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Abstract 

Background  Hepatocellular carcinoma (HCC) is a common abdominal cancer with dissatisfactory therapeutic 
effects. The discovery of cuproptosis lights on new approach for cancer treatment and assessment. So far, there is 
extremely limited research investigating the roles of cuproptosis-related (CR) genes in cancers.

Methods  A novel CR risk signature was constructed using the Lasso regression analysis. Its prognostic value was 
assessed via a series of survival analyses and validated in three GEO cohorts. The effects of CR risk signature on tumor 
immune microenvironment (TIM) were explored through CIBERSORT, ESTIMATE, and ssGSEA algorithms. Using GESA, 
we investigated its impacts on various metabolism process. The somatic mutation features of CR signature genes 
were also explored via cBioPortal database. Using tumor mutation burden, expressions of immune checkpoints, 
TIDE score, IMvigor 210 cohort, and GSE109211 dataset, we explored the potential associations of CR risk score with 
the efficacy of immune checkpoint inhibitors (ICIs) and sorafenib. Finally, the biofunctions of DLAT in HCC cells were 
ascertained through qPCR, immunohistochemistry, colony formation, and Transwell assays.

Results  FDX1, DLAT, CDKN2A and GLS constituted the CR risk signature. CR risk signature possessed high prognostic 
value and was also applicable to three validation cohorts. Meanwhile, it could improve the accuracy and clinical mak-
ing-decision benefit of traditional prognostic model. Moreover, high CR risk was indicative of unfavorable anti-tumor 
immune response and active metabolisms of glycolysis and nucleotide. As for therapeutic correlation, CR risk score 
was a potential biomarker for predicting the efficacy of ICIs and sorafenib. Through qPCR and immunohistochemistry 
detection in clinical samples, we reconfirmed DLAT was significantly upregulated in HCC samples. Overexpression of 
DLAT could promote the proliferation, migration, and invasion of HepG2 and HuH-7 cells.

Conclusions  The novel CR risk signature greatly contributed to the clinical assessment of HCC. Cuproptosis regula-
tory gene DLAT possessed cancer-promoting capacities and was expected to be a promising therapeutic target for 
HCC.
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Background
Hepatocellular carcinoma (HCC), a common abdomi-
nal tumor typically originating from the cirrhotic liver, is 
the fourth most common cause of cancer-related death 
worldwide, leading to over 400,000 deaths throughout 
China in 2021 [1, 2]. Although unremitting efforts have 
been devoted to the diagnosis and treatment of HCC, 
patients still suffer from poor prognoses. In China, more 
than half of the patients are diagnosed with advanced 
disease at their first visit, and their 5-year overall sur-
vival rate (OSR) is < 12.5% [3]. Surgical excision offers the 
only possibility for a cure [4]. However, only 34 to 70% of 
patients may be suitable for hepatic resection; this limi-
tations cause the overall postoperative mortality to reach 
up to 3% [5]. Moreover, molecular target therapy (MTT) 
and immune checkpoint inhibitors (ICIs) exhibit limit-
ing improvements in overall survival (OS). For instance, 
the median OS of sorafenib an approved first-line agent 
for advanced HCC, is merely 14.7 months [6]. Addition-
ally, only a minority of patients receiving ICIs achieve 
the treatment response. Nivolumab and pembrolizumab 
commonly produce a 15–20% rate of objective remis-
sions [7]. These observations underscore the urgency and 
importance of widening therapeutic strategies and refin-
ing clinical assessments. Recently, cuproptosis, a novel 
form of programmed cell death (PCD), has been a topic 
of interest in HCC treatment.

Programmed cell death exceedingly expands the 
anti-cancer arsenal. With the discovery of ferroptosis, 
necroptosis and pyroptosis, we have obtained a deeper 
understanding of carcinogenic mechanism and clini-
cal assessment of multiple cancers [8–10]. For example, 
SLC7A11 the catalytic subunit of Xc- system in ferrop-
tosis could promote malignant biological properties of 
renal carcinoma cells [9]. Ferroptosis regulator SLC1A5 
exhibits its cancer-promoting abilities by activating the 
mTORC1 signaling pathway [10]. In 2022, Tsvetkov, P 
et al. has reported noteworthy research on copper-medi-
ated cell death, namely ‘Cuproptosis’ [11]. Mechanisti-
cally, metal reductase FDX1 is activated owing to the 
accumulation of intracellular copper ions. Subsequently, 
FDX1 mediates the lipoylation of the tricarboxylic acid 
cycle (TCA) proteins, thereby inducing the oligomeriza-
tion of lipoylated proteins with the aid of copper ions. 
Considering that the immense potentials of cuproptosis 
in cancer treatment, the use of Cu ionophores has been 
proposed to be an emerging technological approach for 
targeting cancer cells [12].

The discovery of cuproptosis has attracted consider-
able interest across the oncology community. Several 
scholars have commented on this remarkble finding and 
regarded it as a new bellwether for cancer treatment [13–
15]. Nevertheless, limited studies have probed into the 

roles of cuproptosis regulatory genes in cancers, which 
is the original aim of this research. In the present study, 
we sought to construct a novel risk signature based on 17 
core CR genes using Lasso regression analysis. Moreo-
ver, we intended to investigate its great prognostic value 
and the abilities for indicating the immune microenvi-
ronment, metabolic reprogramming and therapeutic 
outcomes. Our findings provided novel and valuable evi-
dence of the therapeutic potential of utilizing cuproptosis 
for treating HCC.

Materials and methods
Data source
We obtained the gene expression data and clinical infor-
mation from TCGA, ICGC and GEO public databases. 
Owing to the inadequate number of normal samples in 
TCGA-LIHC cohort (n = 50), we added 110 normal liver 
tissue samples from GTEx database (https://​xenab​rowser.​
net/​datap​ages/) to equilibrize the sample sizes of tumor 
and normal tissues. All transcriptome data was stand-
ardized by log2 (FPKM + 1) transformation. The clinical 
characteristics of TCGA, ICGC and GEO cohorts were 
presented in Supplementary Table 1–2.

Cuproptosis‑related gene set
Reportedly, protein lipoylation in TCA cycle triggers the 
onset of cuproptosis via FDX1 mediation. Accordingly, 
based on the findings of the study by Tsvetkov, P et  al. 

Table 1  Seventeen critical genes involved in cuproptosis 
process

Gene symbol Description

FDX1 Ferredoxin 1

LIPT1 Lipoyltransferase 1

LIAS Lipoic acid synthetase

DLD Dihydrolipoamide dehydrogenase

PDP1 Pyruvate dehydrogenase phosphatase catalytic subunit 
1

DLAT Dihydrolipoamide S-acetyltransferase

PDHA1 Pyruvate dehydrogenase E1 subunit alpha 1

PDHB Pyruvate dehydrogenase E1 subunit beta

DBT Dihydrolipoamide branched chain transacylase E2

GCSH Glycine cleavage system protein H

DLST Dihydrolipoamide S-succinyltransferase

SLC31A1 Solute carrier family 31 member 1

ATP7A ATPase copper transporting alpha

ATP7B ATPase copper transporting beta

MTF1 Metal regulatory transcription factor 1

CDKN2A cyclin dependent kinase inhibitor 2A

GLS Glutaminase

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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[11], we selected 17 critical cuproptosis regulatory genes 
for further analysis. The CR genes and their functions in 
the cuproptosis process were shown in Table 1. We con-
structed the protein–protein interaction (PPI) network of 
CR genes using the STRING database (https://​string-​db.​
org/) [16] and Cytoscape (version 3.71) software [17]. The 
biological function analyses of 17 cuproptosis regulators 
were performed via the DAVID database (https://​david.​
ncifc​rf.​gov/) [18].

Consensus clustering analysis
We applied consensus clustering for identifying the dis-
tinct prognostic patterns based on the features of CR 
expressions. This procedure was performed using the 
‘ConsensusClusterPlus’ package in R software (version 
4.1.2) and was based on the algorithm of cumulative dis-
tribution function (CDF).

Establishment of CR risk signature
WE constructed a novel CR risk signature through two 
steps. First, CR differentially expressed genes (DEGs) 
were screened out using the ‘Limma’ package in R soft-
ware (version 4.2.0). The screening criteria were as fol-
lows: adjusted p-value < 0.05 and absolute value of 
log2FC ≥ 0.58 (1.5 fold difference in gene expression). 
Second, we used CR DEGs to accomplish the modeling 
process through the Lasso regression analysis using the 
‘glmnet’ R package. This process was performed using the 
sevenfold cross-validation scheme.

Prognostic analysis
The optimal cutoff value of the CR risk score was deter-
mined using the Cutoff Finder online tool (http://​molpa​
th.​chari​te.​de/​cutoff) [19]. The prognostic differences 
between high- and low-risk groups were compared based 
on the Kaplan–Meier method. Independent prognostic 
factors of HCC were identified using the Cox univari-
ate and multivariate analyses. The accuracy of predicting 
OSR was assessed using the receiver operating charac-
teristic curve (ROC). Decision curve analysis (DCA) was 
utilized for determining whether CR risk score could 
elevate clinical-decision benefit of traditional prognostic 
models. Furthermore, we conducted clinical subgroup 
analyses to evaluate the prognostic stratification abil-
ity of the CR model in HCC patients with different dis-
ease stages. Owing to the low number of samples in M1 
(n = 3) and N1 stages (n = 3), clinical subgroup analyses 
were not applied to these subgroups. Using multiple 
logistic regression, a nomogram comprising of clinical 
stage and CR risk level were constructed to predict the 
OSR of individual at 1,3, and 5  years. The calibration 
curve was used to test its predictive accuracy.

We selected the GSE14520, GSE116174 and ICGC-
LIRI cohorts to validate the prognostic value of CR risk 
signature. Survival difference analysis and ROC were 
both conducted in each validation cohorts.

Immune and mutational analysis
The CIBERSORT algorithm was performed to quantize 
the infiltration levels of 21 immune cells in each HCC 
sample [20]. As described in previous studies [21, 22], 
ssGSEA (single-sample gene set enrichment analysis) 
method was employed to calculate the activities of ten 
immune-related signaling pathways. The ESTIMATE 
method is an effective approach for inferring the fraction 
of stromal and immune cells in tumour samples using 
gene expression [23]. By this method, immune score, 
stromal score and tumor purity of each HCC sample can 
be calculated. The cBioPortal database (http://​cbiop​ortal.​
org) [24] provided the somatic mutational frequency and 
patterns of CR signature genes across four HCC projects 
(n = 973 samples).

GSEA
GSEA (Gene Set Enrichment Analysis) was used to 
investigate the influence of CR risk score on multiple 
metabolic processes, including glycolysis, nucleotide, 
cholesterol, glutamine, and fatty acid metabolisms. The 
MSigDB database (https://​www.​gsea-​msigdb.​org/) pro-
vided the used gene sets. The detailed descriptions of 
metabolic gene sets were presented in Supplementary 
Table  3. The phenotype labels were set as high-CR risk 
versus low-CR risk samples. The number of permuta-
tions was set at 1000, and there was no collapse in gene 
symbols.

Therapeutic correlation analysis
WE explored the potential associations of CR risk score 
with the efficacy of sorafenib and ICIs. The GSE109211 
dataset, namely the phase 3 STORM trial, contained the 
transcriptome data and therapeutic outcomes of 140 
HCC patients receiving sorafenib treatment [25]. Thus 
it was applied to the sorafenib-related analysis. Regard-
ing ICIs, we addressed the issue from four perspec-
tives, namely tumor mutation burden (TMB), TIDE 
(Tumor immune dysfunction and exclusion) algorithm, 
the expressions of immune checkpoints (ICs), and the 
IMvigor 210 cohort. Among these, TIDE algorithm is 
pivotal for predicting the response to anti-PD-1/L1 and 
anti-CTLA4 treatments based on the estimation of T 
cell dysfunction and tumor immune evasion, which was 
achieved by its online tool (http://​tide.​dfci.​harva​rd.​edu/​
login/) [26]. The IMvigor210 dataset was derived from a 
real clinical cohort and offered a therapeutic response to 
atezolizumab (a PD-L1 inhibitor) of 348 patients [27].

https://string-db.org/
https://string-db.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://molpath.charite.de/cutoff
http://molpath.charite.de/cutoff
http://cbioportal.org
http://cbioportal.org
https://www.gsea-msigdb.org/
http://tide.dfci.harvard.edu/login/
http://tide.dfci.harvard.edu/login/
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Clinical samples and qPCR
After obtaining informed consent from the patients, 20 
pairs of HCC and adjacent normal liver tissues were uti-
lized for confirming the differential expression of DLAT. 
The study protocol was approved by the Ethics Com-
mittees of second affiliated hospital of Xi’an Jiaotong 
University.

Total RNA was extracted using TRIzol Reagent 
(TakaRa, Japan). RNA concentration was calculated 
by the A260/A280 ratio with the aid of Nanodrop 2000 
spectrophotometer. Reverse transcription reactions were 
performed via the PrimeScript RT reagent Kit (Takara, 
Japan). RT-qPCR reaction was marked by SYBR-Green 
PCR Reagent (Takara, Japan) and tracked on the ABI 
Prism 7900 sequence detection system. GAPDH was 
employed as the reference gene. The relative gene expres-
sion was calculated according to the 2-ΔΔCT method. 
The list of primer sequences was shown in Supplemen-
tary table 4.

Immunohistochemistry assay
The Formalin-fixed HCC and the paired adjacent normal 
tissues were embedded in paraffin and cut into 3 mm sec-
tions. The clinical specimens were incubated with rabbit 
polyclonal antibodies of DLAT (1ug/ml, Abcam, USA) at 
4° overnight. Secondary antibodies labeled with horse-
radish peroxidase (1:400, Abcam, USA) were incubated 
with the sections at room temperature for 1.5  h. Then, 
each section was stained with DAB reagent, and finally 
counterstained with hematoxylin.

Cell culture and transfection
Two hepatocellular cancer cell lines (HepG2 and Huh-7) 
that were obtained from Procell Life Science&Technology 
Company (Wuhan, China) were used for further in vitro 
experiments. HepG2 and Huh-7 cells were cultured in 
MEM (Minimum Essential Medium) and DMEM (Dul-
becco’s Modified Eagle Medium) respectively. Each 
medium was added by 10% FBS (Fetal bovine serum) 
and 1% P/S (Penicillin/ Streptomycin) (Procell, Wuhan, 
China). HanHeng Biotechnology (Shanghai, China) 
designed and synthesized the short hairpin RNA target-
ing DLAT (sh-DLAT) and the overexpression plasmids 
(OE-DLAT). Their specific sequences were shown in 
Supplementary table 5. The lentiviral system created sta-
ble transfected cells (HanHeng Biotechnology, Shanghai, 
China).

Colony formation assay
Transfected cells at logarithmic growth phase were 
seeded into 6-well plates with a density of 1 × 103/ per 
well. After the incubation of 2 weeks, cell colonies were 
visible and were fixed by methanol. Giemsa was applied 

to stain the cell colonies. Finally, colonies were counted 
under the microscope from five random fields.

Transwell assays
Transwell assays followed the similar procedures 
described previously [28]. In migrative assays, the medi-
ums with different concentrations of FBS were added 
into upper (0.1%) and lower (10%) chambers respectively. 
Cells were cultured for 24 h, and we used PBS and swab 
to remove non-migrative cells. Then, the migrated cells 
were fixed by paraformaldehyde for 20  min and stained 
by 0.1% crystal violet for 20 min. Cell counting was con-
ducted using a high magnification microscope (100-fold) 
from five random visual fields. For the invasive assays, the 
upper chambers were precoated with Matrigel (Corning, 
NY, USA).

Statistical analysis
All statistical analyses were performed using the R soft-
ware (version 4.2.0) and GraphPad Prism (version 8.0). 
Differences between groups were compared by unpaired 
T test or Wilcoxon rank sum test. Correlations between 
CR risk score and the clinicopathological features of HCC 
were determined via the Kolmogorov–Smirnov test. The 
in vitro experiments were performed in triplicated. Sta-
tistical significance was set at P < 0.05.

Results
Construction of a novel CR risk signature based on Lasso 
regression analysis
The workflow was depicted in Fig. 1. Using CR DEGs, a 
CR risk signature was constructed through Lasso regres-
sion analysis. We comprehensively investigated the roles 
of the CR risk score in clinical assessments of HCC and 
selected DLAT, a core cuproptosis regulator, for further 
investigation.

According to the detail mechanism of cupropto-
sis reporting by Tsvetkov P et  al. [11], 17 pivotal genes 
were selected to consist of a CR gene set. The PPI net-
work of these genes was presented in Fig.  2A. Through 
biological function analysis, we found that these genes 
were significantly enriched in ‘TCA cycle-related’ pro-
cesses (Fig.  2B), confirming the tight linkage between 
cuproptosis and mitochondrial respiration. Among the 
17 CR genes, up to 10 genes (58.8%) were differentially 
expressed in the HCC samples. Their expression heatmap 
is exhibited in Fig. 2C. Compared with that in the normal 
samples, FDX1 expression was downregulated and oth-
ers were upregulated in tumor samples. Through Lasso 
regression analysis, we constructed a novel CR risk sig-
nature. λ value determines which variables could make 
the model optimal [29]. Cross validation can be used 
to find the best λ value, which is visualized through the 



Page 5 of 21Ke et al. BMC Cancer           (2023) 23:25 	

alterations between partial-likelihood deviance (PLD) 
and Log(λ) [30]. As shown in Fig. 2D, when PLD reached 
the minimum, we could obtain the best value of Log(λ), 
which was slightly larger than -4. At this time, the model 
fitting degree of CR risk signature was also optimal, and 
its number of variables was 4. Similarly, changes in trajec-
tory of variables also reflect the process of Lasso regres-
sion (Fig. 2E). With the increase of λ value, the coefficient 
of each gene is decreasing. When the coefficient of some 
gene attenuated to zero, it was indicative that this gene 
made negligible contribution to the model and should be 
eliminated. Thus, when Log(λ) took the optimum value 
(Around -4, Fig. 2DE), there were only four genes whose 
coefficients did not decay to zero (DLAT, CDKN2A, GLS, 
and FDX1). Naturally, these genes were applied to con-
struct the CR risk signature, and their coefficients were 
shown in new Fig. 2F.

According to the novel CR risk signature, the risk 
score of each HCC patient in TCGA-LIHC cohort was 
calculated. Through Cutoff Finder online tool [19], 
we obtained the optimal cut-off value of CR risk score 
(1.6471), by which 342 HCC patients were divided into 
high- and low-risk groups (Supplementary Fig. 1). Corre-
lation analysis revealed that survival status, clinical stage, 
T, and N stages were all closely associated with CR risk 
levels (Fig. 2G), suggesting that CR risk could reflect the 
clinical status of HCC patients.

Two prognostic clusters based on the expressions of CR 
genes
Subsequently, we stratified HCC patients for prog-
nosis using two cluster patterns based on CR gene 
expression. Heatmap of the consistency matrix showed 
that intragroup members were highly homogeneous 
(Blue module), while intergroup difference was highly 

Fig. 1  The flow chart of the present study. Diagrams after the item labels refer to the thumbnail images of analytical results or the core methods 
used. DEGs, differentially expressed genes; CR, cuproptosis-related
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Fig. 2  A novel CR risk signature for HCC clinical assessment. A The PPI network of 17 CR genes. B GO enrichment analysis of 17 CR genes. C The 
expressive heatmap of 17 CR genes. D Cross validation process in Lasso regression analysis, which is visualized through the alterations between 
partial-likelihood deviance (PLD) and Log(λ). E Changes in trajectory of variables. With the increase of λ, the coefficient of each variable is 
decreasing. When the coefficient of some variable attenuates to 0, it is indicative that this variable makes negligible contribution to the model and 
should be eliminated F The coefficients of 4 CR signature genes. G The relationships between CR risk levels and clinicopathological features of HCC
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obvious (White area), when K-value was 2 (Supplemen-
tary Fig.  2A). Similarly, cumulative distribution curve 
(CDF) revealed that the curve decreased the most gen-
tly when K = 2 (Supplementary Fig.  2B). Meanwhile, we 
observed that the alterations of area under CDF curve 
were most notable when K-value was 4, while that were 
second notable when K-value was 2 (Supplementary 
Fig. 2C). Therefore, above findings pointed that 2 was the 
appropriate K-value, and HCC patients could be divided 
into two prognostic clusters in term of the expressions 

of 17 CR genes. Through survival analysis, we found 
a significant survival difference between two clusters 
(Supplementary Fig.  2D). Since CR risk score in cluster 
2 was much higher than that in cluster 1 (Supplemen-
tary Fig.  2E), high CR risk may be unfavorable to HCC 
prognosis. Nevertheless, these clustering patterns could 
only explain 38.2% prognostic variation (Supplementary 
Fig. 2F).

Fig. 3  CR risk signature provides critical information for prognostic assessment in HCC. A The overall survival difference between high- and low- CR 
risk groups. B The accuracy of CR risk score and other clinical features for predicting OSR. C The PCA result of CR risk signature. D Cox univariate 
prognostic analyses. E Cox multivariate prognostic analyses. F The DCA results. Model A (Red) represents clinical stage model. Model B (Blue) 
represents TNM-staging model. Model C (Orange) represents the survival model consisting of clinical stage and CR risk score. Model D (Green) 
represents the survival model consisting of TNM stage and CR risk score. G The predictive accuracy of the combination of clinical stage and CR risk 
score. H The predictive accuracy of the combination of TNM-staging and CR risk score. OSR, overall survival rate; HR, hazard ratio; AUC, area under 
curve; CI, confidence interval
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Great prognostic value of CR risk signature
There was an obvious difference in OS between high- 
and low-CR risk groups. High CR risk conferred a worse 
prognosis (HR = 2.71, P < 0.001) (Fig. 3A). Regarding pre-
dictive accuracy, the CR risk score possessed the best 
performance compared to other clinicopathological fea-
tures (AUC = 0.721, Fig.  3B). PCA analysis showed that 
CR risk signature could explain up to 64.6% of prognos-
tic variation; this value was better than that obtained via 
clustering patterns (Fig.  3C and Sup-Fig.  1F). CR risk 
score was identified as the only independent prognostic 
factor of HCC (HR = 2.924, P < 0.001) (Fig.  3DE). Nota-
bly, through DCA analysis, we found that the combina-
tion of TNM-staging and CR risk score or AJCC/Stage 
and CR risk score could boost the net benefit of single 
TNM- or Stage-based prognostic models, at a certain 
risk threshold probability (Fig. 3F). Therefore, the use of 
the combined prognostic models would greatly reduce 
decision-errors caused by false-negative or false-positive 
probabilities. Briefly, CR risk score could increase the 
clinical decision-making benefit of traditional prognostic 
models based on clinical stage and TNM system (Fig. 3F). 
Additionally, CR risk score also enhanced their predic-
tion accuracy (Fig.  3GH). These findings indicated the 
improvements rendered by the CR risk score to the cur-
rent prognostic models.

CR risk signature also possessed wide applicability. 
Clinical subgroup analyses confirmed that CR risk score 
had potent abilities to distinguish the survival differ-
ences of HCC patients in all the subgroups (Fig.  4A-J). 
Significant prognostic differences were observed between 
high- and low-CR risk groups irrespective of the stage of 
disease ( Early stage: T1/2, Stage I–II; Advanced stages: 
T3/T4, Stage III–IV). Furthermore, we constructed a 
nomogram comprising of clinical stage and CR risk score 
to predict the 1-, 3-, and 5-year survival rates of HCC 
patients in clinical practice (Fig.  4K). For instance, in 
the same population of clinical stage IV, 1-year OSR of 
patients with low-CR risk was more than 70%, whereas 
that of patients with high-CR risk was less than 30%. 
Additionally, the calibration plots validated the remark-
able predictive accuracy of the nomogram (Supplemen-
tary Fig. 3).

Confirmation of the prognostic value of CR risk signature 
in three validation cohorts
The aforementioned findings unveiled the prognostic 
value of CR risk signature in TCGA cohort. Neverthe-
less, whether it could stratify patients for prognosis in 
other cohorts remain unelucidated? Our results indicated 
that there were significant differences in OS between 
the high- and low-CR risk groups in the GSE14520, 

GSE116174 and ICGC-LIRI cohorts (Fig.  5A-C). High 
CR risk led unfavorable survival outcomes. Regarding 
prediction accuracy, the CR risk score displayed an AUC 
of 0.635 -0.670 (Fig.  5D-F); this value was moderately 
weaker than that in TCGC cohort. We found that the CR 
risk score was superior to other clinical features in pre-
dicting OSR of HCC in the GSE116174 and ICGC-LIRI 
cohorts (Fig. 5E and F). Thus, the CR risk signature was 
also applicable to other cohorts.

Associations of adverse anti‑tumor immune response 
with high CR risk
Using the CIBERSORT algorithm, the infiltrating abun-
dances of 21 immune cells in each HCC sample were 
calculated and were presented in Supplementary Fig.  4. 
High CR risk was accompanied by decreased infiltrating 
levels of CD8 + T cells and macrophages M1 (Fig.  6A); 
Conversely, the infiltrating levels of memory B cells, 
macrophages M0 and macrophages M2 were higher 
in the high-risk group than that in the low-risk group 
(Fig.  6A). As shown in Table  2, these alterations in the 
infiltrating levels were commonly detrimental to the anti-
tumor immune process. Similar immune changes were 
observed in the activity of different pathways. High CR 
risk was concomitant with the low cytolytic activity and 
type-II IFN (Interferon) response, but high activity of 
APC (Antigen presenting cell) co-stimulation (Fig.  6B). 
ESTIMATE analyses showed that stromal, immune and 
ESTIMATE scores in low-risk group were significantly 
higher in the low-risk group than in the high-risk group 
(Fig. 6C), which revealed that high CR risk was not con-
tributive to the anti-tumor immune process. High CR 
risk was found to harbor higher tumor purity (Fig. 6D). 
Therefore, CR risk score could aid in stratifying HCC 
patients in different anti-tumor immune statuses.

Moreover, the somatic mutation of CDKN2A was most 
common among all signature genes (6%, Fig. 6E), whereas 
that of other signature genes was barely visible (< 0.5%, 
Fig. 6E) in the HCC samples. These results implied that 
the abnormal expressions of FDX1, DLAT and GLS 
may result from transcriptional or post-translational 
regulations.

Metabolic enrichment of glycolysis indicated by CR risk 
score
Metabolic reprogramming well represented by glyco-
lysis exerts critical roles in tumor biology. As shown in 
Table  3, glycolysis, nucleotide, cholesterol, glutamine 
and fatty acid (FA) metabolisms were closely involved in 
cancer onset and development. We found that multiple 
glycolysis-related pathways were significantly enriched 
in HCC samples with high CR risk (Fig. 7A-C). The same 
trend in enrichment was found in nucleotide metabolism 
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(Fig. 7D), indicating that high CR risk marked active cell 
proliferation. However, CR risk levels did not affect the 
enrichments of cholesterol, glutamine and FA metabo-
lisms (Fig. 7E-G).

Prediction of the efficacy of sorafenib and ICIs by CR risk 
score
Using transcriptome data and clinical information from 
the GSE109211 dataset, we explored the correlation 

between CR risk score and the therapeutic response to 
sorafenib. The CR risk score was higher in non-response 
patients than in response patients (Fig. 7H). Hence, high 
CR risk may be an indicator of sorafenib resistance.

We then investigated the potential associations of CR 
risk scores with the efficacy of ICIs. First, there was no 
significant difference in TMB between high- and low-CR 
risk levels (Fig. 7I). Second, the high-CR risk group pre-
sented lower TIDE score than the low risk group (Fig. 7J). 
Correspondingly, HCC patients with high-CR risk were 

Fig. 4  CR risk signature holds wide applicable scope. A-J The survival differences between high- and low-CR risk groups in each HCC clinical 
subgroup. K The nomogram composing of clinical stage and CR risk level for predicting 1, 3, 5-year OSR of HCC patients
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less susceptible to suffering from the dysfunction of T 
cells (Fig.  7J). Hence, this finding supported that high 
CR risk was suggestive of ICIs response. Third, except 
for LAG3, the high-CR risk was concomitant with higher 
expressions of other ICs (Fig.  7K). Given that patients 
with over-expressions of ICs exhibited a good response 
to ICIs treatment [31], this finding also supported the 
deduction of TIDE analysis. Finally, we obtained similar 
analytical results from the IMvigor 210 cohort. Patients 
with disease remission had higher CR risk scores than 
those with disease progression (Fig.  7L). This finding 
supported the aforementioned deduction. Collectively, 
except for TMB analysis, all our findings demonstrated 
that high CR risk was related to ICIs response.

Promotion of the proliferation, migration and invasion 
of HCC cells by DLAT overexpression
Although some studies have probed into the roles of 
CR signature genes in multiple cancers (Table  4), the 
functions of DLAT remain poorly characterized. We 
noticed that DLAT exhibited the highest weight of 

coefficient (0.422) in CR risk signature. Encouraged by 
these results, we further investigated DLAT. First, we 
performed qPCR detection on 20 pairs of clinical sam-
ples. The mRNA expression of DLAT was significantly 
upregulated in tumor samples than in the normal ones 
(Fig.  8A). Moreover, we observed that the protein 
expression of DLAT was markedly higher in HCC than 
in normal liver tissues through immunohistochemical 
analysis (Fig.  8B). sh-DLAT and OE-DLAT effectively 
altered DLAT expressions in HepG2 and HuH-7 cells, 
as determined via qPCR tests (Fig. 8C and D).

Thereafter, we applied colony formation assays to 
assess the effects of DLAT on the proliferation of HCC 
cells. The results showed that overexpression of DLAT 
notably promoted HCC cell proliferation, whereas it 
was inhibited by DLAT deletion (Fig. 8E and F). Quan-
titative analysis results were found to be consistent with 
the experimental changes (Fig.  8G and H). The colony 
number was highest in the OE-DLAT group.

Regarding cell migration, Transwell assays revealed 
that the overexpression of DLAT had stimulative 
effects on the migrative abilities of HepG2 and HuH-7 

Fig. 5  The prognostic value of CR risk signature is applicable to multiple validation cohorts. A-C The differences in OSR between high- and low- CR 
risk groups in GSE14520, GSE116174 and ICGC-LIRI cohorts. D-F The predictive accuracy of CR risk signature in each validation cohort
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cells (Fig.  9). Conversely, silencing DLAT exerted 
inhibitory effects (Fig. 9). Similar trend was observed 
in cell invasion: overexpression of DLAT facilitated 
the invasion of HCC cells, whereas silencing DLAT 
suppressed the process (Fig.  9). Altogether, DLAT 
possessed the promotive effects on the malignant 
behaviors of HCC cells.

Comparisons between five existing CR signatures and ours
Since the discovery of cuproptosis, it has attracted sub-
stantial attention from mounting oncologists. Regrettably, 
our study is not the only one to investigate the associations 

between cuproptosis and liver cancer. Therefore, we dis-
cussed the similarities and differences between five exist-
ing CR signatures and ours (Table 5) [32–36].

Through above comparison, some non-negligible pre-
ponderances were observed in our study. First, reliable 
CR gene set. Reasonable establishment of risk signature 
is heavily reliant on the rigorous gene set. In the pre-
sent study, we screened 17 pivotal regulators from the 
cornerstone of cuproptosis research, the study of Tsvet-
kov P et  al. [11]. Biological function analysis further 
confirmed that these genes were tightly involved in the 
core links of cuproptosis (Fig. 2B). By contrast, Zhang 

Fig. 6  The relationships between CR risk levels and TIM. A The differences in infiltration levels of 21 immune cells between high- and low-CR risk 
levels. B The differences in activities of 10 immune-related signaling pathways between different CR risk levels. C The differences in immune scores 
between different CR risk levels based on ESTIMATE method. D The difference of tumor purity between different CR risk levels. E The somatic 
mutation information of four CR signature genes based on cBioPortal database. NS, no statistical significance; *P < 0.05, **P < 0.01, ***P < 0.001
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Z et al. have screened out FDX1-related genes (n = 200) 
to construct CR signature by using correlation analy-
sis [36]. However, some critical CR genes were absent 
in modeling process, such as ATP7A, ATP7B and 
SLC31A1 which were responsible for copper ion trans-
port [11]. Second, the largest scale of prognostic vali-
dation cohort. As shown in Table 5, up to 516 patients 
from three validation cohorts fully tested the appli-
cability of our CR risk signature in HCC prognostic 
assessment. Third, more comprehensive bioinformatic 
analyses. The emphasis of these research was different 
(Table 5). For instance, Wang G et al. and Wang X et al. 
focused on the predictive effects of CR signature on 
the efficacy of ICBs therapy [32, 34]. However, we not 
only determined whether CR signature could predict 
the ICBs efficacy, but also investigated its mutational 
features and functions in anti-cancer immune response 
and multiple metabolisms, such as glycolysis. Fourth, 
support of experiment in vitro. Among these research, 
our study was the only one that verified the biofunc-
tions of CR signature genes in HCC cells. This provided 
valuable basis for further cuproptosis research. Addi-
tionally, our signature exhibited an excellent predictive 
accuracy, which had preponderance over most studies 
[32–34, 36]. In this context, although our study was 

not the only one referring to CR signature, our findings 
were still instrumental for HCC clinical analysis.

Potential application of cuproptosis in HCC clinical practice
As there are no validated biomarkers to detect cuprop-
tosis in humans, how to translate cuproptosis into can-
cer treatment and assessment should be emphatically 
probed. In our view, there were three main pieces of evi-
dence witnessing the feasibility of cuproptosis applica-
tion (Fig. 10A).

First, inducing cuproptosis well represented by 
Elesclomol (ES) have been proved to be a viable 
anticancer strategy [37]. ES is a chemotherapeutic 
adjuvant developed by Synta Pharmaceuticals [38]. 
Hitherto, multiple clinical trials have confirmed 
its anti-cancer compacity in human cancers [37]. 
For instance, a phase II clinical trial revealed that 
combination of ES and paclitaxel could reduce dis-
ease death risk of 41.7% in metastatic melanoma 
[39]. Meanwhile, introduction of ES doubled the 
progression-free survival (112 days vs 56 days) [39]. 
Moreover, another phase I clinical trial targeting 
refractory solid tumors reported that ES/paclitaxel 
combination was well tolerated with a toxicity pro-
file similar to single-agent paclitaxel [40]. In view 

Table 2  The effects of high CR risk on tumor immune microenvironment

CR cuproptosis-related, ADCC antibody-dependent cell-mediated cytotoxicity

Immune cell Variation trend Roles in tumor immune response Final effect 
on antitumor 
immune

B cells memory Increased Memory B cells are critical for the formation of germinal center and plasma cell Favorable

T cells CD8 Decreased CD8 + T cells are the most central anti-tumor effectors for their potent cytotoxic effects Unfavorable

Macrophages M0 Increased The polarization of macrophage M1/M2 can determine the direction of anti-tumor immunity Uncertain

Macrophages M1 Decreased M1 macrophages contribute to eradicating cancerous cells through mediating cytotoxicity 
and ADCC pathways

Unfavorable

Macrophages M2 Increased M2 macrophages can suppress the functions of T cells Unfavorable

Table 3  The effects of CR risk levels on multiple metabolic pathways

CR cuproptosis-related, FA fatty acid, NS not statistical

Metabolic pathway Enriched phenotype Study (PMID) Function in cancer

Glycolysis High CR risk 32631382 Glycolysis is closely associated with proliferation, immune evasion, invasion, metasta-
sis, angiogenesis, and drug resistance in cancers

Nucleotide Metabolism High CR risk 34138729 Nucleotide metabolism is necessary for tumor proliferation and mediates oncogenic 
mutations, such as P53 mutation

Cholesterol Biosynthesis NS 34117857 Cholesterol is an essential component of cell membranes. Aberrant cholesterol 
metabolism enhances malignant behaviors of tumor cells

FA metabolism NS 23791484 Tumor proliferation requires FAs for synthesis of membranes and signaling molecules

Glutamate and Glu-
tamine Metabolism

NS 23999442 Glutamine participates in energy formation, redox homeostasis, macromolecular 
synthesis, and signaling in cancer cells
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of these facts, cuproptosis enriched the anti-cancer 
arsenal.

Second, HCC may be sensitive to copper ionophore 
ES or we have opportunities to screen the population 
who would benefit from ES treatment. Due to the tight 
associations of cuproptosis with TCA cycle and cellular 

respiration, the sensitivity of cancer cells to ES is reli-
ant on the activity of cellular mitochondrial metabo-
lism [37]. A critical piece of evidence derived from the 
study of Wangpaichitr M et  al. [41]. In this study, the 
activation of mitochondrial respiration was observed 
in cisplatin-resistant lung cancer cells. Interestingly, 

Fig. 7  The metabolic and therapeutic correlations of CR risk score. A-G The associations of CR risk score with the enrichments of multiple metabolic 
process based on GSEA analysis. H The difference in CR risk score between Sorafenib-response and -nonresponse patients based on GSE109211 
cohort. I The difference in TMB between high- and low-CR risk groups. J The results of TIDE analyses. K The expressive differences of six ICs between 
high- and low-CR risk groups. L The difference in CR risk score between ICB-response and -nonresponse patients based on IMvigor 210 cohort. ICs, 
immune checkpoints; *P < 0.05, **P < 0.01, ***P < 0.001
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cisplatin-resistant cells were more sensitive to ES than 
parental cells [41]. Furthermore, since mitochondrial 
respiration and glycolysis commonly hold an antagonis-
tic relationship, active former is indicative of high reli-
ance of cancer cells on anaerobic glycolytic metabolism 
[42]. Therefore, available evidence have confirmed cancer 
cells with lower glycolytic activity are also sensitive to ES 
[43]. Through GSEA analysis, we found that mitochon-
drial function was significantly enriched in low-CR risk 
HCC samples (Fig. 10B), whereas glycolysis process was 
markedly enriched in high-CR risk ones (Fig. 7BC). These 
findings pointed toward that high-CR risk may act a bio-
marker of therapeutic resistance to ES in HCC. Notably, 
some clinical trials have found cancer patients with  low 
LDH levels are sensitive to  ES treatment [44]. Phase III 
SYMMETRY study showed that advanced melanoma 
patients with low LDH levels had a 1.6-month increase in 
PFS [44]. Through bioinformatic analysis, we found that 
the expressions of LDHA and LDHB (The major genes 
encoding LDH in mammals) were much higher in high-
CR risk group than that in low-CR risk one (Fig.  10C). 
Meanwhile, their expressions increased concordant with 
CR risk score (Fig.  10DE). These results also supported 
high-CR risk meant ES resistance.

Third, CR risk score greatly contributed to clinical 
assessment of HCC patients especially in prognostic 
analysis (Fig. 10A). Through multi-omics analysis, it was 
convictive that CR risk levels implied the disease state 
of HCC patients, which advanced individualized treat-
ments. For example, patients with high-CR risk may 
suffer from unfavorable prognosis and be concomitant 
of suppressive anti-tumor immune response, but were 
probably prone to benefit from sorafenib therapy. Collec-
tively, despite no validated biomarkers to detect cuprop-
tosis in humans, cuproptosis and our CR risk signature 
still provided some new insights into HCC treatments.

Discussion
Owing to high malignancy and easy metastases, HCC 
results in a poor prognosis, with a median survival time 
of 23  months [45]. Hepatectomy, MTT or ICIs do not 
fulfill the eager needs of patients for treating liver car-
cinoma. Recently, the discovery of cuproptosis paints 
a promising anti-cancer landscape, which may bring a 
paradigm shift in cancer treatment. Limited available 
research has reported the roles of cuproptosis regulators 
in prognosis, immune response and development of can-
cers, this lack of information prompted us to conduct this 
investigation.

It is worthy to notice the fact that detective approach 
of cuproptosis remains obscure, meanwhile no avail-
able studies confirmed the existence of cuproptosis in 
human cancers so far. The most critical issue, whether 
cuproptosis occurs in HCC needs to be addressed first. 
We speculated the answer was negative and the follow-
ing possible reasons resulted in this. First, the accu-
mulation of copper ions couldn’t always trigger cell 
cuproptosis, but where the copper ions concentrate is 
the decisive factor [37]. Copper (Cu) is an essential nutri-
ent for a huge number of biological processes including 
energy metabolism, iron uptake and antioxidant/detoxi-
fication processes [46]. Therefore, Cu accumulation has 
been commonly associated with enhanced proliferation 
and growth, angiogenesis, and metastasis [46]. Mount-
ing research has determined the upregulation of Cu lev-
els in both serum and tumor tissues in various human 
cancers such as prostate cancer [47], lung cancer [48] 
and colorectal cancer [49]. Recently, Tamai Y et al. have 
confirmed that Cu levels was positively correlated with 
higher BCLC (Barcelona clinic liver cancer) stage in HCC 
[50]. In light of these findings, Cu levels should elevate 
in HCC. However, the surge of Cu ions does not directly 
drive cuproptosis occurrence in HCC. The core reason 
is the aggregated location of Cu ions. The most criti-
cal evidence is the anticancer mechanism of Elesclomol 

Table 4  The roles of CR signature genes in various cancers

CRC​ colorectal carcinoma, HCC hepatocellular carcinoma, GC gastric cancer, CC cervical cancer

Gene Study Cancer type Function

FDX1 PMID: 32304229 CRC​ FDX1 is involved in tumor suppression through mediating TP73 tumor suppressor

PMID: 36226187 HCC FDX1 could inhibit the proliferation of HepG2 cells with the presence of copper ions

DLAT PMID: 26279757 GC DLAT can promote the proliferation and carbohydrate metabolism of GC cells

PMID: NA HCC Unclear

CDKN2A PMID: 32594303 CC CDKN2A inhibits cell proliferation and invasion in CC through AKT/mTOR pathway

PMID: 28854942 HCC CDKN2A induces cell cycle arrest in G1 and G2 phases, its mutation is one of the 
most common molecular anomalies in HCC

GLS PMID: 24276018 Glioma GLS silencing synergize with oxidative stress against proliferation of glioma cells

PMID: 30786811 HCC GLS promotes cancer progression and metabolism with the mediation of MET
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Fig. 8  DLAT is overexpressed in HCC tissues and promotes the proliferation of HCC cells. A The qPCR detection on 20 pairs of clinical samples. 
B Immunohistochemistry confirmed that the protein expression of DLAT was also upregulated in tumor tissues. C-D The transfection efficiency 
of sh-DLAT and OE-DLAT. E–F The colony formation assays in HepG2 and HuH-7 cells. G-H The quantitative analysis of colony formation assays. 
*P < 0.05, **P < 0.01, ***P < 0.001
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(ES), the only cuproptosis inducer available. Unlike other 
copper ionophores, ES could selectively promote cellu-
lar copper levels in mitochondria, not just in the cytosol 
[51]. In conclusion, cuproptosis did not occur spontane-
ously in liver cancer, but active Cu metabolism and high 
Cu levels in HCC created its precondition. Indeed, two 
current copper-related anticancer strategies support the 
above discussion [12]. On one hand, researchers have 
applied Cu chelators to inhibit Cu-dependent cellular 

proliferation, termed ‘cuproplasia’, through decreasing 
the intracellular Cu concentration [52]. On the other 
hand, Cu ionophores being developed exhibit a promis-
ing anticancer direction through stimulating Cu concen-
tration in mitochondria, namely inducing cuproptosis 
[12].

Accurate prognostic assessment is the most critical 
component of individualized cancer treatment. Although 
some mainstream prognostic systems strongly contribute 

Fig. 9  Overexpression of DLAT facilitates the migration and invasion of HCC cells. A, B The results of Transwell migration assays in HepG2 and HuH-7 
cells. C, D The migrative cells of each experimental group. E, F The results of Transwell invasion assays in HepG2 and HuH-7 cells. G, H The invasive 
cells of each experimental group. *P < 0.05, **P < 0.01, ***P < 0.001
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to predicting survival outcomes of HCC patients, these 
systems are not without their limitations. For exam-
ple, the Barcelona Clinic Liver Cancer (BCLC) system 

is insufficient in providing precise distinguishability for 
prognostically stratifying HCC patients with the inter-
mediate stage [53]. Moreover, AJCC 8th edition staging 

Table 5  Comparisons between existing signatures and ours

CR cuproptosis-related, ICBs immune checkpoint blockades, TIM tumor immune microenvironment, NA not available

Study PMID Number of CR genes Model type Predictive 
accuracy

Validation 
cohort

Focus of study Experimental 
validation

Zhang G et al 35790864 10 CR LncRNA 0.719 NA Prognosis ICBs efficiency NA

Wang X et al 36250008 16 CR genes 0.644 144 Prognosis ICBs efficiency NA

Wang Y et al 36065073 13 CR genes 0.691 115 Prognosis NA

Zhang Q et al 36153416 17 CR LncRNA 0.723 175 Prognosis TIM NA

Zhang Z et al 35898502 FDX1-related CR genes 0.620 457 Prognosis Sorafenib efficiency NA

Ours NA 17 CR genes 0.721 516 Multi-omics DLAT

Fig. 10  Potential application of cuproptosis in HCC clinical practice. A Three possible uses of cuproptosis in HCC treatment and assessment. 
B The GSEA results of elective transport chain OXPHOS system in mitochondria. C The differences between in expressions of LDHA and LDHB 
between two CR risk groups. D-E Correlations between LDH expressions and CR risk score. NES, normalized enrichment score; OXPHOS, oxidative 
phosphorylation; LDH, lactate dehydrogenase; ***P < 0.001
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system fails to discriminate survival differences between 
patients with IVA and IIIA stages [54]. Giannis D et  al. 
have reported that AJCC 8th edition presented a medio-
cre predictive ability in a SEER cohort, particularly the 
advanced TNM stage was not associated with increased 
risk of death [55]. Thus, improving the existing models 
is necessary and meaningful. In the present study, the 
novel CR risk signature could markedly elevate the deci-
sion-benefit and predictive accuracy of the AJCC system 
(Fig.  3F-H), demonstrating that it acted as an essential 
supplement to the AJCC system. Moreover, CR risk sig-
nature was capable of distinguishing the survival differ-
ence of III/IV stage cases, which were the inadequacies 
of AJCC system [54]. Thus, our findings validated the 
remarkable prognostic value of the CR model.

The alterations in tumor immune microenviron-
ment (TIM) profoundly determine the trend of anti-
tumor response. Immune analyses revealed that CR risk 
score was closely associated with the infiltration level of 
CD8 + T cells and macrophages. The potent anti-can-
cer potency of CD8 + T cells has long been known, this 
immune guarder eradicates tumor cells through perforin 
and Fas/Fasl pathways [56]. Under different chemokine 
stimulation, macrophages can differentiate into M1 
and M2 subtypes. Macrophages polarization is strongly 
involved in the cancer immune regulation [57].  Spe-
cifically, M1 subtypes can directly target cancer cells, 
whereas M2 subtypes can drive immune evasion and tol-
erance by suppressing the functions of CD8 + T cells [58]. 
Therefore, decreased immune abundance of CD8 + T 
cells and M1 macrophages (Fig.  6A), and increased 
that of M2 macrophages resulting from high CR risk all 
pointed toward unfavorable changes to the anti-cancer 
immune process. CR risk score may be indicative of anti-
tumor response.

Immune checkpoint inhibitors (ICIs) well represented 
by pembrolizumab (PD-1 inhibitor) have changed the 
paradigm of cancer treatment. Currently, the NCCN 
(version 2021) guidelines have listed nivolumab, pem-
brolizumab and atezolizumab as the first-line option 
for HCC treatment [59]. Nevertheless, it is inconclusive 
of identifying a reliable and effective biomarker for pre-
dicting the efficacy of ICIs. Here, we found that a high 
CR risk score may be an indicator of the response to 
immunotherapy (Fig.  7H-L). Despite the negative result 
observing in TMB, given that inadequate stimulation 
for neoantigens formation, high cost of determination 
and false-negative response population [60, 61], whether 
TMB is a valid predictor is controversial [62]. In contrast, 
high expression levels of ICs [63, 64], low TIDE score 
[26], and analytical results of the IMvigor 210 cohort sup-
ported the associations between CR risk score and ICIs 
efficacy.

Evidence suggests that metabolic reprogramming is a 
critical hallmark of cancer biology. Particularly, aerobic 
glycolysis termed the ‘Warburg effect’ widely participates 
in malignant progression, therapy resistance and immune 
tolerance of various cancers [65, 66]. Owing to meeting 
the metabolic requirements of cell proliferation [67, 68], 
active glycolysis commonly implies cancer development. 
In this study, we observed that glycolysis was enriched 
in HCC samples with high CR risk scores (Fig.  7A-D), 
thereby indicating that glycolysis may be the metabolic 
driving force of high-risk progression.

Some studies have investigated the functions of CR 
signature genes in multiple cancers. For instance, 
FDX1 can promote ATP production and is a risk 
indicator for LUAD prognosis, but cannot affect 
the proliferation and apoptosis of LUAD cells [69]. 
CDKN2A promoter methylation was associated with 
an elevated HCC risk and indicated HCC progression 
[70]. GLS as a crucial substrate of MET kinase can 
promote the metabolism and biogenesis of HCC cells 
[71]. Nonetheless, only a few studies have reported 
the roles of DLAT in cancers, which prompted 
us to conduct further analysis. Through in  vitro 
experimentations, DLAT was established to have 
pro-oncogenic capacities in HCC, thereby indicat-
ing its potentials as an anti-cancer agent. This gene 
encodes component E2 of the multi-enzyme pyruvate 
dehydrogenase complex (PDC) and its overexpres-
sion leads to cirrhosis and liver failure [72]. Hence, 
targeting DLAT can also aid in treating other liver 
diseases.

Nevertheless, there are some limitations that can-
not be neglected in this study. First, the CR risk sig-
nature requires further validation in a clinical cohort. 
Second, the specific cancer-promoting mechanism of 
DLAT in HCC remains elusive. Third, we did not detect 
the intensity of intracellular cuproptosis at different 
expression levels of DLAT. Fourth, since cupropto-
sis research is still in its infancy, lacking the detective 
means of cuproptosis is a currently unavoidable draw-
back, which extremely limits the clinical implications 
of our study. Thus, utilizing cuproptosis for the clinical 
assessment and treatment of HCC is a long but promis-
ing way.

Conclusions
Cuproptosis has greatly widened the strategies of can-
cer treatment and is expected to be a new anti-cancer 
strategy. However, research concerning about this topic 
is extremely limited. Thus, to this end, we constructed 
a novel CR risk signature for HCC clinical assessment 
in the present study. The CR risk score exhibited great 
prognostic value and provided pivotal supplement to 
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the AJCC prognostic system. Moreover, it was indica-
tive of anti-tumor response and glycolysis metabolic 
enrichment. Furthermore, it acted as a potential bio-
marker for predicting the efficacy of sorafenib and 
ICIs. Finally, owing to the critical functions of DLAT 
in cuproptosis, we conducted further investigation on 
its biofunctions in HCC. Through a series of in  vitro 
experiments in  vitro, DLAT was validated to possess 
cancer-promoting abilities. We believe that our findings 
will provide valuable information for further studies on 
cuproptosis and HCC.
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