, 
Fig. 6E).

Immunohistochemical validation of the protein expression 
of nine candidate genes
We further validated the difference of protein expres-
sion levels for most genes in the risk model. To verify 
the difference in the protein expression of ISG20 and 
CTSL1 between HNSCC tissues and normal squa-
mous epithelium of the head and neck, we performed 
Immunohistochemistry analysis on HNSCC paraffin 
sections. Immunohistochemistry analysis suggested 
that the expression levels of ISG20 and CTSL1 were 
significantly higher in HNSCC tissue quantified by 
the antibodies ab135842 (Fig. 7A-F) and 10,938–1-AP 
(Fig. 7G-L). Based on the results of immunohistochem-
istry from HPA, we compared the protein expres-
sion of TBC1D2, WIPF1, TMEM173 and C5orf15 in 
HNSCC tissues and normal squamous epithelium 
typically located in the head and neck. According to 
the HPA results, the protein expression levels of these 
genes were significantly different between HNSCC tis-
sues and normal tissues (Fig.  8A-D). Genes including 
MORF4L2, CXCL13, and LIPA showed minor differ-
ence of staining intensity in HPA.

Immunotherapy sensitivity and immune infiltration 
of nine‑gene prognostic model
The GSVA scores of biological processes and signaling 
pathways were calculated for each patient to investigate 
their correlation with the risk score. It was suggested that 
the risk score was positively associated with EMT, angio-
genesis, PI3K-Akt-mTOR signaling and WNT signal-
ing pathway, but was negatively associated with immune 
responses and immune cell activation (Fig.  9A). TIDE 
algorithm provided us with a quantitative metric of immu-
notherapy responsiveness. Higher TIDE scores indicated 
weaker responses. Results showed the risk score was posi-
tively correlated with TIDE score (R = 0.13, p = 0.0055), 
which speculated better responses of immunotherapy in 
HNSCC patients with lower risk scores (Fig. 9B). The risk 
score was also positively correlated with myeloid-derived 
suppressor cell (MDSC) and T cell exclusion, while nega-
tively correlated with T cell dysfunction. In the immuno-
therapy-treated cohort, the proportion of PD patients in 

high-risk group was elevated and risk scores in PD group 
were significantly higher than that in CR/PR/SD group 
(Fig.  9C, p < 0.05). Immune checkpoint genes including 
PD1, CTLA4, TIGIT, TNFRSF9, LAG3, BTLA, TIM3, 
ICOS were highly expressed in the low-risk group, which 
supported that low-risk patients based on the nine-gene 
prognostic model might benefit more from immuno-
therapy (Fig.  9D). Using CIBERSORT to calculate the 
proportion of 22 immune celltypes in HNSCC patients, 
we found that over half of immune celltypes significantly 
altered in different risk groups (Fig.  9E). Among them, 
six specific immune celltypes showed apparent distinc-
tion (p < 0.0001): memory B cells, CD8+ T cells, folli-
cular helper T cells, and regulatory T cells significantly 
decreased in the high-risk group, while activated dendritic 
cells and activated mast cells significantly increased. Fur-
ther investigation showed that most model candidate 
genes except C5orf15 were significantly correlated with 
risk-related immune celltypes to some degree (Fig.  9F). 
Notably, CXCL13 was significantly correlated with all six 
immune cells. On the other hand, CD8 + T cell, Follicular 
T cells, and regulatory T cells had the most significant cor-
relation with model candidate genes. Moreover, the tumor 
mutation burden (TMB) scores were positively associated 
with risk scores in HNSCC patients (Fig.  9G). We also 
estimated the incidence of somatic mutations in two risk 
groups using genomic data. Results revealed that TP53 
gene exhibited the highest mutation frequency followed by 
DNAH5. In addition, their mutation frequency was signifi-
cantly higher in high-risk patients (Fig. 9H, p < 0.05).

Discussion
In recent years, the tumor microenvironment has been 
regarded as a pivotal role in the progression of cancers 
including HNSCC [18]. The immune cells, stromal cells 
and extracellular components closely interact with tumor 
cells and form a complicated regulatory network to influ-
ence tumor growth and metastasis. The tumor often 
induces a suppressive microenvironment via impairing 
the function of both innate and adaptive immune cells 
to escape host’s immune surveillance [19]. Despite the 
application of traditional immune therapies in HNSCC, 
a large portion of patients show limited or no responses 
to current drugs. It is urgent and inevitable to find novel 
immune infiltration-related molecular targets in HNSCC 
tumor microenvironment.

(See figure on next page.)
Fig. 7  Immunohistochemistry analysis of the protein expression of ISG20 and CTSL1 in HNSCC and normal tissues. A-E The expression of 
ISG20 was detected by immunohistochemistry in 5 patients with HNSCC (Magnification × 200). F The expression of ISG20 was detected by 
immunohistochemistry in normal head and neck squamous cell tissue (Magnification × 200). G-K The expression of CTSL1 was detected by 
immunohistochemistry in 5 patients with HNSCC (Magnification × 200). L The expression of CTSL1 was detected by immunohistochemistry in 
normal head and neck squamous cell tissue (Magnification × 200). AOD: average optical density; IOD: integral optical density
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Fig. 7  (See legend on previous page.)



Page 14 of 18Ding et al. BMC Cancer           (2023) 23:45 

Bioinformatic analysis has been widely used to inves-
tigate the tumor microenvironment profiles in various 
cancers. A recent study focusing on immune microen-
vironment of clear cell renal cell carcinoma identified 
critical immune subgroups via unsupervised consensus 
clustering and filtered hub genes from WGCNA modules 
[20]. Clustering procedures for modeling were applied 
in another study on the prognosis and immunotherapy 
response of lung squamous cell carcinoma [21]. LASSO 
regression analysis and multivariate Cox proportional 
model were selected as robust methods for the construc-
tion of prognostic gene signature [20, 22].

In our study, immune scores were calculated to esti-
mate the infiltrating level of immune cells by ESTIMATE 

algorithm which was widely used to infer tumor purity. 
Compared with other immune infiltration-related 
HNSCC risk prediction models, our model not only has 
good predictive performance on prognosis, but also can 
predict patient response to immunotherapy. Unlike other 
validation methods using single or multiple datasets, we 
used a prognostic meta-analysis to test the applicability 
and stability of our model.

Our results suggested that patients with high immune 
scores had significantly ameliorated prognosis. We pro-
pose the hypothesis that enhanced immune infiltration 
levels in HNSCC promote anti-tumor responses and 
thus contain the tumor progression. On the contrary, low 
immune score indicating suppressed immune response 

Fig. 8  Immunohistochemistry of several prognostic signatures based on the HPA. A Protein expression levels of TBC1D2 in HNSCC and normal 
tissue. B Protein expression levels of WIPF1 in HNSCC and normal tissue. C Protein expression levels of TMEM173 in HNSCC and normal tissue. D 
Protein expression levels of C5orf15 in HNSCC and normal tissue

(See figure on next page.)
Fig. 9  The profiles of immunotherapy sensitivity, immune infiltration and somatic mutation in HNSCC patients. A The correlation between the 
risk score and known biological processes and signaling pathways in tumor microenvironment. B The correlation between risk scores and tumor 
immune dysfunction and exclusion (TIDE) scores, myeloid-derived suppressor cell (MDSC), T cell exclusion scores, and T cell dysfunction scores. 
C The proportion of patients with different immunotherapy responses in risk groups from dataset GSE159067 and the difference of risk scores 
between immunotherapy response groups. D The expression levels of immune checkpoint genes in two risk groups. E The calculated proportion 
of 22 immune cells in two risk groups. F Heatmap showing the correlation significance between immune cells and model candidate genes. G The 
correlation between the risk score and tumor mutation burden (TMB) score. H The mutation landscape of HNSCC patients in two risk groups. The 
barplot represents the composition of mutation type and the percentage represents the mutation frequency of each gene. PD: progressive disease; 
SD: stable disease; PR: partial response; CR: complete response. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001
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Fig. 9  (See legend on previous page.)
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can be a risk factor for the prognosis of HNSCC patients. 
Consistent with our findings, high immune score was sig-
nificantly correlated with favorable survivals in gastric 
cancer and osteosarcoma [23, 24]. But elevated immune 
score can also indicate poor overall survivals as described 
in clear cell renal cell carcinoma [25]. It is speculated 
that the practical effect of immune infiltration on tumor 
microenvironment is attributed to not only the quantity 
of infiltrated immune cells, but also the functional activ-
ity and interactive patterns with the tumor.

The risk model we constructed consists of nine 
genes: MORF4L2, CTSL1, TBC1D2, WIPF1, CXCL13, 
TMEM173, C5orf15, LIPA, and ISG20. MORF4L2 is 
a component of the NuA4 histone acetyltransferase 
complex involved in the activation of oncogene and 
proto-oncogene-mediated growth induction, and repli-
cative senescence, apoptosis, and DNA repair. Cathep-
sin L (CTSL1), a lysosomal cysteine protease member, is 
mainly involved in the terminal degradation of intracel-
lular phosphorylated proteins [26]. Increasing evidences 
indicate that CTSL1 is highly and specifically expressed 
in various cancers [27, 28]. TBC1D2 is a GTPase-acti-
vating protein of Rab7 GTPase. In breast cancer cells, 
persistent Rac1 activity enhanced escape of β4 integrin 
from lysosomal degradation depending on actin-related 
protein 2/3 and TBC1D2 [29]. WIPF1, also known as the 
WASP-interacting protein (WIP), drives the oncogenic 
activity of mutant p53. Knockdown of WIPF1 in glio-
blastoma and breast cancer cells expressing mutant p53 
reduced the proliferation and growth ability of cancer 
stem-like cells and decreased the expression of cancer 
stem-like markers such as CD44, CD133, and TAZ/YAP. 
WIPF1 knockdown inhibits the growth of glioblastoma 
tumor cells and breast cancer cells in vivo [30]. CXCL13 
is a chemokine capable of promoting B cell migration 
[31]. Previous studies have shown that CXCL13 is asso-
ciated with the prognosis of various cancers including 
oral squamous cell carcinoma and breast cancer [32, 33]. 
Over the past few decades, TMEM173 (also known as 
STING or STING1) was found to play an important role 
in the production of type I interferons and proinflamma-
tory cytokines. STING1-dependent signaling networks 
regulate autophagic degradation and different patterns of 
cell death. Insufficient or overactivation of the STING1 
pathway is associated with various pathological condi-
tions, such as tumorigenesis, infection, disseminated 
intravascular coagulation, autoimmune disease and tis-
sue damage [34]. Recently, TMEM173 was reported to 
correlate with the clinical status and immune response 
of HNSCC patients and can be used as a biomarker for 
improving prognosis [35]. C5orf15 (chromosome 5 open 
reading frame 15) is predicted to be an integral compo-
nent of the membrane and haven’t been investigated yet. 

LIPA (lipase A) functions to catalyze the degradation of 
low-density lipoproteins to generate free fatty acids and 
cholesterol. Since hypoxia and hypermetabolism are 
characteristics of the tumor microenvironment, fatty 
acid turnover is usually high to meet the requirement of 
energy and biosynthesis [36]. Lipophagy may play a dual 
pro- and anti-tumor role. The expression of lysosomal 
acid lipase (LAL) was suggested to improve lipid metabo-
lism and reduce metastasis in lung and liver cancer [37]. 
ISG20 is a kind of interferon-induced antiviral exoribo-
nuclease mainly acting on single-strand RNA, and exerts 
antiviral activity against multiple RNA viruses in an exo-
nuclease-dependent manner [38]. Whereas, high ISG20 
expression was found to significantly associated with 
poor prognosis in liver cancer and clear cell renal cell 
carcinoma, which was proved to enhance angiogenesis, 
tumor cell proliferation and metastasis [39, 40].

In our results, the expression of multiple immune 
checkpoints differed between high-risk and low-risk 
groups based on our risk model. Blockade of PD1 with 
nivolumab or pembrolizumab produces durable anti-
tumor efficacy in patients with recurrent or metastatic 
HNSCC, although only 15–20% of patients respond to 
treatment [41]. As a PD-1 inhibitor, pembrolizumab 
can be used in combination with cytotoxic chemother-
apy for recurrent or metastatic HNSCC, and a recent 
clinical trial demonstrated promising clinical activity of 
pembrolizumab in combination with cetuximab in the 
treatment of recurrent or metastatic HNSCC [42]. Com-
bined immunotherapy targeting PD-L1 and CTLA-4 has 
shown enhanced activity in several tumor types. How-
ever, further study found no statistically significant dif-
ference in OS between durvalumab plus tremelimumab 
treatment and standard treatment [43]. One study 
showed that increases in PD-1 and TIM-3 TILs dur-
ing cetuximab treatment were inversely associated with 
response in HNSCC patients. Blocking these immune 
checkpoint receptors may enhance cetuximab-based 
cancer immunotherapy, potentially improving clinical 
outcomes in patients with HNSCC [44]. Using the TIDE 
algorithm, we found that the score of the risk model was 
significantly positively correlated with the TIDE score. In 
conclusion, immune checkpoint blockade (ICB) therapy 
has important value in the treatment of HNSCC, and 
our risk model has potential value in predicting patient 
response to it.

In results of immune infiltration analysis, memory B 
cells, CD8+ T cells, follicular helper T cells, and regula-
tory T cells were enriched in the low-risk group, while 
activated dendritic cells and activated mast cells elevated 
in the high-risk group. CD8+ cytotoxic T cells are capa-
ble of releasing granzymes and perforin to directly target 
tumor cells. Activated CD4+ or CD8+ T cells can also 
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produce anti-tumor cytokines such as IFN-γ to inhibit 
tumor growth and recruit other immune cells.

It was reported that higher CD8+ tumor infiltrat-
ing T-lymphocytes were correlated with improved sur-
vival and predicted to be a favorable prognostic factor 
in HNSCC [45, 46]. Although Tregs are typically immu-
nosuppressive and contribute to the immune escape 
of tumor, studies found that a high infiltration level of 
Foxp3+ Tregs was significantly associated with longer 
survival time of HNSCC patients, which were in accord-
ance with our results [47]. The increased Foxp3+ Tregs 
in the low-risk group may indicate persistently enhancing 
immune responses and thereby inhibit tumor progres-
sion. The roles of tumor-infiltrating B cells in HNSCC 
haven’t been clearly elucidated yet since they are so 
few and excluded in most immune infiltration analysis. 
A study found that activated, antigen-presenting and 
memory B cells were enriched in the TME of HNSCC, 
and further suggested the dual effect of B cells due to 
their plasticity and heterogeneity [48]. Dendritic cells 
have been described as a strong antigen-presenting 
cells (APCs) and to mediate the activation of T cells 
[49]. However, few studies have explored their roles in 
HNSCC. The high level of activated dendritic cells in the 
high-risk group can be related to the attenuated inhibi-
tory effect of Tregs to some extent. Mast cells are widely 
considered to produce regulatory cytokines target-
ing various immune cells to participate in anti-infective 
response, allergy and autoimmunity diseases. Low mast 
cell density was considered to associated with reduced 
survival in HNSCC [50].

Conclusions
We comprehensively analyzed the microenvironment 
and immune cell infiltration in HNSCC, and further built 
a nine-gene risk model to explore the prognostic value 
of immune infiltration-related biomarkers. These find-
ings reveal the pivotal role of tumor microenvironment 
in HNSCC and can provide new molecular targets for the 
immunotherapy of HNSCC patients.
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