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Abstract 

Background:  Gut microbiome community composition differs between cervical cancer (CC) patients and healthy 
controls, and increased gut diversity is associated with improved outcomes after treatment. We proposed that func‑
tions of specific microbial species adjoining the mucus layer may directly impact the biology of CC.

Method:  Metagenomes of rectal swabs in 41 CC patients were examined by whole-genome shotgun sequencing to 
link taxonomic structures, molecular functions, and metabolic pathway to patient’s clinical characteristics.

Results:  Significant association of molecular functions encoded by the metagenomes was found with initial tumor 
size and stage. Profiling of the molecular function abundances and their distributions identified 2 microbial com‑
munities co-existing in each metagenome but having distinct metabolism and taxonomic structures. Community A 
(Clostridia and Proteobacteria predominant) was characterized by high activity of pathways involved in stress response, 
mucus glycan degradation and utilization of degradation byproducts. This community was prevalent in patients with 
larger, advanced stage tumors. Conversely, community B (Bacteroidia predominant) was characterized by fast growth, 
active oxidative phosphorylation, and production of vitamins. This community was prevalent in patients with smaller, 
early-stage tumors.

Conclusions:  In this study, enrichment of mucus degrading microbial communities in rectal metagenomes of CC 
patients was associated with larger, more advanced stage tumors.
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Background
Cervical Cancer (CC) is the fourth most common can-
cer in women worldwide [1]. The vast majority of these 
cases are caused by the human papillomavirus (HPV). 
Most individuals infected by the virus do not develop the 
cancer, as the viral infection is cleared before the virus 
integrates in the genome [2]. Prior reports [3] have iden-
tified connections between the local (cervical/vaginal) 
microbiome and HPV infection and between cervical 
intraepithelial neoplasia and CC development. We pre-
viously reported differences between CC patients and 
healthy controls [4] and associations of gut diversity and 
composition with survival of CC patients based on 16Sv4 
rRNA sequencing [5]. The effect of gut microbial func-
tions on development and progression of CC in human is 
unknown. In a murine model of HPV cancer, we recently 
identified a significant association between gut and vagi-
nal microbiomes and impact of the association on the 
development and progression of CC [6]. Causal rela-
tionships are well established between the gut microbi-
ome composition and the development of other cancers, 
such as colon cancer [7]. Additionally, a growing body of 
evidence links microorganisms to the efficacy of cancer 
therapies [8–11].

In most studies, bacterial DNA extracted from fecal 
samples is used as proxy for evaluation of the gut micro-
biome composition. However, the microbial communi-
ties adjoining and populating the outer mucus layer of 
the intestine are different from stool as a whole [12] and 
may be more relevant in modulating immune function. 
Indeed, composition of bacteria within the stool primar-
ily reflect the dietary habits of patients, while microbial 
communities adjoining the mucus layer [13, 14] also pro-
tect the gut epithelial surface that holds many important 
immune and metabolic functions. The difference may be 
more pronounced when the mucus layer is somehow dis-
turbed because of a disease [15].

The mucus layer consists of an outer mucus layer, 
which is a habitat for commensal bacteria, and a smaller 
inner layer, which is attached to the epithelial cells and is 
lacking commensal bacteria [16]. This protective coatings 
are the crucial interface between the host and microor-
ganisms [17] and are mainly (~ 89%) comprised of gly-
cans (polysaccharides) attached by O-glycosylation to 
MUC2 (mucin 2) protein [18]. Galactose and N-acetyl-
galactosamine are major components of mucus glycan in 
normal human descending colon, although the structure 
varies in other parts of the intestine [19]. The mucus gly-
cans provide attachment sites for bacteria [20] and select 

species that can influence the mucus layer structure and 
the host [21] by degrading mucin glycans, metabolizing 
products of the degradation, and producing metabolites 
that affect the host, positively or negatively. According to 
recent studies [22, 23], mucins have also potent beneficial 
properties and can modulate microbial phenotypes sup-
pressing quorum sensing, biofilm formation, and secre-
tion of toxins. Thus, the microbial community adjoining 
and populating the outer mucus layer occupies a rather 
distinct environment within the intestine and can be 
affected not only by diet, but also by the mucus barrier 
and by the host.

Previous bacterial 16S rRNA gene sequencing stud-
ies found that stool and rectal swab microbiotas from 
the same subject were similar and that rectal swabs can 
be used as a proxy for fecal samples [13, 14, 24]; How-
ever, in light of the findings referenced above, the mucus 
layer of the intestine, including rectum, can significantly 
modify phenotype of the adjoining microbial community. 
This means that even if the structure of the community 
is similar between stool and swabs, metabolic functions 
implemented by the same organisms in these different 
environments may be different. In addition, the use of 
Whole Genome Shotgun sequencing (WGS) instead of 
16S RNA can provide finer resolution of the microbial 
community structure and functions and can reveal fea-
tures not found by 16S.

In this study, we propose that molecular functions 
encoded by metagenomes, further referred as MA 
(Mucus Associated) because they populate the mucus 
layer or adjoin to it, are different among CC patients and 
are likely associated with their clinical characteristics. 
We therefore explore metabolic characteristics of micro-
bial communities populating the mucus layer in rectums 
of 41 CC patients. Rectal swabs were used to sample the 
communities and then to sequence them by WGS.

Methods
Patient samples collection and processing
Forty-one patients treated at the University of Texas, 
M.D. Anderson Cancer Center or the Lyndon B. Johnson 
Clinic (LBJ) at Harris Health with a diagnosis of CC par-
ticipated in the study. The patients were enrolled on an 
Institutional Review Board (IRB) approved prospective 
protocol. Informed consent was obtained to collect rectal 
swabs. All patient samples were acquired prior to receiv-
ing any treatment.

Samples were collected from each out of 41 patients 
by a clinician performing rectal exams using a 
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matrix-designed quick-release Isohelix swab. The swabs 
were initially stored in 20ul of proteinase K and 400 μl of 
lysis buffer (Isohelix) within 1 h of sample collection and 
then were frozen and kept at -80 °C.

WGS sequencing and metagenome assembly
Whole Genome Shotgun sequencing was performed on 
genomic bacterial DNA (gDNA), which was extracted 
to maximize bacterial DNA yield from specimens while 
keeping background amplification to a minimum [25, 26]. 
Libraries were constructed from each sample using the 
KAPA Hyper Prep Kit (Kapa Biosystems, Wilmington, 
MA, USA) and sequenced using the Illumina HiSeqX 
platform with the 2 × 150  bp paired-end read protocol. 
Sequencing reads were derived from raw BCL files which 
were retrieved from the sequencer and called into fastqs 
by Casava v1.8.3 (Illumina). The appropriate read prepa-
ration steps, such as quality control, trimming and filter-
ing, and host DNA removal prior to further analysis, were 
performed using an in-house pipeline (Additional file 1: 
Figure S1; Additional file  2: Table  S1). Briefly, paired-
end raw sequence reads were filtered and trimmed using 
BBMap [27]. The trimmed reads were mapped to a hg38 
reference database (GCA_000001405.28) using bowtie2 
[28] to remove host contamination. The cleaned reads 
were then assembled to longer sequences (contigs) using 
both MEGAHIT [29] and metaSPAdes [30]. The assem-
bled contigs were filtered, to remove those that were 
smaller than 1000 bp, and binned using MetaBAT2 [31]. 
The assembled and binned contigs were used for gene 
predictions by Prodigal [32]. Annotation of the genes 
by KEGG ortholog groups (KOs) was implemented by 
KofamKOALA [33], and taxonomic classification of the 
contigs was done by CAT and BAT [34]. The read cover-
age of each assembled contig was calculated by aligning 
the cleaned reads directly to the contig using BBMap and 
by counting the mapped read by featureCounts [35]. The 
read coverage, GC content, taxonomic and functional 
annotations for each gene/contig were summarized using 
a Perl script. All the software tools were running with 
default parameters if not specified. Versions and sources 
of the software tools or packages used in the pipeline are 
listed in Additional file 2: Table S1. Output of the assem-
bly pipeline was a set of assembled contigs for each sam-
ple, their taxonomic annotation and read coverage, gene 
predictions for each contig, and functional annotation of 
each gene by KEGG Orthologous Group (KO) if found.

Computational analysis of assembled genomes
Annotations of assembled contigs for all samples were 
aggregated into 1 table, referred to as the Metagenome 
Function Abundance (MFA) table (Additional  file  1: 
Figure S1b, S2). Each column in the table represents 

a metagenome, and each row represents a predicted 
known molecular function annotated by KO. Thus, each 
cell in the MFA table has a quantity of the specified (KO 
id) molecular function in the specified sample (Sample 
id). Quantification of the molecular functions by MFA 
table is explained using a toy example provided in Addi-
tional  file  1: Figure S2. The MFA table was normalized 
using total number of reads in each sample and then mul-
tiplied by 1,000,000. Further analysis of the normalized 
MFA table included unsupervised and supervised meth-
ods, annotation by biological processes and pathways, 
and integration with clinicopathological characteristics 
of the patients (Additional file 1: Figure S1c).

Unsupervised analysis of MFA table
The MFA table was filtered to select KOs found in at least 
30 patients, log2-transformed and centered using the 
median, and then hierarchically clustered by the open 
source clustering software [36] with default parameters. 
The inferred clusters of samples were tested for associa-
tion with clinical information including age, CC stage and 
tumor size, using fisher.test() and wilcox.test() functions 
in R. The inferred clusters of KOs were searched for over-
lap with known KEGG referenced pathways and modules 
using the “Search&Color Pathway” tool in KEGG mapper 
[37, 38] with further manual curation of the results.

Supervised analysis of MFA table
The analysis was used to find differentially abundant 
KOs in MA metagenomes of patients with large versus 
small tumors. Samples for the analysis were selected by 
sorting all 41 samples by tumor size of the CC patients 
and assigning top 14 samples with largest tumors to LT-
group and bottom 14 samples with smallest tumors to 
ST-group for the comparison. All KOs found in at least 
1 sample were included in the analysis. Fisher’s test and 
Mann Whitney tests were used to find differentially 
abundant KOs between the group with p-value < 0.05 
(either test) without adjustment. The KO was considered 
enriched in LT-group if Fisher’s test p-values < 0.05 and 
the KO is more common in the group. If the Fisher’s test 
p-value > 0.05 but the Wilcoxon test p-value < 0.05 than 
the enrichment was inferred by difference in mean abun-
dances between ST- and LT-groups. The differentially 
abundant KOs were searched for overlap with known 
KEGG referenced pathways and modules as described 
above. The overlapping KOs were used to infer the path-
ways enrichment score calculated as ratio of difference 
between percentage of KOs overlapped with the pathway 
in ST- and LT-groups to sum of the percentages. Only 
top scored pathways that include 9 and more KOs for LT-
group and 4 and more KOs for ST-group are considered.
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Annotation of the differentially abundant KOs by car-
bohydrate-active enzymes (CAZy) families was imple-
mented using the mapping table between the KO ID 
and CAZy family ID [39]. The table was downloaded 
from KEGG on 26 October 2019.

The differentially abundant KOs were further used 
to quantify relative abundances of microbial sub-
populations encoding the functions in ST and in LT 
group of samples. The decomposition of cell popula-
tions, referred to as ST-dominant and LT-dominant, 
was implemented based on characteristics of den-
sity plots of KOs associated with each subpopulation. 
Namely, the differentially abundant KOs in ST and LT 
group were used to construct 2 normal curves for ST-
abundant and LT-abundant KOs. It was assumed that 
parameters of the curves, mean and standard devia-
tion, characterize molecular functions expressed by the 
microbial community dominating in either ST-group or 
LT-group, although each of the groups is comprised of 
both communities. To quantify abundances of the com-
munities in each group, we fitted the 2 normal curves to 
density plots of all KOs found in the two groups using 
multiple linear regression. The obtained fitting coef-
ficients were used to quantify the dominance of each 
community in metagenomes.

Survival analysis
The analysis was used to associate the Recurrence 
Free Survival (RFS) probability with  clinicopatho-
logical characteristics and  KEGG pathway [40]. Activ-
ity  of each  pathway found to be associated with the 
tumor size was quantified for each patient using the 
mean value of log2-transformed normalized abun-
dances of KOs involved in the pathway. The mean 
value is referred to as the pathway activity score.  To 
generate Kaplan–Meier plots for the pathway activ-
ity score, we categorized the score based on a cut-off 
set at the first quartile. Observations for each variable 
falling within the first quarter were labeled as “Low” 
and those greater than the first quartile cut-off were 
labelled as “High”. The analysis was implemented for 
each pathway identified as differentially enriched in 
either small or large tumor group metagenomes.  We 
used WHO standards to set cut-offs to categorize BMI 
into “Underweight/Normal weight” vs. “Overweight/
Obese”. We used a cut-off set at the median for other 
continuous clinicopathological characteristics, namely, 
age and tumor size. Cox proportional hazards  regres-
sion analysis [41] was used to evaluate predictive value 
of KEGG pathways and clinical characteristics on RFS 
time. The  R packages ‘survival’ and ‘survminer’ were 
used to compute the survival curves, and to  visualize 
them as Kaplan–Meier plots.

Taxonomic characterization of the cohort
All predicted contigs annotated by Length (L), Depths 
(D), and by taxonomy were used to quantify abundances 
of the taxa. For each sample, depth of the contig was 
multiplied by its length, and then the values were sum-
marized for all contigs that belong to the same taxa to 
quantify the taxa abundance.

The values were normalized using the sum of the values 
for all contigs identified in the sample.

The OTU (operating taxonomic units) table was cre-
ated by merging the abundances of all identified taxa for 
all 28 samples. Two approaches were used to find dif-
ferentially abundant putative taxa between LT and ST 
group. In the first approach, the OTUs were selected 
by Fisher’s exact test (for rare OTUs) and Mann Whit-
ney tests (for common OTUs) with p-value cutoff < 0.05 
(either test) without adjustment. In the other approach, 
the Linear discriminant analysis (LDA) Effect Size 
(LEfSe) [42] available as a Galaxy [43] module was used 
to determine the taxa that are differentially abundant 
between LT and ST groups. The analysis was run with 
default parameters, except the threshold for the logarith-
mic LDA score for discriminative taxa. The threshold was 
set to 2.5 instead of 2.

To reveal taxa involved in glycan degradation path-
way in each metagenome we have selected all contigs 
that encode enzymes involved in the pathway. The set of 
unique taxa from taxonomic annotation of the contigs 
was considered as the representative taxa of the path-
way. To create an OTU table of the representative taxa, 
each OTU were quantified by multiplying the length and 
the depth of each selected contig and by summarizing 
the obtained values for all contigs encoding the OTU. 
The 100% stacked area plot was used to visualize taxo-
nomic structure of the community involved in the path-
way across all studied samples. The Pearson correlation 
coefficients were used to evaluate association of the log2-
transformed score of the KEGG pathway with the abun-
dance of each identified taxon.

Results
Study cohort
Patients were enrolled on an IRB approved (MDACC 
2014–0543) study for longitudinal sampling of the 
gut microbiome (Additional File 2: Table  S2). For all 
41 patients enrolled on the study, median age was 49 
(range 29 to 72 years), and median BMI was 28.6 (range 
17.5 to 46.7). Most patients were Non-Hispanic White 
(44%) or Hispanic (44%) and had squamous carcinoma 
(74%) and stage II disease (54%). Median tumor size 
was 5.4 cm (range 1.8 cm to 11.5 cm). More information 
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on clinicopathological characteristics of the patients is 
provided in Additional File 2: Table S2.

Functional richness of MA metagenome associates 
with larger tumor size and with advanced CC stage
Among clinicopathological characteristics, the tumor 
size and CC cancer stage had the most significant asso-
ciations with total number of predicted genes and func-
tions (Table  S3, Fig.  1a, b). Greater number of unique 
KEGG orthologous groups (KOs) was significantly asso-
ciated with advanced stages (III/IV) of cervical cancer 
(P = 0.005; Fig. 1a) and with larger tumor size (P = 0.02; 
Fig. 1a), which had linear correlation with the number of 
unique functions (R = 0.41, P = 0.008) (Fig.  1b). No sig-
nificant association of the characteristic (P = 0.21) was 
found with BMI that may indirectly characterize eating 
and dietary habits of the patients.

Unsupervised hierarchical clustering reveals microbial 
communities with 2 distinct profiles of molecular functions
Next, we explored whether specific genes or functions 
were associated with clinicopathological characteris-
tics using unsupervised hierarchical clustering of KO 
abundances. We selected 2,396 KOs that were found 
in greater than 30 samples for the analysis. These KOs 
clustered tumors into 2 large clusters and 4 sub-clusters 
(Fig. 1c). In general, Cluster 2 was comprised of smaller 
tumors (“ST cluster”), when compared with Cluster 1 
(“LT cluster”; t-test P = 0.06). Within the LT cluster, 
Sub-cluster 1.1 was dominated by younger patients 
(t-test P = 0.05) with large tumors (t-test P = 0.03).

The KEGG pathway analysis of the ST cluster and the 
LT cluster using KEGG mapper [38] identified a set of 
pathways enriched in each of the clusters (Fig.  1c). The 
ST Cluster was enriched with pathways associated with 
rapid microbial cell proliferation, including ribosome 
biogenesis (Additional File 1: Figure S3a), DNA repair 
(Additional File 1: Figure S3b), oxidative phosphoryla-
tion (Additional File 1: Figure S3c), and synthesis of pep-
tidoglycan and lipopolysaccharides (Fig.  1d). Almost all 
enzymes involved in synthesis of biotin (vitamin B7) were 
also found in the ST cluster (Fig. 1d).

The LT cluster (Cluster 1 in Fig. 1c) was enriched with 
pathways associated with bacterial stress response, indi-
cated by activation of quorum sensing (Additional File 1: 
Figure S4), sporulation, and degradation of glycan. The 
glycan degradation pathways included high activity of 
the KEGG pathway, “Other glycan degradation” (Fig. 1e). 
In addition, pathways involved in utilization of glycan 
degradation byproducts, such as fructose and mannose 
(Additional File 1: Figure S5a), and especially galactose 
(Additional File 1: Figure S5b), the major constituent 
(~ 85%) of glycans in normal human gastric mucus [44] 
were enriched in the LT cluster. Both branches of the 
pentose phosphate pathway, the oxidative branch main-
taining redox balance in stress conditions and non-oxi-
dative branch that supply glycolysis with intermediates 
derived from pentoses [45], were also more active in the 
LT cluster (Additional File 1: Figure S6). Most enzymes 
involved in utilization of ethanolamine (Fig. 1e), a break-
down product of human and bacterial cell membrane 
[46], and enzymes involved in production of ornithine 
(Fig. 1e), a precursor for synthesis of polyamines, such as 
putrescine [47, 48], were found enriched in the LT cluster. 
The biological processes of flagellar assembly and chemo-
taxis (Additional File 1: Figure S7) were also up-regulated 
in the LT cluster, revealing the importance of mobility for 
bacteria residing in the metagenomes [49].

Supervised comparison of metagenomes associated 
with largest and smallest tumors
To confirm the association of large tumor size with 
glycan degrading microbial communities, we divided 
patient samples into “Large Tumor” (LT-group) and 
“Small Tumor” (ST-group) groups. The LT-group 
included 14 metagenomes of patients with the larg-
est tumors, and the ST-group had 14 metagenomes 
of patients with the smallest tumors (Fig. 2a). The LT-
group were also significantly more enriched in patients 
with stage III/IV of CC then ST-group (chi-squared 
contingency table tests p-values 0.02), since tumor size 
is roughly correlated with stage in the 2009 FIGO stag-
ing system used in the study. The diversity and rich-
ness of molecular functions was higher in LT versus 

Fig. 1  Association of molecular functions of MA metagenomes with KEGG pathways and clinical characteristics of CC patients. a Large number of 
unique functions is associated with larger tumor size and advance CC stage. b Linear relationship between the number of unique functions and the 
tumor size. c Unsupervised hierarchical clustering of metagenomes in terms of abundances of molecular functions. The heat map of the clustering 
shows abundances of 2396 KOs as rows and 41 MA metagenomes as columns. Boxes with enriched KEGG pathways are colored by red if the 
clustered molecular functions are more abundant in metagenomes of patients with Large tumors (Cluster 1) and in green if the molecular functions 
are more abundant in metagenomes of patients with Small tumors (Cluster 2). d Synthesis of peptidoglycan, lipopolysaccharides and biotin are 
enriched among KOs that are abundant in Cluster 2 (Small tumor) metagenomes. e Glycan degradation, ethanolamine utilization and production 
of ornithine are enriched among KOs that are abundant in Cluster 1 (Large tumor) metagenomes. Enzymes involved in the enriched pathways have 
red borders if they are found among KOs of the Cluster 1 or Cluster 2

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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ST-group (Fig. 2b and c respectively). There were 1,496 
differentially abundant KOs between the groups with 
most of the KOs (75%) were more abundant in the LT-
group. The density plots of the differentially abundant 
KOs were also different between the groups. The KO 
abundances were significantly more scattered around 
the mean (standard deviation is 2.6) in LT-group when 
compared with ST-group (standard deviation is 1.3). 
The KO abundances mean value was almost twice as 
low in LT-group than in ST-group (Fig. 2d and e respec-
tively). The observed density plots indicated that 2 dis-
tinct populations (sets) of molecular functions, referred 
to as LT-abundant and ST-abundant, might coincide in 
each metagenome but be most representative in either 
LT- or ST-group of samples. This conclusion was con-
firmed by density plots of all KOs found in LT-group 
(Fig.  2f ) and in ST-group (Fig.  2g). By fitting param-
eters of the normal distributions from Fig.  2d and e 
to density plots in Fig.  2f and g using multiple linear 
regression, we found that although both, LT- and ST- 
abundant functions were present in LT- and ST-group 
of metagenomes, the fitting parameter of LT-abun-
dant population was increased in LT-group by 1.2 and 
the fitting parameter of ST-abundant population was 
decreased by 1.5 in the group.

CAZyme families associated with small and large tumor 
metagenomes
To associate the LT-abundant KO population with the 
glycan degradation we compared abundances of carbohy-
drate-active enzymes (CAZyme) families in this popula-
tion and in the ST- abundant KO population using CAZy 
database [39]. The database classifies CAZymes accord-
ing to their functions, such as synthesis of complex car-
bohydrates or their hydrolysis. Glycoside hydrolases GH, 
which are enzymes involved in hydrolysis of glycosidic 
bonds between carbohydrates or between a carbohydrate 
and a non-carbohydrate moiety, were highly enriched 
in LT abundant KO population (Fig. 2h). There were 16 
GH among KOs in the population, and none in the ST 
abundant population, which included only 3 Glycosyl 
Transferases (GT); the enzymes that are mainly involved 

in biosynthesis of disaccharides, oligosaccharides, and 
polysaccharides. We further compared ST- and LT-
abundant KO populations in terms of abundances of gly-
cosidases, enzymes annotated by EC 3.2.1- involved in 
hydrolyzes of O- and S-glycosyl compounds comprised 
the mucus layer. There were 32 glycosidases in 28 sam-
ples, and many of them were significantly more abundant 
in metagenomes of patients with large tumors (Fig.  2i). 
Only lysozyme, a known component of two-component 
cell lysis cassette in bacteriophages [50], was found to be 
significantly more abundant in the small tumors group of 
patients.

Biological processes associated with small and large 
tumors
The KEGG pathway analysis of differentially abundant 
KOs was further used to identify specific biological pro-
cesses represented by LT-abundant and ST-abundant 
KOs (Fig.  2j). The representative pathways revealed by 
the analysis were consistent with results of the super-
vised analysis of 41 samples. Very active proliferation in 
ST-group of metagenomes were indicated by a high path-
way enrichment score (ST- versus LT-abundant popula-
tion) for DNA replication, ribosome, t-RNA biosynthesis, 
homologous recombination, and mismatch repair. Stress 
response and degradation of the mucus layer in LT-group 
were indicated by enrichment of biofilm formation path-
way, galactose metabolism (Fig. 2j, Additional File 1: Fig-
ure S8), and by a significant increase in the abundance 
of trehalose-specific PTS components (Fig.  2k) among 
LT- versus ST-abundant KOs. Ornithine biosynthesis 
(Additional File 1: Figure S9), putrescine and spermi-
dine metabolisms (Additional File 1: Figure S8; Fig.  2k) 
were also enriched in LT- abundant KOs, while enzymes 
involved in vitamin B12 production were enriched 
among ST-abundant KOs (Fig. 2k).

Association of KEGG pathway with clinicopathological 
characteristics and recurrence free survival (RFS)
None of the studied clinical characteristics showed sig-
nificant (p < 0.05) association with RFS. This analysis was 
limited by the low number of events in the study cohort. 

(See figure on next page.)
Fig. 2  Supervised comparison of Largest tumors (LT-group) and Smallest tumors (ST-group) of MA metagenomes. a Grouping of samples into 
ST- and LT-groups for supervised comparison. b,c Greater richness and diversity of molecular functions in LT-group of metagenomes. d,e Density 
plots of differentially abundant KOs in LT- (d) and ST- (e) groups of metagenomes. Parameters of the normal distributions were used to find 
amplitudes of LT- and ST-abundant molecular functions among all KOs in each tumor group. f,g Density plots of all KOs identified in LT- (f) and 
ST- (g) groups of metagenomes. h Carbohydrate Active enZymes (CAZymes) identified in LT- and ST- groups. i Glycoside hydrolases involved in 
degradation of glycans (EC 3.2.1.-) are differentially enriched in LT- versus ST- group of metagenomes. j KEGG pathways enriched among KOs 
differentially abundant between ST- and LT- groups of metagenomes. k Some KEGG pathways differentially abundant between the groups. 
Phosphotransferase and putresine utilization pathway are more abundant in LT-group, while vitamin B12 production is more abundant in ST-group
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Among KEGG pathways enriched in either LT- or ST-
group of MA metagenomes, only a trend of negative 
association with RFS was found for high activity of glycan 
degradation pathway and of Phosphotransferase system 
(Fig. 3e and f ). Both pathways were enriched in LT-group 
of MA metagenomes. Vice versa, significant positive 
association with RFS was found for high activity of Ribo-
some biogenesis and DNA repair pathways enriched in 
ST- group of MA metagenomes (Fig.  3g and h). Only a 
trend of negative associations with improved RFS (Addi-
tional File 1: Figure S10A and S10B) was observed for 
high stage tumors (log-rank P = 0.10) and for positive 
nodal status (log-rank P = 0.15), well known clinical char-
acteristic of cancer progression and aggressiveness. Non-
significant associations were likely because of the small 
number of patients in the study; very significant associa-
tion of the same characteristics with survival was docu-
mented in large cohort of CC patients (> 10,000) [51]. 
Despite nonsignificant association with RFS, patients 
with positive nodes had significantly increased activity 
of glycan degradation pathway (P = 0.005) and ornithine 
biosynthesis (P = 0.05) in MA metagenomes (Fig. 3a and 
b). Activity of the pathways was also significantly higher 
in patients with stage III/IV tumors (Fig. 3c and d), while 
activity of ribosome biogenesis was higher in metagen-
omes of stage I/II patients (Additional File 1: Figure S11).

Taxonomic associations with tumor size
Difference in taxonomic structure of MA metagenomes 
in LT-group versus ST-group can be seen at different tax-
onomic levels (Fig. 4a, Additional File 1: Figure S12-S14) 
with dominance of Phylum Firmicutes (Class Clostridia 
and Order Clostridiales) and Phylum Proteobacteria in 
LT- group and Phylum Bacteroidetes (Class Bacteroidia, 
Families Prevotellaceae and Ruminococcaceae in ST-
group. Like in case of differentially abundant molecular 
functions (Fig.  2d and e), the density plots of differen-
tially abundant species were also different between the 
tumor groups (Fig. 4b) with a greater median abundance 
of species in ST-group. No difference, however, was seen 
between LT- and ST-groups of metagenomes in terms of 
species richness, diversity, and evenness (Fig. 4c).

Taxonomic annotation of most abundant contigs 
(OTUs) in each group and comparison of their abun-
dances between groups revealed that many of the contigs 
belonged to Order Bacteroidales, and they were signifi-
cantly more abundant in ST-group. There were 5 putative 
species of Genus Porphyromonas (P. endodontalis, P. sp 
COT_239OH1446, P. bennonis, P. sp HMSC065F10 and 
P. uenonis) and 2 species of Genus Prevotella (P. Timon-
ensis and P. Buccalis) among Bacteroidales (Fig.  4d, 
Additional File 2: Table S4). None of the genera was sig-
nificantly abundant in LT-group. Contigs annotated by 
Class Clostiridia including 12 putative species of Fam-
ily Ruminococcaceae were more abundant in LT-group. 
Only 1 species of Ruminococcaceae (AF41_9) was found 
more abundant in ST group. The observations were con-
sistent with results obtained by comparison of LT- and 
ST-groups using LEfSe (Additional File 1: Figure S15). 
The latter analysis has also identified less abundant taxa 
enriched in one of the groups, such as Class Tissierellia, 
Genera Ezakiella, Murdochiella and Hungatella, in ST-
group, as well as Families Ruminococcaceae, Lachnospi-
eraceae, Enterobacteriaceae, and Order Enterobacterales 
in LT group (Additional File 1: Figure S16).

Taxonomic associations with glycan degradation pathway
To identify taxa utilizing the glycan degradation path-
way in each metagenome we selected contigs that encode 
enzymes of the pathway and quantified abundances of 
taxa representing these contigs. Overlay of the enzyme 
abundances across metagenomes with the relative abun-
dances of taxa involved in glycan degradation (Fig.  4e) 
showed that major taxa degrading glycan are differ-
ent between MA metagenomes of patients with small 
and large tumors. Clostridiales is more likely to encode 
enzymes of the glycan degradation in the LT-group, 
while Bacteroidales is the major taxon that encode the 
enzymes in ST-group. The result is consistent with the 
difference in taxonomic structure of MA metagenomes 
described in the previous paragraph. Further correlation 
analysis revealed a significant positive association of the 
glycan degradation pathway score with Bacteroidales, 
Clostridiales, and with non-classified taxa. A significant 

Fig. 3  Association of KEGG pathway and clinicopathological characteristics. a Increased activity of Glycan degradation pathway and b Ornithine 
biosynthesis in metagenomes of patients with positive nodes on imaging. Categorization of patients into the negative (red color) and positive 
(green color) groups according to absence or presence of cancer cells in lymph nodes respectively revealed that 6 out of 12 patients with negative 
nodes had very low activity of Glycan degradation pathway. c Increased activity of Glycan degradation pathway and d Ornithine biosynthesis 
in metagenomes of patients with stage III/IV cervical cancer. e, f Negative association of Phosphotransferase system and of Glycan degradation 
pathway with recurrence free survival (RFS). Both pathways were enriched in metagenomes of patients with large tumors. The pathway activity 
was quantified in each metagenome by the mean value of log2-transformed normalized abundances of KOs involved in the pathway; the value is 
referred to as the pathway activity score, which was categorized as high in the first quartile and low in the rest. g, h Significant positive association 
of Ribosome biogenesis and of DNA repair pathways with RRS. Both pathways were enriched in metagenomes of patients with small tumors

(See figure on next page.)



Page 10 of 16Karpinets et al. BMC Cancer          (2022) 22:945 

Fig. 3  (See legend on previous page.)



Page 11 of 16Karpinets et al. BMC Cancer          (2022) 22:945 	

negative correlation was found with Actinomycetales, 
Chlamydiales, and Tissierellales (Additional File 1: Fig-
ure S17). In general, there was significant variation across 
taxa involved in glycan degradation. The variation was 
especially dramatic in MA metagenomes of patients with 
large tumors.

Discussion
Herein, we have described significant differences in the 
gut metagenomes adjoining the mucus layer (MA metage-
nome) between cervical cancer patients with small, early-
stage tumors and large, advanced stage tumors at the time 
of treatment. Specifically, MA metagenomes of patients 
with small tumors were enriched in molecular functions 
associated with biosynthesis and rapid proliferation. By 
contrast, MA metagenomes of patients with large tumors 
were enriched with functions associated with bacterial 
stress response and degradation of glycan. In addition, the 
utilization of ethanolamine and functions related to bac-
terial cells mobility were more abundant among young 
patients with large tumors and advanced stage (Fig.  1c). 
Activities of glycan degradation and of ornithine biosyn-
thesis were also significantly associated with the advance 
tumor stage and the lymph node metastasis, while activ-
ity of the ribosome biogenesis was significantly associ-
ated with low stage tumors and better recurrence-free 
survival. This dominance may lead to significant changes 
in the metabolic environment of the intestine that directly 
impact tumor growth and progression.

It is possible that the tumor biology is influenced by 
differing molecular functions in MA metagenome. We 
have found that MA metagenomes include two distinct 
microbial consortia, which we refer to here as prolif-
erating and mucus degrading (Fig.  4f ). Both consor-
tia co-exist, although patients with larger tumor size 
and advanced stage show an obvious dominance of the 
mucus degrading consortia over proliferating. The tumor 
promoting effects of the degradation and utilization 
of major degradation products, such as galactose and 
other pentoses [19], may help drive the tumor growth. 
Glycan degradation leads to production of metabolites 
with known tumor growth promoting effects and with 

resistance to radio- and chemotherapy, such as orni-
thine [52] and ceramides [53, 54]. The metabolites are 
produced as by-products of glycan degradation (Fig. 1e) 
and can be further metabolized either by bacteria or by 
host and give oncogenic effect after their metabolization. 
Ceramide itself, for example, is a powerful tumor sup-
pressor, but products of its metabolism are potent tumor 
survival factors associated with resistance to cancer 
therapies [53]. Ornithine can be used by the consortium 
or by the host to synthesize the polyamines putrescine 
and spermidine (Additional File 1: Figure S8), which 
cause tumorigenic transformation and tumor progres-
sion [55]. If the gut metabolites cross the gut mucosa 
into blood through the mucus layer, they may promote 
systemic proliferation of tumor cells. In addition, the 
intensive ethanolamine utilization (Fig.  1e), which is 
especially pronounced in younger patients (Fig. 1c) with 
larger tumors, also suggests a more pathogenic envi-
ronment in the intestine. The set of enzymes involved 
in the pathway are similar to the eut operon in Salmo-
nella enterica serovar Typhimurium [56], a known gas-
trointestinal pathogen. Many other species that contain 
the eut genes are also pathogens [46], because ethan-
olamine is derived from the membrane phospholipid 
phosphatidylethanolamine, an important component of 
all bacterial and eukaryotic cells. The intensive utiliza-
tion of ethanolamine may indicate a degradation of the 
colonic epithelium [46] that secretes peptides inhibit-
ing bacterial penetration into the inner colonic mucus 
layer and blocking bacterial mobility [17, 57]. Indeed, 
the activity of pathways associated with mobility, such 
as chemotaxis and flagella assembly, are also enhanced 
in MA metagenomes of the LT-group, particularly in 
sub-cluster of younger patients (Fig. 1c). Conversely, the 
increased synthesis of peptidoglycan and lipopolysac-
charides by the proliferating consortia may improve the 
intestinal microenvironment and the immune response 
in patients with smaller tumors [58]. The increased pro-
duction of vitamins B7 (biotin) and B12 (cobalamin) may 
also be important for immune cell function and reduc-
tion of cellular oxidative stress [59–61]. Overall, these 
metabolites may have a tumor suppressive effect.

(See figure on next page.)
Fig. 4  Taxonomic profiling and biological models of MA metagenomes in LT- and ST-groups. a Taxonomic structure of metagenomes at the Phyla 
level. b Density plots of differentially abundant species in LT- and ST-groups. Fisher’s test and Mann Whitney tests were used to find differentially 
abundant OTUs with p-value < 0.05 (either test) without adjustment. c Richness, diversity, and evenness of OTUs in LT and ST-groups. d Taxonomic 
annotation of most abundant contigs in LT- and ST-groups. e Glycan degradation pathway in terms of enzyme abundances (top) and representative 
taxonomic Order (bottom) of the enzymes in each patient. The clinical characteristics of each patient and the Glycan degradation pathway activity 
score are given at the bottom of the table. To reveal taxa involved in the glycan degradation pathway in each metagenome we have selected 
contigs that encode enzymes involved in the pathway and quantify abundances of each taxa considering length and read coverage of the contigs. 
The figure overlays abundances of enzymes with the relative abundances of taxa involved in glycan degradation across metagenomes. Samples (X 
axis) in the figure have the same order as in the unsupervised clustering of samples in terms of KOs in Fig 1c. f Biological models of Mucus Adjoining 
(MA) bacterial consortium in LT- and ST-groups
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Based on the contrasting functions, tumor promot-
ing versus suppressive, implemented by proliferating and 
mucus degrading microbial communities, we speculate 
that a disbalance in their activities may contribute to CC 
progression and to more aggressive tumor phenotypes. 
This study does not make clear what comes first, mucus 
degradation or tumor progression. It is likely that the pro-
cesses are bidirectional and influence each other. Cervical 
cancer typically develops over years. Differences in the 
microbial flora of a large tumor may reflect changes in the 
tumor microenvironment directly affected by local tumor 
progression, or gut metagenome functions may allow 
increased tumor growth via systemic factors released into 
the bloodstream. Alternatively, tumor size may be a sur-
rogate for other aggressive tumor biology, such as hypoxia 
or necrosis, which increase as tumors grow. Although this 
study associates large tumor size with functions repre-
senting degradation of mucus layer and degradation by-
products with known tumor promoting effects, it doesn’t 
demonstrate that the association is causal and doesn’t 
provide direct evidence for linking the produced metabo-
lites with tumor size. It is possible that tumor progression 
and associated changes of organismal processes may be 
primary and drive changes in the mucus layer microenvi-
ronment and in molecular functions of the MA commu-
nity through production of cytokines and metabolites [17] 
or by changing the mucin glycans that are also important 
host signals selecting microorganisms and making them 
less pathogenic [23]. Indeed, the study reveals stress-asso-
ciated changes in the mucus layer microenvironment that 
are indicated by reduced proliferation, and by increased 
activity of quorum sensing and sporulation in mucus 
degrading consortium. In addition, the taxonomic struc-
ture of the consortium is different between metagenomes 
in large- and in small-tumor groups. The difference, how-
ever, is pronounced only when functions and pathways 
are also considered, suggesting taxonomic comparison 
alone is not sufficient. Further studies using mouse or cell 
culture models are necessary to prove biological assump-
tions made in the paper and to decipher biological mecha-
nisms underlying the discovered association between CC 
and mucus layer degradation. Sequencing and analysis of 
DNA from cervical swabs in parallel with the rectal swabs 
in CC patients would be also important to explore the 
mechanisms.

The association of CC progression with MA metagen-
ome functions suggest a potential therapeutic interven-
tion by shifting the balance in the metagenome from 
mucus degrading consortium to proliferating for sup-
pression of the tumor growth and for improving the 
treatment outcome. The intervention, however, will 
require to know the optimal balance between the prolif-
erating and degrading consortia because the latter is also 

a known component of the healthy gut and is important 
for renewal of the mucus layer.

Because microbial communities populated the mucus 
layer are not specific to CC, it is likely that similar asso-
ciations between the tumor size and structure and func-
tion of MA metagenomes may be seen in other cancer 
types. In addition, shifting the balance between prolif-
erating and mucus degrading consortia in the gut may 
directly affect cancer therapy and drug toxicity. The 
mucus layer plays a very important protective role in 
the intestine [62], therefore its unbalanced degradation 
can impair sensitivity to or ability to resist toxic effects 
of drugs. Recently, a growing body of evidence linked 
microorganisms to cancer therapy efficacy and toxic-
ity [8–10]. Our previous study of metagenomes in fecal 
samples of melanoma patients with different response to 
anti-PD-1 therapy [10] reveals that degradation associ-
ated pathways are enriched in non-responders, while 
biosynthetic pathways are enriched in responders. We 
were not able to associate catabolic pathways with the 
mucus layer degradation in this study; however, we can 
speculate that the degradation can be responsible for 
the enrichment of catabolic processes in non-respond-
ing patients. The small number of samples and the use 
of fecal samples instead of rectal swabs might compli-
cate identification of the mucus layer degradation in the 
study. It is likely that fecal samples are not optimal for 
the evaluation because they represent a different envi-
ronment in the intestine. Further studies using WGS are 
necessary to compare fecal and swab samples from the 
same patient when mucus layer degradation is evaluated.

Conclusions
This study shows that the mucus adjoining environ-
ment in the rectum of CC patients contains two micro-
bial communities, proliferating and mucus degrading, 
with potential tumor suppressive and tumor-promoting 
functions, respectively. Theoretically, the disturbed bal-
ance between the communities could be corrected by 
diet, probiotics, antibiotics, or other interventions. Fur-
ther mechanistic studies are very important to confirm 
associations identified in this study.
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Additional file 1: Figure S1. Workflow for quantification and analysis of 
known functions in WGS dataset. a Computational pipeline for assembly 
and annotation of each metagenome. b Computational workflow for 
merging of metagenomes into MFA table. c MFA table analysis. Figure S2. 
A toy example explaining a quantification of molecular functions using 
WGS dataset. The quantity of a molecular function in the metagenome is 
referred as Metagenome Function Abundance (MFA).  The Figure shows 2 
sequenced Metagenomes, A and B, populated by 18 and 19 bacterial cells 
respectively that belong to 4 different species:  read, green yellow and 
blue colored shapes. Circles have Function1 (F1) in the genome, and ovals 
have Function 2 (F2). We propose to calculate MFA as the total number of 
DNA sequencing reads covering known functions in all bacterial cells. In 
the depicted example, each bacterial cell shown as an ovals has a gene 
that encode F1, but doesn’t have genes encoding F2. Vice versa, each 
bacterial cell shown as a circle has a gene that encode F2, but not F1. In 
both cases, ovals and circles, cells belong to 2 different species shown by 
color.  For simplicity, we suggest that all genes in each cell is covered by 
1 read after WGS. Therefore, MFA of F1 may be calculated just as number 
of circles in each metagenome, which is 4 for metagenome A and 16x for 
metagenome B, MFA ofF2 will be equal 14 and 4 respectively for A and B. 
The produced MFA values are integrated into MFA table where columns 
are metagenomes in the study and rows are unique known functions 
found in the metagenomes.  The quantification is based on the following 
2 conditions: (1) We ignore which of the species implement the function 
and calculate the Metagenome Function Abundance (MFA) as the total 
number of reads that cover the function in each cell of the metagenome, 
(2) If we don’t know what function the gene implement, we just ignore 
the gene. One important advantage of the quantification is that the MFA 
profile calculated this way for all unique function identified in the metage‑
nome is like the profile of gene abundances calculated from RNA-seq data 
and can be analyzed in a similar way. Figure S3. KEGG pathways associ‑
ated with quick proliferation of microbial cells are enriched “ST KO cluster” 
(Fig. 1c). a Ribosome biogenesis. b DNA repair. c Oxidative phosphoryla‑
tion. KEGG orthologous groups found in the clusters are labeled by rose 
color. Figure S4. Quorum sensing was enriched in metagenomes of “LT 
KO cluster” (Fig. 1c).  Total 19 KOs were annotated by the pathway in the 
cluster with the most complete known pathways similar to Staphylococ‑
cus aureus and Enterococcus faecalis. Figure S5. Overlap of KOs involved 
in galactose, fructose and mannose metabolism with KOs found in “LT KO 
cluster” (Fig. 1c). Overlapping KOs are colored in rose. Figure S6. Overlap 
of genes involved in pentose phosphate pathway in “LT KO cluster” 
(Fig. 1c). Overlapping genes are colored in rose. Figure S7. Overlap of 
genes involved in bacterial chemotaxis (a) and  flagella assembly (b) with 
KOs found in “LT KO cluster” (Fig. 1c). Overlapping KO are colored in rose 
color. Figure S8. Overlap of enzymes involved in galactose, arginine and 
proline metabolism with differentially abundant KOs between LT- and 
ST-groups of metagenomes.  (Fig. 2j). Overlapping KO are colored in rose 
color.  Metabolic routs involved in production of glutamate from arginine 
and in putrescine and spermidine metabolism are framed in red. Figure 
S9. Overlap of enzymes involved in 2-oxocarboxylic acid metabolism with 
differentially abundant KOs between LT- and ST-groups of metagen‑
omes.  (Fig. 2j). Overlapping KO are colored in rose color and framed in 
red. They represent the complete set of enzymes involved production of 
ornithine from glutamate. Figure S10. Association of clinicopathological 
characteristics with the progression free survival probability. Categoriza‑
tion of patients into the low (blue color) and high (rose color) group in 
terms of the continues characteristics, such as Age, BMI and Tumor size, 
was done according to the maximally selected rank statistics as described 
in the Methods section. Characteristics significantly associated with the 
progression free survival according to log-rank test are in red color. Figure 
S11. Increased activity of Ribosome biogenesis pathway in metagenomes 
of patients with stage I/II tumors. Figure S12. Taxonomic structure of 
metagenomes in LT- and ST-groups at the Class level. Figure S13. Taxo‑
nomic structure of metagenomes in LT- and ST-groups at the Order level. 
Figure S14. Taxonomic structure of metagenomes in LT- and ST-groups at 

the Family level.  Figure S15. Differentially abundant taxa between Large 
(L) and Small (S) tumor groups (a) and cladogram of the taxa (b) identified 
by LDA Effect Size (LEfSe) Figure S16. Relative abundance of selected 
taxa differentially abundant in ST-group  (a) and in LT-group (b) according 
to LEfSe analysis.  Figure S17. Pairwise Person correlation coefficients 
between the Glycan Degradation pathway score and the abundance 
profile of the taxa (order level) encoding enzymes of the pathway.  Coeffi‑
cients identified as significant (P<0.05) are labelled by asterisk. Color of the 
column indicate positive (red) and negative (blue) association between 
abundance of the order and the pathway score.

Supplementary file 2: Table S1. Software tools/packages used in the 
shotgun metagenome sequencing data analysis workflow. Table S2. Clin‑
icopathological characteristics of the study cohort. Table S3. Functional 
richness of metagenomes identified in each patient of the study cohort. 
Table S4. Differentially abundant taxa identified between LT- and ST-
groups by linear discriminant analysis (LDA) effect size (LEfSe) analysis.
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