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Abstract 

Purpose:  The distribution of tissue infiltrating lymphocytes has been shown to affect the prognosis of patients with 
pancreatic cancer in some previous studies. However, the role of peripheral lymphocytes in pancreatic cancer remains 
debated. The purpose of this study was to analyze the peripheral subtypes of T lymphocytes, and establish their asso-
ciation with the prognosis of patients with pancreatic cancer.

Methods:  Blood and tissue samples were collected from patients with metastatic pancreatic cancer (n = 54), resect-
able pancreatic cancer (n = 12), and benign pancreatic cysts (n = 52) between April 2019 and January 2022 and 
analyzed.

Results:  Patients with metastatic pancreatic cancer had a larger proportion of both tumor-suppressive and tumor-
promoting cells than those with benign pancreatic cysts. In addition, the proportion of peripheral CD4+ T cells 
positively correlated with the survival of patients with metastatic pancreatic cancer, and the proportion of periph-
eral CD8+CD122+ T cells was associated with early mortality (< 90 days). After chemotherapy, CD8+CD122+ T cells 
decreased in patients who had a partial response or stable disease. Moreover, by analyzing resected specimens, we 
first proved that the existence of CD8+CD122+ T cells in a tumor microenvironment (TME) depends on their propor-
tion in peripheral blood.

Conclusion:  Circulating CD8+CD122+ T cells can be a prognostic indicator in patients with pancreatic cancer.

Keywords:  Metastatic pancreatic cancer , Resectable pancreatic cancer , Benign pancreatic cysts , CD4+ T cells, 
CD8+CD122+ T cells
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Introduction
Pancreatic cancer has the highest mortality rate among 
gastrointestinal cancers, and it is the fourth leading cause 
of cancer-related deaths worldwide [1]. The high mor-
tality rate is due to the difficulty of early diagnosis and 
poor response to chemotherapy. Approximately 80% of 
patients are diagnosed with unresectable disease at the 

time of onset [2]. Although modern intense chemother-
apy regimens such as FOLFIRINOX and gemcitabine 
plus nab-paclitaxel (GnP) have improved the survival rate 
of patients with metastatic pancreatic cancer; survival 
time remains limited, with a median of 8.5–11.1 months 
[3, 4].

Recently, immunotherapy has been regarded as an 
effective option for various cancer types such as malig-
nant melanoma, non-small cell lung cancer, and renal cell 
carcinoma. However, in pancreatic cancer, the antitu-
mor effects of immunotherapy have been unsatisfactory 
[5, 6]. Low cancer immunogenicity and a unique tumor 
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microenvironment (TME), characterized by an enriched 
stroma and many immunosuppressive cells, are thought 
to result in poor treatment responses. In the TME, CD8+ 
T cells, natural killer (NK) cells, and M1-polarized mac-
rophages (M1Mφ) act as tumor-suppressive cells, pre-
venting cancer cell growth and eliminating cancer cells. 
In contrast, regulatory T cells (Tregs), M2-polarized 
macrophages (M2Mφ), and myeloid-derived suppressor 
cells (MDSC) form an immunosuppressive network that 
inhibits other effector T cells and NK cells, thereby pro-
moting immune evasion of the tumor [5, 7, 8].

The distribution of tissue infiltrating lymphocytes 
(TILs) has been previously shown to affect the prognosis 
of patients with pancreatic cancer [9]. In previous stud-
ies using resected specimens of pancreatic cancer, the 
number of CD8+ T cells in the TME positively correlated 
with patient survival, whereas the numbers of Tregs and 
M2Mφs were associated with poor prognoses [9–12]. 
Indeed, in patients with both resectable and unresect-
able cancers, peripheral blood CD8+ T cells positively 
correlated, while CD4+ Tregs negatively correlated with 
survival rate [13–15]. Additionally, the distribution of 
peripheral blood lymphocytes (PBLs) and TILs was con-
firmed to be a predictive factor for survival in patients 
with pancreatic cancer [16]. Many unknowns remain 
regarding the role of PBLs in pancreatic cancer.

Similar to classical CD4+ Tregs, CD8+ T cells include 
both regulatory and effector subtypes. The regulatory 
subtype of CD8+ T cells has been regarded as an immu-
nosuppressive subtype of T lymphocytes, which play 
a vital role in self-tolerance [17]. Early studies reported 
that regulatory CD8+ T cells prevented autoimmune 
diseases [18–20] and controlled the rejection of allo-
grafts and graft-versus-host disease (GVHD) during 
organ transplantation [21–27]. In a few reports, regu-
latory CD8+ T cells were found to mediate antitumor 
immunity in the presence of cancer. Li et  al. (2011) 
revealed that CD8+FOXP3+ T cells were increased in the 
peripheral blood of patients with nasopharyngeal can-
cer compared with healthy donors, and these cells infil-
trated the TME [28]. Kiniwa et  al. (2007) demonstrated 
that CD8+FOXP3+ T cells derived from TILs of patients 
with prostate cancer suppressed naïve T cell prolifera-
tion in vitro [29]. Nevertheless, the mechanisms through 
which regulatory CD8+ T cells influence tumor progres-
sion or prognosis remain unknown.

In this study, we investigated the subtypes of PBLs, 
including effector and regulatory subtypes of CD8+ T 
cells, as prognostic indicators in patients with metastatic 
pancreatic cancer (MPC). In addition, we collected tissue 
and blood samples from patients diagnosed with resect-
able pancreatic cancer (RPC) to compare the distribu-
tion of PBLs with that of TILs.  Moreover, to compare 

the distribution of PBLs of patients diagnosed with MPC 
with that of patients with a benign pancreatic disease, 
we therefore collected blood samples from patients with 
benign pancreatic cysts(BPC).

Materials and methods
Patients and sample collection
Blood samples were collected in heparinized tubes 
from patients with MPC (n = 54), RPC (n = 12), and 
BPC (n = 52) between April 2019 and January 2022. All 
patients with MPC and RPC were histologically veri-
fied; patients with MPC were treatment-naïve and had 
no other cancers. Blood samples were collected from 
patients with MPC before the introduction and 2 months 
after. Blood samples from patients with RPC were col-
lected immediately before surgery, and tissue samples 
were obtained from the resected specimens. Patients 
with MPC received S-IROX, modified FOLFIRINOX 
(mFFX), or GnP. S-IROX was administered in a clini-
cal trial. After receiving S-IROX or mFFX, patients were 
treated every 2  weeks: S− 1 40 mg/m2 was administered 
orally twice daily on days 1 to 7 in S-IROX, and 5-fluo-
rouracil 2400 mg/m2 was intravenously administered 
for 46 h without bolus infusion in mFFX, in addition 
to intravenous oxaliplatin (85 mg/m2) and irinotecan 
(150 mg/m2) on day 1. Patients in GnP therapy received 
gemcitabine 1000 mg/m2 plus nab-paclitaxel 125 mg/m2 
intravenously on days 1, 8, and 15 of each 28-day cycle. 
Computed tomography (CT) or magnetic resonance 
imaging (MRI) was used to evaluate the response to 
chemotherapy every 2–3 months according to the guide-
lines of the Response Evaluation Criteria in Solid Tumors 
(RECIST) 1.0. Patients with BPC had serous cyst neo-
plasm (SCN), simple cyst, or intraductal papillary muci-
nous neoplasm (IPMN), but no malignant findings in the 
pancreas, as evaluated by image inspection such as CT, 
MRI, and endoscopic ultrasonography. The study pro-
tocol was approved by the Ethics Committee of Kyushu 
University, and informed consent was obtained in writing 
from all patients (approval number, 2020–620).

Processing tissue samples
Tissue samples were washed with DMEM (high glu-
cose) (FUJIFILM Wako Pure Chemical Corporation, 
Japan) and minced into pieces < 0.75 μm in length. BD 
HorizonTM Dri Tumor and Tissue Dissociation Rea-
gent (TTDR) (BD Biosciences, Tokyo, Japan) was used 
to extract TILs from tissues. According to the proto-
col presented, minced tissues were suspended in 1x 
TTDR and incubated at 37 °C with frequent agitation 
for 75 min. Three volumes of phosphate-buffered saline 
(PBS) were added to the TTDR, including tissues, and 
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filtered through a 70-μm filter (Falcon Catalog num-
ber 352350). The filtrate was centrifuged at 300×g for 
8 min. The pellets, including TILs, were suspended in 
cell-staining buffer (BioLegend, Tokyo, Japan) and used 
for flow cytometry.

Flow cytometry
Peripheral blood mononuclear cells (PBMCs) were 
purified from each venous blood sample by Lym-
phoprep™ (Serunwerk Bernburg, Oslo, Norway) and 
washed twice with PBS. PBMCs and TILs, collected as 
described above, were suspended in cell-staining buffer 
and FcR blocking reagent (Miltenyi Biotec, Bergisch 
Gladbach, Germany) was added to block non-specific 
binding for 10 min. PBMCs and TILs were stained for 
cell surface molecules, while PBMCs were intracellu-
larly stained for Foxp3 and cytotoxic T-lymphocyte-
associated protein 4 (CTLA4). The used antibodies 
(Abs) are follows: Brilliant Violet 421™ anti-CD122 
(clone TU27, BioLegend, Tokyo, Japan), Brilliant Vio-
let 605™ anti-CD45R (clone RA3-6B2, BioLegend, 
Tokyo, Japan), Brilliant Violet 785™ anti-CD4 (clone 
RPA-T4, BioLegend, Tokyo, Japan), Brilliant Violet 
785™ anti-CD8 (clone SK1), fluorescein isothiocyanate 
(FITC) anti-CD3 (clone OKT3, BioLegend, Tokyo, 
Japan), FITC anti-CD4(clone RPA-T4, BioLegend, 
Tokyo, Japan), Pacific Blue™ anti-CD3 (clone OKT3, 
BioLegend, Tokyo, Japan), phycoerythrin (PE) anti-
FOXP3 (clone 150D, BioLegend, Tokyo, Japan), PE 
anti-CD107a (clone H4A3, BioLegend, Tokyo, Japan), 
phcoerythrin-cyanine™ 7 (PE-Cy™7) anti-CD28 (clone 
CD28.2, BioLegend, Tokyo, Japan), Allophycocya-
nin (APC) anti-CD25 (clone BC96, BioLegend, Tokyo, 
Japan), APC anti-CD19 (clone HIB19, BioLegend, 
Tokyo, Japan), Alexa Fluor647™ anti-CTLA4 (clone 
L3D10, BioLegend, Tokyo, Japan), Brilliant Violet 421™ 
mouse IgG1κ (clone MOPC-21, BioLegend, Tokyo, 
Japan), Brilliant Violet 605™ mouse IgG1κ (clone 
MOPC-21, BioLegend, Tokyo, Japan), Brilliant Vio-
let 785™ mouse IgG1κ (clone MOPC-21, BioLegend, 
Tokyo, Japan), FITC mouse IgG1κ (clone MOPC-21, 
BioLegend, Tokyo, Japan), FITC mouse IgG2aκ (clone 
MOPC-173, BioLegend, Tokyo, Japan), Pacific Blue™ 
mouse IgG2aκ (clone MOPC-173, BioLegend, Tokyo, 
Japan), PE mouse IgG1κ(clone MOPC-21, BioLegend, 
Tokyo, Japan), PE-Cy™ 7 mouse IgG1κ (clone MOPC-
21, BioLegend, Tokyo, Japan), APC mouse IgG1κ 
(clone MOPC-21, BioLegend, Tokyo, Japan), Alexa 
FluorR 647 mouse IgG1κ (clone MOPC-21, BioLegend, 
Tokyo, Japan). We used Zombie NIR™ dye (BioLegend, 
Tokyo, Japan) to determine cell viability. PBMCs were 
stained with Ab and Zombie dye on the surface at room 

temperature in the dark for 20 min. Next, using the Fix-
ation/Permeabilization Buffer Set (eBioscience, Tokyo, 
Japan), we stained intracellular FOXP3 or CTLA4 using 
the manufacturer’s instructions. Briefly, each sample 
was incubated with a fixation/permeabilization buffer at 
room temperature in the dark for 30 min. Each sample 
was washed twice with permeabilization buffer, anti-
FOXP3 Ab or anti-CTLA4 Ab was added, and the sam-
ples were incubated at room temperature in the dark for 
30 minutes. Each sample was washed twice with per-
meabilization buffer, diluted in cell-staining buffer, and 
analyzed by flow cytometry. All the prepared samples 
were analyzed using a CytoFLEX flow cytometer (Beck-
man Coulter, Brea, California, USA). The gating strategy 
is illustrated in Online Resources 1–3.

Statistical analysis
Statistical analysis was conducted using the JMP v. 16 
software (SAS and JMP, Institute Inc., Cary, NY, USA). 
We analyzed the differences in each PBL subtype between 
patients with MPC and BPC using Student’s t-test. To 
evaluate the correlation between two continuous varia-
bles, we performed correlation analysis using Spearman’s 
rank correlation coefficient. The Kaplan–Meier method 
was employed with the log-rank test to compare survival 
rates between the two groups. The chi-square test was 
used to compare categorical groups. Differences between 
two values of the same groups were analyzed using paired 
t-test with Wilcoxon signed-rank test. Multivariate analy-
sis was performed using a multiple logistic regression 
model or a Cox multivariate proportional hazard regres-
sion model. Statistical analysis was performed by statisti-
cal experts from the Academic Research Organization at 
Kyushu University.

Results
Clinical characteristics of patients with MPC and BPC
Patients with MPC had a mean age of 64.9 (range 42–79) 
years (26 males and 28 females), and those with BPC a 
mean age of 65.2 (range 44–76) years (25 males and 
27 females). Patients with BPC included 1.9% (1/52) 
with SCN, 23.1% (12/52) with simple cysts, and 75.0% 
(39/52) with IPMN. Diabetes mellitus was significantly 
more common in patients with MPC compared to BPC 
(42.6%(23/54) vs. 23.1%(12/52), p = 0.038), and the 
serum albumin levels of patients with MPC were signifi-
cantly lower than those of patients with BPC (p < 0.0001). 
Regarding chemotherapy regimens, 3.7% (2/54), 20.4% 
(11/54), and 75.9% (41/54) of patients with MPC received 
S-IROX, modified FOLFIRINOX (mFFX), and GnP, 
respectively. Patient characteristics are summarized in 
Table 1.
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Proportion of tumor‑suppressive and tumor‑promoting 
cells in MPC was higher than that in BPC
In the TME, CD8+ T cells, NK cells, and M1-polarized 
macrophages (M1Mφ) are referred to as tumor-suppres-
sive cells, which prevent cancer cell growth and lead to 
their elimination. In contrast, Tregs, M2Mφ, and MDSC 
are tumor-promoting cells, leading to cancer cell pro-
liferation and progression [16]. The subtypes of PBLs 
were determined using flow cytometry with CD4+ T 
cells (CD3+CD4+), CD8+ T cells (CD3+CD8+), CD4+ 
Tregs (CD4+CD25+FOXP3+), cytotoxic CD8+ T cells 
(CD8+CD107a+), activated CD8+ T cells (CD8+CD28+), 
exhausted CD8+ T cells (CD8+CTLA4+), and regulatory 
CD8+ T cells (CD8+CD122+, CD8+CD45R+). The PBLs 
of patients with MPC had a significantly higher propor-
tion of tumor-suppressive cytotoxic CD8+CD107a+ 
T cells and activated CD8+CD28+ T cells (Fig.  1) more 
than in patients with BPC. Furthermore, PBLs from 
patients with MPC showed a greater proportion of 
CD4+CD25+FOXP3+ Tregs, exhausted CD8+CTLA4+ 
T cells, CD8+CD122+ T cells, and CD8+CD45R+ T cells, 
which can be regarded as tumor-promoting cells, than in 
patients with BPC. Thus, patients with MPC had a higher 

proportion of both tumor-suppressive and tumor-pro-
moting PBLs than patients with BPC.

CD4+ T cell ratio before chemotherapy was related 
to the prognosis of MPC
Correlation analysis was performed to reveal the 
relationship between the PBLs of patients with MPC 
before chemotherapy (n = 34) and overall survival 
(OS). The proportion of CD4+ T cells in the PBLs of 
patients with MPC before chemotherapy positively 
correlated with OS (Fig.  2). Multivariate analysis was 
performed using the Cox multivariate proportional 
hazard regression model with the clinical prognos-
tic factors (Table  2). Diabetes mellitus (p = 0.0076), 
serum albumin level (p = 0.030), Eastern Coopera-
tive Oncology Group Performance Status (ECOG PS) 
(p = 0.0007), serum CA19–9 level (p = 0.0028), and 
peripheral CD4+ T cell ratio (p = 0.011) were sig-
nificantly associated with prognosis in multivariate 
analyses.

Additionally, the cutoff value between the high and low 
groups for each PBL subtype was defined according to 
the mean value of the PBL ratio of MPC, as shown by the 

Table 1  Clinical characteristics of patients with metastatic pancreatic cancer and benign pancreatic cysts

ECOG Eastern Cooperative Oncology Group, GnP gemcitabine plus nab-paclitaxel, SD standard deviation, mFFX modified FOLFIRINOX

P values < 0.05 are shown in bold

Characteristic Metastatic pancreatic cancer Benign pancreatic cyst P-value

Total number 54 52

Sex (%)

  Male 26 (48) 25 (48) 0.99

  Female 28 (52) 27 (52)

Age (years)

  Mean ± SD 64.9 ± 8.9 65.2 ± 7.6 0.85

  Range 42–79 44–76

Diabetes mellitus (%)

  Yes 23 (43%) 12 (23%) 0.038
Serum albumin (g/dL)

  Median 3.7 4.3 <0.0001
  Range 2.2–4.5 3.6–5.0

ECOG performance status (%)

  0/1/2 31(57)/21(39)/2(4)

1st line chemotherapy regimen (%)

  S-IROX/mFFX/GnP 2(3.7)/11(20.4)/41(75.9)

T factor (%)

  1/2/3/4 0/0/31(57)/23(43)

Metastasis location (%)

  Liver/Lung/Peritoneum/Bone 32(59)/15(28)/17(31)/4(7)

CA19-9 level (U/mL)

  Median 585.1

  Range 1.5–606320
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mean value of BPC in Online Resource 4. In the Kaplan–
Meier method, the high level of CD4+ T cells before 
chemotherapy predicted significantly longer survival with 
the log-rank test. However, the other subtypes of PBLs 
before chemotherapy including the tumor-suppressive 

subtype (CD8+CD107a+ T cells, CD8+CD28+ T cells) 
and tumor-promoting subtypes (CD4+CD25+FOXP3+ 
Tregs, CD8+CTLA4+ T cells, CD8+CD122+ T cells, 
CD8+CD45R+ T cells) showed no significant correla-
tion with the prognosis of patients with MPC both in 

Fig. 1  Comparison of the distribution of each subtype of PBLs between BPC and MPC patients using Student’s t-test. *P < 0.05, **P < 0.01, 
***P < 0.001, NS: not significant
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Fig. 2  Correlation analysis between overall survival and across each subtype of peripheral blood lymphocyte (BPL) in patients with metastatic 
pancreatic cancer using Spearman’s rank correlation coefficient
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correlation analysis and in the Kaplan–Meier method 
with log-rank test (Fig. 3).

High proportion of CD8+CD122+ T cell was associated 
with short survival time of MPC
The low CD4+ T cell group showed a significantly shorter 
median survival time (MST) (201 days) than the high 
group (430 days, Fig. 3). Similarly, the high CD8+CD122+ 
T cell group had the same MST (201 days). Both Kaplan–
Meier curves notably decreased at an early time course 
(< 200 days), and many events occurred < 90 days in the 
high CD8+CD122+ T cell population. This indicates the 
possible influence of peripheral CD4+ and CD8+CD122+ 
T cells on the early prognosis of patients with MPC. The 
patients were divided into two groups based on their sur-
vival time to determine the relevance of these two cell 
types.

We setup the cutoff survival time at 90 and 180 days 
after chemotherapy induction. In Fig.  4, peripheral 
CD4+ T cells did not statistically correlate with the sur-
vival time in patients with MPC. In contrast, the high 
CD8+CD122+ T cell group was significantly associated 
with the short survival time, showing a remarkably higher 
number of patients whose survival was < 90 days com-
pared with the low CD8 + CD122+ T cell group (0/43 
vs 5/11, p < 0.0001). There were no significant differences 
in patient characteristics between the two groups of 

CD8+CD122+ T cells (Table 3). These results suggest that 
the proportion of CD8+CD122+ T cells before chemo-
therapy may be a prognostic indicator in patients with 
MPC.

CD8+CD122+ T cell ratio decreased in patients with MPC 
who benefited from chemotherapy
The effect of chemotherapy can be classified as complete 
response (CR), partial response (PR), stable disease (SD), 
or progressive disease (PD) according to RECIST1.0. 
None of the patients with MPC showed CR in this study. 
Patients who show PR or SD could be regarded as receiv-
ing effective chemotherapy. We compared the distri-
bution of CD8+CD122+ T cells in PR or SD cases with 
that in PD cases to investigate the relationship between 
CD8+CD122+ T cells and the efficacy of chemotherapy. 
The distribution of CD8+CD122+ T cells was evalu-
ated before the introduction of chemotherapy and 2 
months after. Consequently, CD8+CD122+ T cells sig-
nificantly decreased both in proportion (p = 0.038) and 
number (p = 0.0032) in patients who showed PR or SD, 
while no obvious change was observed in patients with 
PD (Fig. 5). These results imply that chemotherapy can 
affect peripheral CD8+CD122+ T cells and alter their 
susceptibility to cancer. A comparison of the patient 
characteristics between the two groups is shown in 
Online Resource 5.

Table 2  Univariate and multivariate analyses of prognostic factors in patients with metastatic pancreatic cancer

CI confidence interval, ECOG Eastern Cooperative Oncology Group, GnP gemcitabine plus nab-paclitaxel, SD standard deviation, mFFX modified FOLFIRINOX

P values < 0.05 are shown in bold

Covariate (n=54) Univariate Multivariate

Hazard ratio 95% CI P-value Hazard ratio 95% CI P-value

Sex (Male) 1.51 0.75–3.07 0.25

Age (≥65 years) 1.80 0.83–3.93 0.14

Diabetes mellitus (yes) 0.70 0.34–1.42 0.32 0.34 0.15–0.75 0.0076
Serum albumin (g/dL)

  ≥3.5 1.22 0.56–2.66 0.61 2.83 1.11–7.26 0.030
ECOG performance status

  1–2/0 2.02 0.99–4.13 0.054 4.67 1.92–11.32 0.0007
1st line chemotherapy

  mFFX/GnP 0.80 0.30–2.11 0.65

  GnP/S-IROX 0.81 0.11–6.14 0.84

  mFFX/S-IROX 0.65 0.08–5.74 0.70

T factor

  4/1–3 0.52 0.24–1.14 0.10

CA19-9 level (U/mL)

  ≥1000 2.90 1.37–6.12 0.005 3.29 1.51–7.18 0.0028
CD4+ T cell level (%)

  High 0.45 0.22–0.92 0.030 0.35 0.15–0.78 0.011
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Fig. 3  Kaplan–Meier analyses of survival between high and low groups for each subtype of peripheral blood lymphocytes using the log-rank test
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Distribution of CD8+CD122+ T cell in TME depended 
on that in peripheral blood
To determine the distribution of TILs in the TME 
and to clarify the correlation between TILs and 
PBLs, we collected blood and resected tissue samples 
from patients with RPC. Patient characteristics are 
shown in Online Resource 6. CD8+CD107a+ T cells, 

CD8+CD28+ T cells (tumor-suppressive subtypes), and 
CD8+CD122+ T cells (tumor-promoting subtype) were 
detected in both TME and peripheral blood (Fig.  6). 
However, CD8+CD45R+ T cells (tumor-promoting sub-
type) were observed in the peripheral blood but not 
in the TME. The proportion of CD8+CD122+ T cells 
in the TME was significantly correlated with that in 

Fig. 4  Correlation of the high and low group of peripheral CD4+ T cell or CD8+CD122+ T cell with short time survival(< 90 or < 180 days) using the 
chi-square test. Peripheral CD4+ T cells did not correlate with the early survival time (< 90 days, < 180 day) in patients with MPC (P = 0.58, P = 0.82). 
However, the high CD8+CD122+ T cell group was significantly associated with the short survival time with an obviously higher number of patients 
whose survival was < 90 days compared with the low CD8+CD122+ T cell group (P < 0.0001)



Page 10 of 14Teramatsu et al. BMC Cancer         (2022) 22:1134 

peripheral blood (p = 0.0036), suggesting a direct link 
between the two. This result indicates that some TILs 
may circulate in the peripheral blood, and the distribu-
tion of PBLs may partially reflect the immunological 
microenvironment.

Discussion
A comparison of the distribution of PBLs between 
patients with MPC and BPC showed elevated levels of 
both tumor-suppressive and tumor-promoting popula-
tions in MPC compared with BPC. This indicates that 
there is a crucial difference in the systemic immune envi-
ronment between patients with BPC and MPC. Moreo-
ver, the competitiveness of increased tumor-promoting 
cells against increased tumor-suppressive cells may result 
in dysfunction of antitumor immunity and evasion of 
tumor cells from immune surveillance in the severe pro-
gression phase of MPC. However, Xu et al. (2014) showed 
a lower level of tumor-suppressive CD8+CD28+ T cells 
in PBLs of patients with pancreatic cancer than in those 
with benign cystic regions of the pancreas [13]. They 
enrolled patients with RPC at an earlier stage than in our 
study, which may explain our differing results.

Here, the proportion of peripheral CD4+ T cells before 
chemotherapy induction positively correlated with the 

OS of patients with MPC. This result is consistent with 
a previous report that showed a positive correlation 
between peripheral CD4+CD45RO+ T cell levels and 
the survival of patients with inoperable or MPC [14]. 
While we did not find a relationship between peripheral 
CD4+ Tregs and the prognosis of patients with MPC, 
previous studies have reported high levels of circulat-
ing CD4+ Tregs, leading to poor prognosis in patients 
with pancreatic cancer [13, 15]. This discrepancy might 
be the result of differences in the definitions of CD4+ 
Tregs; we defined them as CD4+CD25+FOXP3+ T cells, 
whereas CD4+ Tregs in the other reports are referred to 
as CD4+CD25+CD127− T cells. In addition, we could not 
prove the predictability of tumor-suppressive subtypes of 
peripheral CD8+ T cells (CD107a+, CD28+), while other 
studies demonstrated that a high frequency of CD8+ or 
CD8+CD28+ T cells predicted better prognosis [13, 15]. 
This might be due to our smaller sample size, as each 
Kaplan–Meier curve of the high level of whole CD8+ or 
CD8+CD107a+ T cells showed a better survival rate than 
the low level, although the difference was not statistically 
significant.

Regulatory CD8+ T cells can be classified into several 
subtypes [29]. CD8+CD45R+ T cells have been classically 
regarded as a regulatory CD8+ T cell subtype because it 
was shown that they had a function of suppressing other 

Table 3  Clinical characteristics of patients with high and low CD8+CD122+ T cell levels

CI confidence interval, ECOG Eastern Cooperative Oncology Group, GnP gemcitabine plus nab-paclitaxel, SD standard deviation, mFFX modified FOLFIRINOX

Characteristic High CD8+CD122+ T cell ratio Low CD8+CD122+ T cell ratio P-value

Total number 11 43

Sex (%)

  Male 4(36) 22 (51) 0.38

  Female 7(64) 21(49)

Age (years)

  Mean ± SD 62.7 ± 2.7 65.5 ± 1.4 0.50

  Range 42–74 49–79

Diabetes mellitus (%)

  Yes 2 (18%) 21 (49%) 0.67

Serum albumin (g/dL)

  Median 3.8 4.7 0.72

  Range 2.2–4.3 2.6–4.5

ECOG performance status (%)

  0/1/2 5(45.5)/5(45.5)/1(1) 26(61)/16(37)/1(2) 0.45

1st line chemotherapy regimen (%)

  S-IROX/mFFX/GnP 1(9)/3(27)/7(64) 1(2)/8(19) /34(79) 0.43

T factor (%)

  1/2/3/4 0/0/5(45)/6(55) 1(2)/0/26(61)/16(37) 0.54

CA19-9 level (U/mL)

  Median 1924 571 0.21

  Range 45.2–81446 1.5–606320
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effector cells in vitro [30, 31]. Memory CD8+CD122+ T 
cells have recently attracted considerable interest as a 
major regulatory CD8+ T cell subtype worldwide. Rifa’I 
et  al. (2004) first reported that CD8+CD122+ T cells 
maintain T cell homeostasis by regulating other acti-
vated CD4+ and CD8+ T cells [32]. In some recent stud-
ies, CD8+CD122+ T cells showed immunosuppressive 
function, restrained autoimmune diseases [18, 19], and 
modulated allograft rejection or GVHD during organ 
transplantation [23, 25–27]. Other regulatory subtypes 
of CD8+ T cells, such as CD8+FOXP3+, CD8+CD28− 
and CD8+CCR7+CD45RO+ have been reported [17, 
29]. However, the roles and functions of CD8+CD45R+ 
T cells, CD8+CD122+ T cells, and others in the pres-
ence of cancer are mostly unknown. Thus, we selected 
CD8+CD45R+ T cells as the classical subtype and 
CD8+CD122+ T cells as the recent subtype to investigate 
their role in pancreatic cancer.

Our study demonstrated that patients with MPC 
had a higher proportion of both CD8+CD45R+ and 
CD8+CD122+ T cells in PBLs than in those with BPC. In 

addition, we found that the high level of CD8+CD122+ 
T cells in PBLs before chemotherapy was associated 
with early mortality (< 90 days) of patients with MPC, 
although no significant correlation was found between 
CD8+CD45R+ T cell subtype and prognosis. Previous 
studies have found that CD8+ T cells infiltrate the TME 
and inhibit the proliferation of other T cells [33, 34]. 
Moreover, anti-CD122 antibody reduces CD8+CD122+ 
T cells and suppresses tumor growth in colon cancer or 
melanoma in a murine model [33]. In a study using mice 
with hepatocellular carcinoma (HCC), resveratrol pre-
vented HCC growth by blocking the differentiation of 
CD8+CD122− T cells into CD8+CD122+ T cells [34]. 
In autoimmune diseases or immunosuppression during 
organ transplantation, CD8+CD122+ T cells suppressed 
other effector T cells by secreting IL-10 [18, 19, 23, 25, 
26] or inducing apoptosis through Fas/FasL pathway [35, 
36]. Therefore, in the presence of cancer, CD8+CD122+ 
T cells may prevent the activity of effector T cells, which 
impairs the progression of cancer, possibly by a mecha-
nism similar to that previously reported.

Fig. 5  Comparison of the changes in CD8+CD122+ T cell after chemotherapy between PR + SD and PD groups using the paired t-test with the 
Wilcoxon signed-rank test. Pre: before chemotherapy, post: 2 months after chemotherapy induction. *P < 0.05, **P < 0.01, NS: not significant
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Fig. 6  Correlation between the proportion of tissue infiltrating lymphocytes and those in peripheral blood using Spearman’s rank correlation 
coefficient
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Peripheral CD8+CD122+ T cells were reduced after 
chemotherapy induction in patients with PR or SD com-
pared with those in patients with PD. Previous studies 
have revealed that peripheral CD4+FOXP3+ Tregs and 
MDSCs decreased after gemcitabine-based chemo-
therapy in patients with pancreatic cancer [37, 38]. Our 
study is the first to investigate the effect of chemotherapy 
on CD8+CD122+ T cells. We found that cancer chemo-
therapy may mediate cell fate decisions of CD8+CD122+ 
T cells and cause a subsequent change in susceptibil-
ity to chemotherapy. However, it was unclear whether 
the reduction in CD8+CD122+ T cells might result in 
increased susceptibility to chemotherapy or whether 
tumor shrinkage by chemotherapy might influence the 
fate of CD8+CD122+ T cells.

This is the first study to verify the distribution of 
CD8+CD122+ T cells both in the peripheral blood and 
the TME of patients with pancreatic cancer. As described 
above, the infiltration of CD8+CD122+ T cells into the 
TME depends on their proportion in the peripheral 
blood. CD8+CD107a+ and CD8+CD28+ T cells also exist 
in the TME, except for CD8+CD45R+ T cells. The pres-
ence of these T cells in the TME suggests that there is an 
interaction between these cells and cancer cells. Some 
T cells in the TME may migrate into the systemic blood 
circulation. Thus, we suggest that some CD8+CD122+ T 
cells in the TME may migrate into the peripheral blood 
circulation and peripheral CD8+CD122+ T cells level 
reflects immunosuppressive environment in the TME. 
Therefore, the high level of peripheral CD8+CD122+ 
T cells can predict poor prognosis in patients with 
MPC. However, in cancer research, the function of 
CD8+CD122+ T cells is still unknown. Therefore, further 
research should be desired.

Our findings suggest the possibility that CD8+CD122+ 
T cells may play a tumor-promoting role in pancreatic 
cancer. Therefore, they have potential to be new targets 
for antitumor therapy. However, most of their functions 
remain unknown and the sample size is small. Further 
investigation is required in the future.
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