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Abstract 

Background:  Solid pulmonary nodules are different from subsolid nodules and the diagnosis is much more chal-
lenging. We intended to evaluate the diagnostic and prognostic value of radiomics and deep learning technologies 
for solid pulmonary nodules.

Methods:  Retrospectively enroll patients with pathologically-confirmed solid pulmonary nodules and collect clinical 
data. Obtain pre-treatment high-resolution thoracic CT and manually delineate the nodule in 3D. Then, all patients 
were randomly divided into training and testing sets at a ratio of 7:3, and convolutional neural networks (CNN) 
models and random forest (RF) models were established. Survival analyses were performed for patients with solid 
adenocarcinomas.

Results:  Totally 720 solid pulmonary nodules were enrolled, 348 benign and 372 malignant. The CNN model with 
clinical features achieved the highest AUC [0.819, 95% confidence interval (CI): 0.760–0.877] with a sensitivity of 0.778, 
specificity of 0.788 and accuracy of 0.783. No significant differences were observed between the CNN and radiom-
ics models. There were 295 solid adenocarcinomas in survival analysis. Different disease-free survival was observed 
between the low-risk and high-risk groups divided according to the radiomics Rad-score. However, the groups based 
on deep learning signatures showed similar survival. Cox regression analysis indicated that the radiomics Rad-score 
(hazard ratio: 5.08, 95% CI: 2.61–9.90) was an independent predictor of recurrence.

Conclusions:  The radiomics and deep learning models can well predict the malignancy of solid pulmonary nodules. 
Radiomics signatures also demonstrate prognostic value in solid adenocarcinomas.
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Background
Lung cancer screening with low-dose computed tomog-
raphy among high-risk individuals can reduce lung can-
cer modality [1, 2]. However, it’s challenging to manage 
pulmonary nodules detected on thoracic CT either dur-
ing screening or routine clinical practice. Solid pulmo-
nary nodules are usually distinct from subsolid nodules 
(SSNs) and therefore different recommendations were 
provided in guidelines [3–6]. Most SSNs exhibit indolent 
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nature and grow slowly or stay stable over years [7], 
and often pathologically diagnosed as lung adenocarci-
nomas [8]. However, the solid nodules which could be 
caused by various respiratory diseases, can grow rapidly 
and are more prone to distant metastasis when they are 
malignant [9, 10]. Therefore, the risk prediction of solid 
pulmonary nodules should be important, as it can help 
clinicians make the right decision and save time for 
patients during medical care.

Recently, radiographic assessment of disease is being 
improved by advanced computational analyses. On the 
one hand, radiomics approach can digitally decode radio-
graphic images into quantitative features (e.g., descrip-
tors of shape, size and textural patterns), and therefore 
classify the medical image into a predefined group [11]. 
On the other hand, deep learning has made great strides 
in automatically characterizing radiographic images. It 
uses convolutional neural networks (CNN) to automati-
cally learn feature representations from sample images, 
which could match and even surpass human perfor-
mance in task-specific applications [12].

In previous studies, researchers have investigated the 
diagnostic performance of radiomics and deep learning 
technologies for solid pulmonary nodules [13–19]. How-
ever, some of the studies focused mainly on small solid 
pulmonary nodules, such as nodules less than 15 mm or 
20 mm [14, 15, 17]. Some studies differentiated solid nod-
ules between one specific benign lung disease and lung 
adenocarcinoma, like focal organizing pneumonia, soli-
tary granulomatous nodules or tuberculosis [13, 16, 19]. 
Besides, none of the studies investigated prognostic val-
ues of radiomics and deep learning technologies for solid 
nodules.

Therefore, the current study intended to establish CNN 
and radiomics models for solid pulmonary nodules with-
out restricting the nodule size and pathology. Further-
more, survival analyses were performed for patients with 
solid adenocarcinomas.

Methods
Patients and clinical variables
This retrospective study was approved by the institutional 
review board of the West China Hospital of Sichuan Uni-
versity. We collected possible cases by reviewing dis-
charge records of patients in West China Hospital from 
January 2010 to July 2017. The following terms were used 
to extract the data: lung cancer, lung adenocarcinoma, 
lung squamous carcinoma, non-small cell lung cancer, 
small cell lung cancer; inflammatory lung nodule, benign 
lung nodule, benign lung tumor, lung hamartoma, lung 
sclerosing hemangioma, lung tuberculosis, lung granu-
loma. Then, the patient was enrolled based on the fol-
lowing criteria: (a) there was an untreated, pathologically 

confirmed, 5–30 mm noncalcified solid nodule detected 
on chest CT; (b) the slice thickness of CT was less than or 
equal to 1 mm. Otherwise, patients were excluded if (a) 
there were multiple pulmonary nodules, or pleural effu-
sion, atelectasis, lymph node enlargement was observed; 
(b) it wasn’t a primary lung tumor.

Totally, the current study enrolled 720 patients 
with 720 nodules, 348 benign and 372 malignant. The 
pathology of benign nodules was confirmed by surgery 
(N  = 315, 90.5%) and CT guided percutaneous lung 
biopsy (N = 33, 9.5%), while the malignant nodules was 
confirmed by surgery (N = 365, 98.1%), CT guided per-
cutaneous lung biopsy (N = 4, 1.1%) and transbronchial 
lung biopsy (N = 3, 0.8%), respectively.

Following clinical characteristics were recorded, 
including age, sex, smoking status, history of malignancy, 
family history of malignancy, nodule diameter, loca-
tion, pathology and clinical stage. As surgically resected 
adenocarcinomas were predominant among all malig-
nant nodules, prognostic data were collected for survival 
analysis.

CT image acquisition and nodule segmentation
Thoracic CT before treatment was obtained for each 
patient. All images were acquired from GE, Siemens or 
Philips scanners, with tube voltage and current being 
100 ~ 120 Kvp and 60 ~ 250 mAs. Reconstructions were 
performed using a standard convolution kernel. The 
detailed information on manufacturer, manufacturer’s 
model and slice thickness were summarized in Table S1 
and Table S2.

All target nodules were first manually segmented in 
3D by one author with 4 years of clinical experience in 
pulmonology, using the ITK-SNAP software. Then, ran-
domly selecting 100 patients, both the same author and 
another author manually segmented the target nodules 
again to assess the consistency of the intra-rater and 
inter-rater segmentations by calculating Dice similarity 
coefficient. Both authors were blinded to pathological 
results of lesions.

CNN models
Patients were randomly divided into training and test-
ing set at a ratio of 7:3 during model establishment. 
The overall framework of the CNN model is shown in 
Fig. 1. Here we used transfer learning from a pre-trained 
benign-malignant nodule classification model, in which 
1715 pathologically-confirmed nodules and 14,735 unla-
beled nodules were used [20]. In detail, there were one 
3D convolution layer with a kernel size of 3 and stride 
of 1 as input block, four 3D convolution layers with 
a kernel size of 3 and stride of 2 as downsample block, 
and two fully connected layers as output block for the 
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benign-malignant classification task. Besides, the class 
activation mapping was used to guide the network focus-
ing on the nodule region, where attention maps were 
generated by back-propagating weights of the fully-con-
nected layer onto the convolutional feature maps [21]. 
In total, two CNN models were established based on 
whether clinical features were added.

Radiomics models
Firstly, radiomics features were extracted of segmented 
nodules, including 42 dedicated handcrafted features 
and 104 widely-used radiomics features. Details of hand-
crafted features were described in previous study [22]. 
The widely-used first-order image intensity statistics, 

shape and texture features were extracted using PyRa-
diomics [23]. Then, three RF models were established 
by using radiomics features, clinical features and both 
features, respectively. To avoid overfitting and obtain 
predictive features, least absolute shrinkage and selec-
tion operator (LASSO) was applied for radiomics fea-
ture selection where regression coefficients of irrelevant 
variables were shrunk to zero. To achieve the best perfor-
mance, an optimization algorithm based on Bayesian was 
used to optimize the hyperparameters.

To compare the diagnostic performance of established 
models with manual visual assessment, two junior radi-
ologists were invited to blindly classify the solid nodules 
in the testing set.

Fig. 1  The framework of the deep learning model. A The pre-trained model. B The proposed model. “1 × 1 × 1 Conv” refers to the convolutional 
layer with 1 × 1 × 1 kernel. Dice loss refers to Dice similarity coefficient between the nodule mask and class activation mapping (attention map)
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Statistical analysis
The continuous variables, age and nodule diameter, were 
presented with mean ± standard deviation and compared 
with Student’s t-test. The follow-up time was compared 
with Mann-Whitney U test. The other categorical data 
were described in number of cases (proportion) and 
compared with Chi-square test.

The classification performance of the models was eval-
uated on sensitivity, specificity, accuracy, receiver operat-
ing characteristic curves (ROC) and values of area under 
the ROC curve (AUC). Calibration curves were also plot-
ted to evaluate the accuracy of risk estimate. Additionally, 
Brier scores were calculated that quantitatively measure 
the distance in the probability domain and a lower score 
means better prediction. Differences in the AUC values 
were assessed by Delong test [24].

For prognostic analysis, a Rad-score was computed 
for each patient by combining LASSO selected radiom-
ics features. According to the Rad-score, patients were 
classified into low-risk or high-risk group split by X-tile 
(version 3.6.1, http://​tissu​earray.​org/) [25]. The poten-
tial association of radiomics signature with disease-free 
survival (DFS) was evaluated by Kaplan-Meier survival 
analysis and multivariate Cox regression. Similarly, the 
prognostic value of malignancy-score derived from CNN 
model (with clinical features) was also evaluated. Differ-
ences in survival curves were assessed by log-rank test.

The LASSO analysis, ROC curves, calibration curves 
and Brier scores were implemented with an open source 
“Scikit-learn 1.1.2” in Python. The Kaplan-Meier survival 
analysis and multivariate Cox regression were performed 
with “survival 3.1-8, survminer 0.4.8” packages in R. The 
statistical tests were all two-sided and differences with 

P < 0.05 were considered statistically significant. All sta-
tistical analyses were conducted using R version 3.6.0 and 
Python version 3.7.0.

Results
Patient characteristics
Table  1 describes the clinical characteristics of the 
enrolled 720 patients. Malignant nodules were mainly 
lung adenocarcinomas (N = 334, 90%) and most belonged 
to stage I (N = 339, 91%). As for benign nodules, they 
were chronic inflammation (N = 112, 32.2%), benign 
tumor (N = 90, 25.9%), tuberculosis (N = 75, 21.5%), 
granuloma (N = 67, 19.3%) and so on.

Regarding benign and malignant nodules, the two 
groups were different in the distribution of patient age, 
history of malignancy and nodule diameter. Patients with 
malignant nodules were older (51 ± 13 vs 60 ± 10 years, 
P < 0.001) and exhibited a higher rate of history of malig-
nancy (3.2% vs 8.1%, P = 0.005). Besides, malignant nod-
ules tended to be larger than the benign ones (17.6 ± 6.1 
vs 19.2 ± 5.6 mm, P < 0.001). No significant difference 
was observed between the two groups regarding to sex, 
smoking, family history of malignancy and nodule loca-
tion. There were 244 (47.2%) benign and 273 (52.8%) 
malignant nodules in the training group, and 104 (51.2%) 
benign and 99 (48.8%) malignant nodules in the testing 
group, respectively (P = 0.329). No significant difference 
was observed between the training and testing group.

The Dice similarity coefficient of between-rater and 
within-rater segmentation was 92.7% and 98.6% respec-
tively, which indicated that the masks had a relatively 
good consistency.

Table 1  Clinical characteristics of enrolled patients

* P < 0.05

Unless specified, data in parentheses are percentages

Characteristics Pathology P Dataset P

Benign (N = 348) Malignant (N = 372) Training (N = 517) Testing (N = 203)

Age, year 51 ± 13 60 ± 10 < 0.001* 56 ± 12 55 ± 12 0.058

Sex, male 187 (53.7) 177 (47.6) 0.099 265 (51.3) 99 (48.8) 0.548

Smoking, current or ever smoker 120 (34.5) 142 (38.2) 0.304 192 (37.1) 70 (34.5) 0.505

History of malignancy, yes 11 (3.2) 30 (8.1) 0.005* 33 (6.4) 8 (3.9) 0.203

Family history of malignancy, yes 48 (13.8) 57 (15.3) 0.561 77 (14.9) 28 (13.8) 0.707

Diameter of nodules, mm 17.6 ± 6.1 19.2 ± 5.6 < 0.001* 18.4 ± 5.9 18.4 ± 6.0 0.949

Location of nodules 0.553 0.358

  Upper Right 98 (28.2) 118 (31.7) 158 (30.6) 58 (28.6)

  Middle Right 33 (9.5) 34 (9.1) 54 (10.4) 13 (6.4)

  Lower Right 78 (22.4) 69 (18.5) 106 (20.5) 41 (20.2)

  Upper Left 64 (18.4) 78 (21.0) 99 (19.1) 43 (21.2)

  Lower Left 75 (21.6) 73 (19.6) 100 (19.3) 48 (23.6)

http://tissuearray.org/
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Predictive performance of models
Figure 2A demonstrates the ROC curves of each model 
in the testing set. With malignant nodules as posi-
tive, the CNN model with clinical features achieved 
the highest AUC [0.819, 95% confidence interval (CI) 
0.760–0.877] with sensitivity of 0.778, specificity of 
0.788 and accuracy of 0.783. The CNN model without 
clinical features achieved an AUC of 0.816 (95% CI 
0.758–0.875), sensitivity of 0.758, specificity of 0.788 
and accuracy of 0.773. In the RF classifier models, the 
performance of RF with combined features achieved 
sensitivity of 0.616, specificity of 0.788, and accuracy 
of 0.704 and AUC of 0.811. In addition, the sensitiv-
ity, specificity, accuracy and AUC of RF with radiomics 
features was 0.747, 0.606, 0.675 and 0.778, respectively. 
The sensitivity, specificity, accuracy and AUC of RF 
with clinical features was 0.535, 0.740, 0.640 and 0.721, 
respectively. Except for RF with clinical features alone, 
no significant difference was observed between the 

CNN model with clinical features and other three mod-
els. ROC curves of each model in the training set are 
shown in Fig. S1.

When two junior radiologists classifying the solid 
nodules in the testing set, they achieved AUCs of 
0.615–0.755, sensitivities of 0.778–0.990, specifici-
ties of 0.452–0.519 and accuracies of 0.611–0.749. The 
results indicated that established models demonstrated 
higher specificities while the radiologists achieved 
higher sensitivities. Detailed diagnostic performance of 
each model and radiologist in the testing set are sum-
marized in Table 2.

Figure 2B shows calibration curves. The CNN model 
with clinical features achieved the smallest Brier score 
of 0.177. The Brier score of CNN model without clini-
cal features, RF with clinical features, RF with radiom-
ics features and RF with combined features was 0.183, 
0.215, 0.195, and 0.184, respectively.

Fig. 2  ROC curves (A) and calibration curves (B) of different classification models in the testing set. RF: random forest, CNN: convolutional neural 
network

Table 2  Predictive performance of different classification models and junior radiologists in the testing set

*Significant difference was found between the CNN model with clinical features and RF with clinical features by Delong test (p < 0.05)

Abbreviations: RF Random forest, CNN Convolutional neural network, AUC​ Area under the receiver operating characteristic curves

Model or radiologist Sensitivity Specificity Accuracy AUC​

RF + Clinical 0.535 [0.437, 0.633] 0.740 [0.656, 0.824] 0.640 [0.574, 0.706] 0.721 [0.651, 0.791]*

RF + Radiomics 0.747 [0.661, 0.833] 0.606 [0.512, 0.700] 0.675 [0.611, 0.739] 0.778 [0.738, 0.858]

RF + Combined 0.616 [0.520, 0.712] 0.788 [0.709, 0.867] 0.704 [0.641, 0.767] 0.811 [0.713, 0.839]

CNN 0.758 [0.674, 0.842] 0.788 [0.709, 0.867] 0.773 [0.715, 0.831] 0.816 [0.758, 0.875]

CNN+ Clinical 0.778 [0.696, 0.860] 0.788 [0.709, 0.867] 0.783 [0.726, 0.840] 0.819 [0.760, 0.877]
Radiologist 1 0.778 [0.696, 0.860] 0.452 [0.356, 0.548] 0.611 [0.544, 0.678] 0.615 [0.538,0.692]

Radiologist 2 0.990 [0.970, 1.000] 0.519 [0.423, 0.615] 0.749 [0.689, 0.808] 0.755 [0.688,0.821]
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Survival analysis
From 295 surgically resected adenocarcinomas, sur-
vival data were collected. Table  3 summarizes the clini-
cal characteristics of patients in survival analysis. When 
performing LASSO analysis, sixteen radiomics features 
were found to be associated with DFS (Fig. 3). All these 
significant features were used to calculate the Rad-score 

and according to a cutoff point of 0.183 based on X-tile, 
the patient was classified into low-risk or high-risk group. 
The Kaplan-Meier survival analysis showed that DFS 
between the low-risk and high-risk groups were statis-
tically different. In the testing set, the mean DFS was 
104 months (95% CI, 98–110 months) for the low-risk 
group and 89 months (95% CI, 75–102 months) for the 

Table 3  Clinical characteristics of patients in survival analysis

Unless specified, data in parentheses are percentages

Abbreviations: DFS Disease-free survival, CI Confidence interval

Characteristics Training (N = 217) Testing (N = 78) P value

Stage 0.378

  IA 132 (60.8) 52 (66.7)

  IB 67 (30.9) 23 (29.5)

  II-III 18 (8.3) 3 (3.8)

Follow-up time (month) 0.637

  Mean ± standard deviation 55 ± 21.8 58 ± 23.4

  Median (25th, 75th) 57 (47–66) 57 (51–66)

Number of recurrence

  All 47 (21.7) 15 (19.2) 0.652

  At 1 year 13 (6.0) 3 (3.8)

  At 2 years 21 (9.7) 7 (9.0)

  At 3 years 29 (13.4) 9 (11.5)

DFS, mean with 95% CI (month)

  All 90 (84, 95) 99 (90, 107) 0.634

  Low-risk group based on Rad-score 96 (92, 101) 104 (98, 110) –

  high-risk group based on Rad-score 71 (60, 81) 89 (75, 102) –

Fig. 3  Bar plot of significant radiomics features associated with disease-free survival selected by LASSO analysis
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high-risk group (P = 0.011, Fig. 4). The Kaplan-Meier sur-
vival curve in the training set is shown in Fig. S2.

In addition, the result of multivariate Cox regression 
analysis showed that the clinical stage [hazard ratio (HR), 
2.50, 95% CI, 1.08–5.80, P = 0.032) and Rad-score (HR, 
5.08, 95% CI, 2.61–9.90, P < 0.001) were two independent 
predictors of DFS (Fig. 5). The prognostic value of radi-
omics features was also proved among stage I patients 
(Fig. S3 and S4). Furthermore, we assessed the effective-
ness of malignancy-score derived from the CNN model 
with clinical features in prognostic analysis, but the 
results indicated that the malignancy-score derived from 
CNN model might be not as effective as the score derived 
from radiomics features (Fig. S5).

Discussion
The current study evaluated the diagnostic and prognos-
tic value of radiomics and deep learning technologies for 
patients with solid pulmonary nodules. We found the 
established CNN models demonstrated the best diag-
nostic performance, followed by radiomics models and 
then the model developed from clinical variables alone. 
The established CNN models and radiomics models per-
formed slightly better than the two junior radiologists. 
Besides, it was found that the Rad-score based on sixteen 
radiomics features were important in predicting DFS of 
patients with solid adenocarcinomas.

Radiomics and deep learning technologies have been 
playing an important role in cancer research [11, 12]. 
Similarly, studies predicting risk of solid nodules of 6 mm 
to 15 mm found the CNN and radiomics model demon-
strated an AUC of 0.93 and 0.97, respectively [14, 17]. 
Wu et al. studied solid nodules smaller than 20 mm and 
found the radiomics model achieved an AUC of 0.89 [15]. 
Besides, Yang et  al. investigated solid lung adenosarco-
mas and granulomas and the AUCs of combined radi-
omics and clinical risk factors were 0.82–0.84 [16]. Feng 
et al. established a deep learning nomogram to differenti-
ate tuberculosis granulomas from lung adenocarcinomas, 
which yielded AUCs of 0.89–0.81 [19]. The current study 
investigated solid pulmonary nodules less than 30 mm in 
a larger sample size, and found the AUCs of CNN models 
and radiomics models were 0.78–0.82. Hence, it’s advis-
able to apply radiomics and deep learning technologies in 
solid nodule management in future.

In the radiomics models, most selected predictors were 
texture and histogram distribution features. The tex-
ture features can measure the spatial inter-dependency 
or co-occurrence of information across adjacent voxels 
[26]. Specifically, the GLCM feature accounted for the 
largest proportion of selected texture features in the cur-
rent study, which measures the value of texture images 
with pixels of the same gray level and is mainly applied 
for linear texture analysis. In previous studies, GLCM 
is one of the most commonly used radiomics features, 

Fig. 4  Kaplan-Meier survival curves in the testing set based on radiomics features
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which may be associated with the spatial heterogeneity of 
lung lesions [27, 28]. The histogram distribution features 
represent the distribution of gray pixels in the intensity 
image, which may characterize different subtypes of 
nodules with varying degrees of density properties [29]. 
However, when compared with similar studies on lung 
cancer risk prediction, the selected radiomics features for 
modeling were not exactly the same, which may be due 
to different strategies applied in radiomics feature extrac-
tion and the heterogeneity of the dataset [14–16].

We also evaluated the prognostic value of radiomics 
and deep learning technologies for patients with solid 
adenocarcinomas. It was reported that the recurrence 
rate of early-stage non-small cell lung cancer is still sub-
stantial about 15–38.5% [30]. For adenocarcinomas, the 
recurrence rate is significantly high in micropapillary-
predominant and solid-predominant subtypes [31]. In 
the current study, totally 62 adenocarcinomas (21%) 
relapsed and the median DFS was 26 months. Hence, it’s 
essential to identify those who will suffer from disease 
relapse. Our results indicated that the Rad-score based 
on sixteen radiomics features was an independent pre-
dictor of DFS, with an even higher HR value than clinical 
stage. Similar findings were reported in previous studies 
[32–34]. Xie et al. found age, pathologic TNM stage, his-
tologic subtype and the radiomics signature were predic-
tors of DFS in lung adenocarcinomas [34]. In addition, 
Huang et  al. also found the radiomics signatures were 

significantly associated with DFS of non-small cell lung 
cancer, and the radiomics-based nomogram resulted in 
better performance than that with the clinical-pathologic 
variables [35]. However, it seemed that the CNN signa-
tures were not as predictive as radiomics signatures from 
our current data, which could be caused by the small 
sample size in prognostic analysis.

There were some limitations need to be considered 
when interpreting our results. Firstly, this was a single 
center study and models weren’t externally validated. 
Previous studies have shown that when revalidated with 
external data, the performance of models may be reduced 
due to heterogeneous acquisition protocols and patient 
populations [36, 37]. Secondly, the current study was 
retrospectively carried out. Therefore, the CT images 
used for radiomics and deep learning analysis were not 
obtained from the same scanner, which may reduce the 
stability of risk models.

Conclusions
On the one hand, it was found that the CNN models and 
radiomics models demonstrated good performance in 
predicting the malignancy of solid nodules, superior to 
the model based on clinical variables alone. On the other 
hand, radiomics features demonstrated potential to pre-
dict the DFS of patients with solid adenocarcinomas.

Fig. 5  Random Forest of the multivariate Cox regression analysis
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