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Abstract 

Background:  Pancreatic cancer (PC) is a highly malignant tumor featured with high intra-tumoral heterogeneity 
and poor prognosis. Cell-in-cell (CIC) structures have been reported in multiple cancers, and their presence is associ-
ated with disease progression. Nonetheless, the prognostic values and biological functions of CIC-related genes in PC 
remain poorly understood.

Methods:  The sequencing data, as well as corresponding clinicopathological information of PC were collected from 
public databases. Random forest screening, least absolute shrinkage, and selection operator (LASSO) regression and 
multivariate Cox regression analysis were performed to construct a prognostic model. The effectiveness and robust-
ness of the model were evaluated using receiver operating characteristic (ROC) curves, survival analysis and establish-
ing the nomogram model. Functional enrichment analyses were conducted to annotate the biological functions. The 
immune infiltration levels were evaluated by ESTIMATE and CIBERSORT algorithms. The expression of KRT7 (Keratin 7) 
was validated by quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry (IHC) staining. 
The CIC formation, cell clusters, cell proliferation, migration and invasion assays were applied to investigate the effects 
of silencing the expression of KRT7.

Results:  A prognostic model based on four CIC-related genes was constructed to stratify the patients into the low- 
and high-risk subgroups. The high-risk group had a poorer prognosis, higher tumor mutation burden and lower 
immune cell infiltration than the low-risk group. Functional enrichment analyses showed that numerous terms and 
pathways associated with invasion and metastasis were enriched in the high-risk group. KRT7, as the most paramount 
risk gene in the prognostic model, was significantly associated with a worse prognosis of PC in TCGA dataset and our 
own cohort. High expression of KRT7 might be responsible for the immunosuppression in the PC microenvironment. 
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Background
Pancreatic cancer (PC) is a highly lethal malignancy with 
rising an incidence and mortality worldwide, and it was 
estimated that PC will be the second leading cause of 
cancer-related death by 2030 [1, 2]. Currently, curative 
surgery followed by adjuvant chemotherapy remains a 
standard therapeutic approach, however, because of the 
concealed anatomical location of the pancreas, dormant 
symptoms, and deficiency of reliable biomarkers, effec-
tive screening is not available for PC, and most patients 
present with locally advanced or metastatic disease at 
the time of initial diagnosis, leading to missed opportu-
nities for surgical intervention [3]. Therefore, clarifying 
the mechanisms of PC progression and developing more 
effective therapeutic strategies is essential.

Cell-in-cell (CIC) structures refer to the presence of 
one or more living cells internalized into another living 
one with the formation of “bird-eye cells”, which was 
first reported approximately 120 years ago in tumor tis-
sues [4]. CIC is a long-standing phenomenon virtually 
neglected for decades but has attracted great interest 
in recent years. CIC structures have been observed in 
various types of tumors and are associated with a worse 
prognosis, such as breast cancer, lung cancer, and PC 
[5–7]. From cellular mechanisms, cell cannibalism 
and entosis are two of the best-characterized CIC pro-
cesses in cancers [8]. Cell cannibalism generally refers 
to the engulfment of live or dead cells within cancer 
cells through a mechanism involving actin, ezrin, and 
caveolin. Previous studies have reported that cancer 
cells exert potent engulfment activity directed toward 
homotypic cancer cells, lymphocytes, neutrophils, nat-
ural killer cells, and mesenchymal stem cells [4, 9–11]. 
Entosis is a specific form of cell cannibalism mainly 
induced by extracellular matrix detachment, aberrant 
mitosis, and glucose starvation [12], which is thought 
to occur primarily between homotypic epithelial cells 
following the establishment of adherent junctions via 
E-cadherin or P-cadherin, formation of mechanical ring 
enriched in vinculin and actomyosin contraction medi-
ated by the Rho − ROCK − DIAPH1 signaling pathway 
[13]. Unlike cell cannibalism engulfed by outside cells, 
the internalized cells actively penetrate into outside 

cells driving by contractile actomyosin at the opposite 
cell cortex and subsequently die by lysosome-depend-
ent degradation in entosis, leading to a non-apoptotic 
cell death [14]. In the past decade, numerous studies 
have shown that cannibalistic behavior is a hallmark 
of cancer, conferring cancer cells metabolic advantages 
under starvation [8, 9, 15]. Moreover, researchers have 
shown that entosis can promote direct competition 
among cancer cells in mixed populations and ploidy 
changes of outside cells, affecting the clonal selection 
and evolution of cancer cells [16, 17]. A recent study 
reported that in pancreatic ductal adenocarcinoma 
(PDAC), the most common type of PC, CIC structures 
were more prevalent in liver metastasis than the pri-
mary tumor and poorly differentiated adenocarcinoma 
or adenosquamous carcinoma than well or moderately 
differentiated adenocarcinoma, suggesting that CIC 
phenomenon is associated with the aggressive biology 
of PC [7]. Therefore, evaluating the CIC status is a pow-
erful method for prognosis estimation. However, only 
few studies focused on the prognostic value of CIC-
related genes and their biological functions in PC.

In the present study, we systematically analyzed the 
expression profiles and prognostic values of CIC-related 
genes using public datasets. A corresponding CIC-related 
signature was identified and estimated, and the func-
tional enrichment analyses were performed, and somatic 
mutation profiles and immune features were compared 
between the low- and high-risk subgroups to explore the 
potential mechanisms. Our results demonstrated that the 
high-risk group showed poorer prognosis, higher somatic 
mutation frequencies, and lower immune infiltration lev-
els than the low-risk group. Furthermore, KRT7 (Keratin 
7) was identified as the most paramount risk gene with 
its high expression being significantly associated with a 
worse prognosis and immunosuppression in PC. As vali-
dated in our own independent cohort, KRT7 is an unfa-
vorable marker of PC, and its high expression positively 
is correlated with CIC formation, cell cluster, cell prolif-
eration, migration, and invasion in  vitro. The results of 
this study may help to improve the current plight of PC 
treatment by designing combined therapeutic strategies 
targeting CIC-related processes.

KRT7 knockdown was significantly suppressed the abilities of CIC formation, cell cluster, cell proliferation, migration, 
and invasion in PC cell lines.

Conclusions:  Our prognostic model based on four CIC-related genes has a significant potential in predicting the 
prognosis and immune microenvironment of PC, which indicates that targeting CIC processes could be a therapeutic 
option with great interests. Further studies are needed to reveal the underlying molecular mechanisms and biological 
implications of CIC phenomenon and related genes in PC progression.

Keywords:  Pancreatic cancer, Cell-in-cell, Prognostic model, Immune microenvironment, KRT7
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Methods
Datasets and processing
The RNA sequencing (RNA-seq) data of the Genotype-
Tissue Expression (GTEx) and The Cancer Genome Atlas 
(TCGA) datasets were downloaded from the University 
of California Santa Cruz (UCSC) Xena website (https://​
xenab​rowser.​net/​datap​ages/), which included 167 nor-
mal samples and 179 tumor samples. The expression data 
were normalized to transcripts per million (TPM) values 
and transformed to log2(TPM + 1). The RNA-seq data of 
the International Cancer Genome Consortium (ICGC) 
dataset were also downloaded from UCSC Xena website, 
which included 96 tumor samples. Its expression data 
were normalized to counts per million (CPM) and trans-
formed to log2(CPM). The normalized expression matrix 
from microarray datasets of GSE21501, GSE62452, and 
GSE71729 were downloaded from the Gene Expression 
Omnibus (GEO) database (http://​www.​ncbi.​nlm.​nih.​
gov/​geo/), which included 132, 69, and 145 tumor sam-
ples, respectively. The corresponding clinicopathological 
information and somatic mutation data of TCGA and 
ICGC datasets were obtained from TCGA (http://​portal.​
gdc.​cancer.​gov/) and ICGC (http://​dcc.​icgc.​org/) official 
websites. By combining the expression data with corre-
sponding clinicopathological information, samples with 
absent information of survival status, age, sex, grade, 
TNM stage, and patients lost to follow-ups or follow-up 
time less than 30  days were excluded. Meanwhile, two 
samples from GTEx dataset were eliminated due to the 
low expression levels (less 10,000 genes). Finally, GTEx 
(165 normal samples) and TCGA (167 tumor samples) 
datasets were chosen as the training cohort. ICGC (87 
samples), GSE21501 (98 samples), GSE62452 (64 sam-
ples), and GSE71729 (123 samples) datasets were applied 
for external validation. The clinical characteristics of 
patients are shown in Table 1. The microarray and RNA-
seq data of PC cell lines were obtained from GSE21654, 
GSE40098 and the Cancer Cell Line Encyclopedia 
(CCLE) database (https://​sites.​broad​insti​tute.​org/​ccle/). 
The processed single-cell RNA sequencing (scRNA-seq) 
data of the CRA001160 dataset (including over 57,000 
cells from 24 primary PDAC samples and 11 normal sam-
ples) were downloaded from the National Genomics Data 
Center (NGDC) database (https://​ngdc.​cncb.​ac.​cn/).

Identification of differentially expressed genes (DEGs)
A total of 101 CIC-related genes were extracted from 
GeneCards website (http://​www.​genec​ards.​org/) and pre-
vious literature [4, 8, 12, 14], searching by the keywords 
“cell-in-cell”, “cell cannibalism”, and “entosis” (detailed 
in Table  S1). The “limma” R package was used to iden-
tify the DEGs between normal and tumor samples. False 

discovery rate (FDR) < 0.05 and |log2(Fold Change)|≥ 1 
were determined as the significance criteria for select-
ing DEGs, same for the identification of the CIC-related 
DEGs between two risk groups. The results of DEGs were 
visualized by volcano plots and heatmaps.

Establishment and verification of the cic‑related 
prognostic model
The random forest screening (using “randomForest” R 
package) and least absolute shrinkage and selection opera-
tor (LASSO) regression analysis (using “glmnet” R package) 
were applied to screen important DEGs in TCGA cohort. 
And then, the overlapping CIC-related DEGs between 
these two methods were further selected to construct the 
best regression model via a stepwise multivariate Cox 
regression analysis. Finally, the risk score of each patient 
was calculated by the regression coefficient of each gene in 
the prognostic model and corresponding expression level 
using the following formula: Risk score = (Exprgene1 × Co
efgene1) + (Exprgene2 × Coefgene2) + … + (Exprgenen × Coefge

nen). For external validation cohorts, the risk score of each 
patient was calculated by the above formula. Patients were 
stratified into the low- and high-risk subgroups accord-
ing to the median value of risk scores. Principal compo-
nent analysis (PCA) was applied to visualize the clustering 
conditions of the prognostic signature. The Kaplan–Meier 
survival analysis was used to compare the differences in 
overall survival (OS) probability between two groups, and 
time-dependent receiver operating characteristic (ROC) 
curves were used to evaluate the predictive accuracy of 
the prognostic model. The univariate and multivariate Cox 
regression analyses were performed to determine the inde-
pendent prognostic factors associated with OS. The nomo-
gram was established to predict the 1-, 2-, 3-year survival 
probability based on the risk score and other clinicopatho-
logical characteristics. The corresponding C-index, time-
dependent ROC curves, calibration curves, and decision 
curve analysis (DCA) were drawn to assess the efficiency of 
the nomogram. The Human Protein Atlas (HPA) database 
(http://​www.​prote​inatl​as.​org) was used to investigate the 
expression of signature-related genes in normal pancreas 
and PC tissues from protein levels.

Functional enrichment analysis for DEGs
Based on Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) databases [18], functional 
enrichment analyses of DEGs were conducted to clarify the 
biological functions of genes by applying the “clusterPro-
filer” R package [19]. GeneMANIA (http://​genem​ania.​org/), 
a platform for gene prioritization and predicting gene func-
tion, was used to predict the related networks and functions 
of CIC-related genes [20].

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://portal.gdc.cancer.gov/
http://portal.gdc.cancer.gov/
http://dcc.icgc.org/
https://sites.broadinstitute.org/ccle/
https://ngdc.cncb.ac.cn/
http://www.genecards.org/
http://www.proteinatlas.org
http://genemania.org/
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Somatic mutation analysis and immune feature estimation
The landscape of somatic mutations was analyzed and 
visualized via the “maftools” R package. Frequencies 
of somatic mutations and tumor mutation burdens 
(TMB) were calculated and compared between the 
low- and high-risk groups. The estimate score, stromal 
score, immune score, and tumor purity were calculated 
by the ESTIMATE algorithm [21]. The CIBERSORT 
algorithm was performed to quantify the relative 
abundance of 22 immune cells infiltrated in tumor 
microenvironment (TME) [22]. The immune subtypes 
of individuals were classified by using the “Immune-
SubtypesClassifier” R package. Representative immune 
checkpoints were extracted from previous literatures 
and the expression levels of them were compared. The 
immunotherapy responses of individuals were ana-
lyzed by ImmuCellAI website (http://​bioin​fo.​life.​hust.​
edu.​cn/​ImmuC​ellAI) [23].

Clinical specimens and immunohistochemical analysis
A total of 55 patients with primary PDAC who underwent 
surgical resection at the Peking Union Medical College 
Hospital (PUMCH) were recruited in this study strictly fol-
lowing the guidelines of the Ethics Committee of Peking 
Union Medical College Hospital, and written informed 
consent was obtained from all patients. The tumor and 
adjacent normal tissues were fixed by 10% formalin and 
embedded by paraffin. The sections of tissue specimens 
were used for immunohistochemistry (IHC) incubated 
with antibody against KRT7 (1:2000; Proteintech, #17,513–
1-AP). Manual staining and the estimation of IHC score 
were performed as previously described [24, 25].

scRNA‑seq data quality control, dimension reduction, 
and cell clustering
The raw data of scRNA-seq were processed previously 
[26], and the merged dataset was imported into the 

Table1  Clinical characteristics of pancreatic cancer patients in the multiple datasets

TCGA​ The Cancer Genome Atlas, ICGC​ International Cancer Genome Consortium, ADEX Aberrantly Differentiated Endocrine Exocrine, NA not available

Variables TCGA​ ICGC​ GSE21501 GSE62452 GSE71729

n = 167 (%) n = 87 (%) n = 98 (%) n = 64 (%) n = 123 (%)

Age
   < 65 77 (46.1) 35 (40.2) NA NA NA

   ≥ 65 90 (53.9) 52 (59.8) NA NA NA

Gender
  Female 76 (45.5) 41 (47.1) NA NA NA

  Male 91 (54.5) 46 (52.9) NA NA NA

Grade
  G1 − G2 118 (70.7) 54 (62.1) NA 33 (51.6) NA

  G3 − G4 49 (29.3) 33 (37.9) NA 31 (48.4) NA

Stage
  I − II 160 (95.8) NA NA 48 (75.0) NA

  III − IV 7 (4.2) NA NA 16 (25.0) NA

T
  T1 − T2 27 (16.2) 13 (14.9) 18 (18.4) NA NA

  T3 − T4 140 (83.8) 74 (85.1) 80 (81.6) NA NA

N
  N0/NX 49 (29.3) 28 (32.2) 12 (12.2) NA NA

  N1 118 (70.7) 59 (67.8) 86 (87.8) NA NA

Subtype
  Immunogenic NA 22 (25.3) NA NA NA

  ADEX NA 14 (16.1) NA NA NA

  Progenitor NA 29 (33.3) NA NA NA

  Squamous NA 22 (25.3) NA NA NA

  Classical NA NA NA NA 88 (71.5)

  Basal-like NA NA NA NA 35 (28.5)

Status
  Alive 76 (45.5) 32 (36.8) 35 (35.7) 15 (23.4) 40 (32.5)

  Dead 91 (54.5) 55 (63.2) 63 (64.3) 49 (76.6) 83 (67.5)

http://bioinfo.life.hust.edu.cn/ImmuCellAI
http://bioinfo.life.hust.edu.cn/ImmuCellAI
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Seurat (v4.0.6) R toolkit for quality control and further 
analysis [27]. Low quality cells (< 200 genes/cell, < 3 cells/
gene and > 10% mitochondrial genes) were removed. The 
gene expression profiles were then normalized using the 
“NormalizeData” function, and the top 2000 highly vari-
able genes were generated with the “FindVariableFea-
tures” function to perform PCA. Significantly principal 
components were determined using JackStraw analysis. 
The “FindNeighbors” and “FindClusters” functions were 
used to perform cell clustering. The single-cell clustering 
was visualized via the uniform manifold approximation 
and projection (UMAP) analysis using the “RunU-
MAP” function. We annotated the cell types of cell clus-
ters using the cellular markers provided by the original 
authors. Cells identified with malignant fractions were 
subjected to re-cluster by the above functions, and the 
dot plot was used to display the relative expression of 
genes among diverse malignant cell clusters.

Cell culture
Four PC cell lines BxPC-3, CFPAC-1, PANC-1, and MIA 
PaCa-2 were purchased from the American Type Cul-
ture Collection (ATCC, Manassas, VA, USA). All cell 
lines were regularly tested for Mycoplasma and identified 
by Short Tandem Repeat (STR) identification. BxPC-3 
cell line was cultured in RPMI-1640 medium (Corning, 
#10–040-CV). CFPAC-1 cell line was cultured in Iscove’s 
Modified Dulbecco Medium (IMDM; Corning, #15–016-
CV). PANC-1 and MIA PaCa-2 cell lines were cultured 
in high glucose Dulbecco’s Modified Eagle Medium 
(DMEM; Corning, #10–013-CMR). All medium was 
supplemented with 10% fetal bovine serum (HyClone, 
#SH30073.03) and 1% Penicillin–Streptomycin (Life 
Technologies, #15,140–122). Cells were routinely main-
tained at 37℃ with 5% CO2.

RNA Extraction and quantitative real‑time PCR analysis
Total RNA was extracted from cultured cells by the TRI-
zol reagent (Life Technologies, #15,596–026) and cDNA 
synthesis was performed using the RevertAid First Strand 
cDNA Synthesis Kit (Thermo Scientific™, #K1622) fol-
lowing the manufacturer’s instructions. Quantitative real-
time PCR (qRT-PCR) was performed in triplicate using 
SYBR Green Master Mix (Applied Biosystems, #A25742) 
[24]. The expression levels of GAPDH were used as the 
endogenous control and the relative expression of KRT7 
was calculated using the 2−ΔΔCt method.  The sequences 
of the primers used for qRT-PCR are as follows:
KRT7: Forward 5’- CGA​GGA​TAT​TGC​CAA​CCG​CAG-3’,
Reverse 5’-CCT​CAA​TCT​CAG​CCT​GGA​GCC-3’;

GAPDH: Forward 5’-GTC​TCC​TCT​GAC​TTC​AAC​
AGCG-3’,

Reverse 5’- ACC​ACC​CTG​TTG​CTG​TAG​CCAA-3’.

Western blotting
Protein extracts from cells were prepared using 2% SDS 
lysis buffer including protein phosphatase inhibitor 
(Thermo Scientific™, #78,440). Total protein (20 μg) was 
subjected to 10% (v/v) SDS-PAGE gels and transferred 
to nitrocellulose filter membrane (Pall, #P-N66485). 
After blocking with 5% bovine serum albumin (BSA) 
for 2 h at 37 ℃, the membranes of proteins with differ-
ent molecular weight (KDa) were cut according to the 
location of the markers (GenStar, M222) with enough 
spaces left at the edges of the first and the last sample 
lanes, then the cropped membranes were incubated with 
primary antibodies at 4℃ overnight. The primary anti-
bodies anti-KRT7 (1:1000; Proteintech, #17,513–1-AP), 
anti-E-cadherin (1:5000; Proteintech, #20,874–1-AP), 
anti-P-cadherin (1:1000; Proteintech, #13,773–1-AP), 
anti-RHOA (1:1000; Proteintech, #10,749–1-AP), anti-
Phospho-MLC2 (1:1000; Cell Signaling Technology, 
#3671), anti-β-Actin (1:20,000; Proteintech, #66,009–1-
lg) and anti-GAPDH (1:50,000; Proteintech, #60,004–1-
lg) were used and then incubated with HRP-conjugated 
secondary antibodies (1:5000; Proteintech, #SA00001-1 
and # SA00001-2) at room temperature for 1  h and 
imaged through ECL kit (Beyotime, #P0018AM).

CIC Formation and cell cluster assays
CIC formation assay was performed as previously 
described [13]. Briefly, about 2.0 × 105 cells were sus-
pended in a six-well plate precoated with 1 mL solidified 
0.5% soft agar for 8 h and then mounted onto glass slides 
by Cytospin preparation. Cells were fixed by 4% para-
formaldehyde solution and immunostained with Phal-
loidin (1:1000; Abcam, #ab176753), anti-KRT7 (1:200; 
Proteintech, #17,513–1-AP), CoraLite594-conjugated 
Goat Anti-Rabbit secondary antibody (1:200; Protein-
tech, #SA00013-4), and DAPI (Abcam, #ab104139). 
Images were acquired by Nikon AX / AX R confocal 
microscope. Structures with more than half of cell inter-
nalized were counted as CIC structures. One cell cluster 
was defined as cell colony that contains six or more cells 
and cells in cluster rate (%) = (number of cells involved in 
all clusters / number of total cells) × 100% [28].

siRNA Transient transfection
Short interference RNAs (siRNAs) for KRT7 were 
designed and chemically synthesized by RiboBio 
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(RiboBio, Guangzhou, China). Sequences of siRNAs 
used in this study were as follows: siKRT7 1#: GTG​
GGA​GCC​GTG​AAT​ATC​T; siKRT7 2#: GCC​TCC​CAG​
ACA​TCT​TTG​A. For cell transfection, 5.0 × 105 cells 
were transfected with 50 nM (BxPC-3 cells) or 150 nM 
(CFPAC-1 cells) siRNA using Lipofectamine 3000 (Inv-
itrogen, Carlsbad, CA, USA) according to the manufac-
turer’s instruction. At 24  h or 48  h post-transfection, 
PC cells were harvested for functional experiments and 
total protein was extracted at 72 h post-transfection.

Proliferation assays
Cell Counting Kit-8 (CCK-8) reagent (Dojindo Labora-
tories, #CK04) was used to measure cell proliferation. 
Transfected cells were seeded into 96-well plates (3,000 
cells/well), and the medium of each well was replaced 
with 100 μL serum-free medium (including 10 μL 
CCK-8 solution) at 0, 24, 48, 72, 96  h after adherence. 
The optical density (OD) values were measured at a 
wavelength of 450 nm using the microplate reader after 
incubating for 2 h.

Cell migration and invasion assays
The migrative and invasive abilities of transfected cells 
were evaluated using Transwell chambers (24-well and 
8.0 μm pore size, Corning, #3422). For invasion assays, 
the chambers were precoated with Matrigel (Corning, 
#354,234), and 1.0 × 105 transfected cells resuspended 
in 150 μL serum-free medium were seeded into the 
upper chambers and 600 μL supplemented medium 
with 10% FBS was added to the lower chambers. After 
incubating for 24 h (BxPC-3 cell line) or 36 h (CFPAC-1 
cell line), the migrated or invaded cells were fixed with 
methanol and then stained with 0.5% crystal violet 
for 20  min at room temperature. The cells in five ran-
dom fields (at × 200 magnification) per chamber were 
counted.

Statistical analysis
Statistical analyses and visualization were performed 
using R (version 4.1.0) software and GraphPad Prism 
9 (version 9.3.0). Kaplan–Meier analysis and log-rank 
test were used to evaluate the associations with sur-
vival time. Student’s t test, Mann–Whitney test, and 
chi-square test or Fisher’s exact test were utilized for 
the comparisons between two groups. Pearson’s cor-
relation was used to assess the linear relationships 
between two genes. Biological replicates are shown 
as means ± standard deviation (SD). All P values of 
statistical results were based on two-sided statistical 
tests, and a P value < 0.05 was considered statistically 
significant.

Results
Differential gene expression analysis and functional 
enrichment analysis of CIC‑related genes
The expression levels of 101 CIC-related genes were 
explored in normal and PC samples using GTEx and 
TCGA datasets. PCA showed that the distribution dif-
fers between normal and tumor samples (Fig.  1A). A 
total of 49 DEGs were identified, including 42 upregu-
lated and 7 downregulated genes, and visualized by the 
heatmap (Fig. 1B) and volcano plot (Fig. 1C). GO analy-
sis suggested that these DEGs were mainly involved in 
reactive oxygen species metabolic process, receptor-
mediated endocytosis, cell leading edge, endocytic 
vesicle, tubulin binding and cytokine activity (Fig. S1A). 
Moreover, KEGG pathway analysis indicated that apop-
tosis, phagosome, regulation of actin cytoskeleton, fer-
roptosis, transcriptional dysregulation in cancer and 
focal adhesion were enriched (Fig. 1B).

Construction of the CIC‑related prognostic model in PC
To reduce the number of genes needed for construct-
ing the prognostic model, we first utilized random for-
est screening to assign an importance factor to each 
CIC-related DEGs. And then, top 20 genes, ranked by 
importance, were selected for further analysis (Fig. 1D). 
Meanwhile, LASSO regression analysis was performed 
on 49 DEGs, and 18 candidate genes were retained by the 
most proper value of lambda (λ) (Fig. 1E). Subsequently, 
we combined 10 overlapping candidate genes between 
these two methods to establish the best regression 
model by a stepwise multivariate Cox regression analysis 
(Fig. 1F). Finally, four CIC-related genes significantly con-
tributing to OS in PC patients were confirmed (Fig. 1G), 
and the risk score of each patient was calculated using 
the following formula: Risk score = (0.362 × expres-
sion level of KRT7) + [0.302 × expression level of 
AURKA (Aurora Kinase A)] + [− 0.114 × expression 
level of CDKN2A (Cyclin Dependent Kinase Inhibitor 
2A)] + [− 0.377 × expression level of RARB (Retinoic 
Acid Receptor Beta)]. The correlation analysis among 
these four genes was shown in the circle plot (Fig. 1H). 
Moreover, the related networks and functions were pre-
dicted using GeneMANIA website (Fig. S1C). We found 
that related functions mainly involved in the regulation 
of cell cycle, mitosis-related process and kinase regulator 
activity.

Evaluation and validation of the CIC‑related prognostic 
model
Based on the median of risk scores, patients in TCGA 
cohort were separated into the low- and high-risk groups. 
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Fig. 1  Identification of DEGs and construction of the CIC-related prognostic signature. A PCA based on CIC-related genes of tumor and normal 
samples from the TCGA and GTEx datasets. B and C Heatmap and volcano plot of CIC-related DEGs between normal and tumor samples. D Top 
20 genes sorted by importance of variables using random forest screening. E The most proper log (λ) value in LASSO regression analysis. F Ten 
overlapping genes based on the results of random forest screening and LASSO regression analysis. G The results of multivariate Cox regression 
analysis for 4 significantly CIC-related genes contributing to OS in PC. H The correlation analysis of the 4 genes
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The scatterplots showed that, as the patient’s risk score 
increased, the number of deaths increased, and the sur-
vival time decreased. Compared to the low-risk group, 
the expression levels of KRT7 and AURKA in the high-
risk group were upregulated, while the expression levels 
of CDKN2A and RARB were downregulated (Fig.  2A). 
The Kaplan–Meier survival analysis indicated that 
patients in the high-risk group have a shorter OS than 
those in the low-risk group (Fig. 2B). The PCA revealed 
that patients with different risk levels were distrib-
uted into two clusters (Fig.  2D). The area under curves 
(AUC) were 0.760, 0.766 and 0.807 in the 1-year, 2-year, 
and 3-year ROC curves, respectively (Fig.  2C). We also 

found that, compared with other clinicopathological fea-
tures, the AUC value of risk score was much higher, sug-
gesting that it was a better prognostic indicator for PC 
patients (Fig. 2E). To demonstrate the robustness of the 
prognostic signature, the predictive efficiency was evalu-
ated in three independent validation cohorts, including 
ICGC, GSE21501 and GSE62452. The patients from these 
three validation cohorts were stratified into the low- and 
high-risk groups based on the median of risk scores cal-
culated by using the same formula as in TCGA modeling 
cohort. Consistently, patients in the high-risk group 
demonstrated a worse prognosis than the low-risk group. 
Similarly, the expression levels of KRT7 and AURKA in 

Fig. 2  Evaluation and validation of CIC-related prognostic signature in TCGA and ICGC cohorts. A and F Distribution of risk scores, OS status 
overview, and heatmaps of four genes expression in TCGA (A) and ICGC (F) cohorts. B and G Kaplan–Meier curves for OS of patients between the 
low- and high-risk groups in TCGA (B) and ICGC (G) cohorts. C and H ROC curves for 1-, 2- and 3-year OS prediction of the prognostic signature in 
TCGA (C) and ICGC (H) cohorts. D and I PCA based on the prognostic signature in TCGA (D) and ICGC(I) cohorts. E and J ROC curves of the risk score 
and other clinicopathological characteristics in TCGA (E) and ICGC (J) cohorts
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the high-risk group were increased, while the expression 
levels of CDKN2A and RARB were decreased (Fig.  2F 
and 2G, Fig. S2A, B, F and G). The PCA confirmed that 
patients in different subgroups could be divided into 
two separate directions (Fig. 2I, Fig. S2D and I). Moreo-
ver, the AUC value of time-dependent ROC curves 
analysis reached around 0.700, indicating that the prog-
nostic model performed well in three validation cohorts 
(Fig. 2H, Fig. S2C and H), and the risk score had better 
predictive accuracy compared to other clinicopathologi-
cal characteristics (Fig. 2J, Fig. S2E and J). The univariate 
and multivariate Cox regression analyses were performed 
to evaluate the prognostic power of the risk signature. 
Based on the multivariate Cox regression analysis, the 
risk score was confirmed to be an independent prognos-
tic factor for OS prediction in all four cohorts (Table S2).

Establishment and validation of a predictive nomogram 
based on the risk signature
To further improve the predictive efficiency, the risk 
score and other clinicopathological characteristics such 
as age, sex, grade, and TNM stage were used to estab-
lish the predictive nomogram in TCGA and ICGC 
cohorts altogether. The C-index for the nomogram was 
0.704 (95%CI 0.645 − 0.763) in TCGA cohort and 0.725 
(95%CI 0.644 − 0.805) in ICGC cohort, indicating that 
the two nomograms both had well predictive perfor-
mance (Fig. 3A and B). Subsequently, the time-dependent 
ROC curves, calibration curves and DCA were applied 
to further evaluate the effectiveness of established nom-
ograms. The AUCs of ROC curves for predicting 1-, 2-, 
and 3-year survival were 0.716, 0.785 and 0.810 in TCGA 
cohort (Fig. 3C), 0.762, 0.787 and 0.890 in ICGC cohort 
(Fig.  3D). In addition, the calibration curves presented 
satisfied coherence between observed and predicted 
1-year, 2-year and 3-year OS in both cohorts (Fig. 3E and 
F). The results of DCA demonstrated that the nomogram 
achieved the highest net benefits, suggesting that it was 
an efficient model to predict the prognosis of PC patients 
(Fig. 3G and H).

Functional enrichment analyses of DEGs and somatic 
mutation profiles between two risk groups
To further explore the biological functions and pathways 
associated with the established prognostic model, we first 
analyzed the DEGs between the high-risk and low-risk 
groups (Fig. 4A and B). A total of 212 DEGs were identi-
fied in TCGA cohort, including 189 upregulated and 23 
downregulated genes. Moreover, in ICGC cohort, 162 
DEGs were identified, including 52 upregulated and 110 
downregulated genes. Notably, KRT7 was one of the top 
10 upregulated genes sorting by adjust P values in both 
TCGA and ICGC cohorts (Fig. S3A and B). The GO 

analysis showed that DEGs were enriched in several cell 
differentiation and tumor metastasis-related processes, 
such as epidermal cell differentiation, extracellular matrix 
organization, ameboidal-type cell migration, intermedi-
ate filament cytoskeleton, and cell–cell junction (Fig. 4C 
and D). The KEGG pathway analysis demonstrated that 
DEGs were mainly enriched in several pathways associ-
ated with invasiveness and metastasis of cancer, such as 
PI3K − Akt signaling pathway, Wnt signaling pathway, 
Hippo signaling pathway, Focal adhesion, ECM − recep-
tor interaction, and Regulation of actin cytoskeleton 
(Fig.  4E and F). To clarify whether the risk score was 
associated with the mutational landscapes of PC patients, 
we compared the somatic mutation profiles between 
the high-risk and low-risk groups in TCGA cohort 
(Fig.  5A − D). Notably, the mutation frequency in the 
high-risk group was 96.25%, while 78.21% in the low-risk 
group, indicating that the mutation frequency increased 
with the risk score. Moreover, KRAS and TP53 were the 
top two genes with the highest mutation frequencies in 
both subgroups. We also found that more co-occurrence 
and mutually exclusive mutations were observed in the 
high-risk group when compared with the low-risk group 
(Fig.  5E). In addition, patients with higher risk scores 
demonstrated higher TMB levels (P < 0.001; Fig. 5F). We 
further conducted the same analyses in ICGC cohort and 
similar results were verified (Fig. S4).

Analyses of immune features between two risk groups
PC harbors a highly heterogeneous TME. To further 
investigate whether the differences in prognosis between 
two risk groups were associated with immune cell infil-
tration, we used ESTIMATE and CIBERSORT algo-
rithms to explore the immune infiltration levels in TCGA 
and ICGC cohorts, which highlighted that the high-risk 
group was characterized by a lower estimate score, stro-
mal score and immune score, but a higher tumor purity 
(Fig.  6A, Fig. S5A). The composition and correlation of 
tumor-infiltrating immune cells showed that the risk 
signature was positively correlated with T cells regula-
tory (Tregs) and Macrophages M0, and negatively cor-
related with T cells CD4 memory resting, natural killer 
(NK) cells activated, Monocytes, Mast cells activated 
(Fig. 6B and C) and Macrophages M2 (Fig. S5B and C). 
Patients in the high-risk group exhibited significantly 
higher infiltrating levels of B cells memory, Macrophages 
M0 (P < 0.01, Fig. 6D) and Mast cells activated (P < 0.05, 
Fig. S5D), while lower infiltrating levels of B cells naive, 
Dendritic cells resting, Monocytes (P < 0.05, Fig. 6D) and 
T cells CD8 (P < 0.01, Fig. S5D). Subsequently, the clas-
sification of immune subtypes showed that four subtypes 
and five subtypes were identified in TCGA cohort and 
ICGC cohort, respectively (Fig.  6E, Fig. S5E). Patients 
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Fig. 3  Establishment and evaluation of the predictive nomogram model. A and B Nomograms based on the risk score and clinicopathological 
characteristics for predicting the probability of 1-, 2-, 3-year OS in TCGA (A) and ICGC (B) cohorts. C and D Time-dependent ROC analysis of the 
nomogram in TCGA (C) and ICGC (D) cohorts. E and F Calibration curves of the nomogram in terms of agreement between observed and predicted 
1-, 2- and 3-year survival probability in TCGA (E) and ICGC (F) cohorts. G and H The 1-, 2- and 3-year DCA curves of the nomogram in TCGA (E) and 
ICGC (F) cohorts
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Fig. 4  Differential gene expression analysis, GO and KEGG enrichment analyses between two risk groups. A and B Heatmap of the DEGs between 
the high-risk and low-risk groups in TCGA (A) and ICGC (B) cohorts. C − F Representative terms of GO enrichment analysis and representative 
pathways of KEGG enrichment analysis between the high-risk and low-risk groups in TCGA (C and E) and ICGC (D and F) cohorts
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Fig. 5  Somatic mutation profiles between two risk groups in TCGA cohort. A − D MAF-summary plots and waterfall charts of somatic mutations in 
the high-risk group (A and B) and low-risk group (C and D). The top 10 mutated genes were shown E Correlation heatmaps of co-occurrence and 
mutually exclusive mutations in the high-risk and low-risk groups. F Distribution of TMB (left) and comparison between two risk groups (right). ***, 
P < 0.001.
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Fig. 6  Estimation of immune cell infiltration and prediction of ICB responses in TCGA cohort. A Comparison of estimate score, immune score, 
stromal score and tumor purity between two risk groups. B Heatmap displaying the infiltrating abundances of 22 types immune cells. C Correlation 
heatmap of 22 types immune cells and the risk score. D Comparison of CIBERSORT scores of 22 types immune cells between two risk groups. 
E Proportions of four immune subtypes in two risk groups. F The expression levels of eight immune checkpoints between two risk groups. 
G Comparison of ICB response rates between two risk groups and the risk score between responders and non-responders. ns, not significant; *, 
P < 0.05, **, P < 0.01, ***, P < 0.001
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in the high-risk group had more C1 (wound healing) 
and C2 (IFN-γ dominant) subtypes, and less C3 (inflam-
matory) subtype, suggesting an unfavorable prognosis. 
Emerging evidence has shown that immune features of 
TME are associated with the immune checkpoint block-
ade (ICB) therapeutic responses. The expression levels 
of eight representative immune checkpoints including 
CD274 (PD-L1), CD276 (B7-H3), CTLA4 (CTLA-4), 
HAVCR2 (TIM3), LAG3 (LAG-3), PDCD1 (PD-1), TIGIT 
(VSIG9) and VTCN1 (B7-H4) were compared between 
two risk groups. We found that CD276 (Fig. 6F), CD274 
and VTCN1 (Fig. S5F) were upregulated in the high-
risk group, while TIGIT was downregulated (Fig.  6F). 
Besides, the results of ICB responses prediction dem-
onstrated that the response rates were higher in the 
high-risk group, and responders had higher risk scores 
(Fig.  6G, Fig. S5G). Although the rates of response and 
the risk scores between two groups were not statistically 
significant in TCGA cohort, an increasing tendency was 
observed in the high-risk group and responders, respec-
tively. These findings indicated that patients with higher 
risk scores might be in an immune-suppressive status.

Correlation between CIC‑related risk score and other 
molecular subtypes of PC
Previous studies have identified and validated biologically 
and clinically relevant molecular subtypes of PDAC based 
on gene expression profiles [29–31]. In this study, we ana-
lyzed the correlation between CIC-related risk score and 
two established PDAC subtypes defined by Bailey et  al. 
and Moffitt et  al. Our results demonstrated that CIC-
related risk score was comparable among Bailey’s sub-
types (Immunogenic, ADEX, Pancreatic progenitor and 
Squamous subtypes) (Fig. S6A). But Squamous subtype 
that had the worst prognosis in Bailey’s cohort showed 
the highest proportion of patients who were divided into 
the CIC-related high-risk group (68% of patients with this 
subtype) (Fig. S6B). The combination of Bailey’s subtypes 
and CIC-related risk score in the Kaplan–Meier survival 
analysis also exhibited that patients with Squamous sub-
type plus CIC-related high-risk had the worst prognosis 
(Fig. S6C). In Moffitt’s subtypes (Classical and Basal-like 
subtypes), Basal-like subtype showed higher CIC-related 

risk scores and 71% patients with this subtype were 
divided into the CIC-related high-risk group (Fig. S6D-E). 
The combination of Moffitt’s subtypes and CIC-related 
risk score stratified PDAC patients into four group and 
patients with Basal-like subtype demonstrated the worse 
prognosis (Fig. S6F).

Higher expression of KRT7 correlates with an unfavorable 
prognosis in PC
As shown in the results of multivariate Cox regression 
and correlation analysis, KRT7 was the most important 
risk gene in the established prognostic model for signifi-
cantly predicting prognosis of PC patients and positively 
correlated with other three genes expression (Fig.  1G 
and H). We investigated the protein and mRNA expres-
sion levels of KRT7 by HPA database, GTEx and TCGA 
datasets. We found that the expression of KRT7 in PC 
tissue was significantly higher than normal pancreas tis-
sue and the expression level increased with the risk score 
elevation (Fig. 7A and B). Meanwhile, the survival analy-
sis showed that, based on the median of KRT7 expres-
sion level, patients with a higher expression of KRT7 had 
a shorter OS (Fig. 7C). Moreover, the expression of KRT7 
between differently clinicopathological subgroups were 
further compared. Notably, the expression of KRT7 was 
significantly increased in male, higher grade and death 
(Fig. 7D, Fig. S7A). Then, we performed IHC staining of 
KRT7 in 55 PDAC samples from our own PUMCH cohort 
to further validate that KRT7 high expression was associ-
ated with unfavorable prognosis in PC (Table 2, Fig. 7E). 
According to the median of IHC score, we next divided 
patients into low and high KRT7 subgroups. Combined 
with KRT7 IHC scores and differently clinicopathologi-
cal characteristics, patients of high KRT7 group showed 
higher proportions of IIB-IV stage, lymphatic metastasis 
and death (Fig. 7F, Fig. S7B). Consistent with the result of 
survival analysis in TCGA cohort, high KRT7 group dem-
onstrated poorer prognosis (P = 0.0276, Fig. 7G).

High expression of KRT7 is associated with suppressive 
immune microenvironment in PC
To investigate the potential mechanism of KRT7 
expression worsening the prognosis of PC, differential 

Fig. 7  Validation of KRT7 high expression in PC and its association with poor prognosis in TCGA and PUMCH cohorts. A Representative images of 
IHC staining of KRT7 in normal and PC tissues from HPA database. B Comparison of KRT7 expression between normal samples (GTEx dataset) and 
tumor samples (TCGA dataset). TCGA patients were stratified into the low-risk and high-risk groups based on the risk score of individuals. C The 
Kaplan–Meier survival analysis based on KRT7 expression in TCGA cohort. D The comparison of KRT7 expression between gender, grade and survival 
status subgroups in TCGA cohort. E Representative images of IHC staining of KRT7 in PUMCH cohort (n = 55). F The comparison of KRT7 IHC scores 
between AJCC stage, N stage and survival status subgroups, and proportions of these characteristics between KRT7 low- and high-expression 
subgroups in PUMCH cohort. Low expression, IHC scores 1 − 6; high expression, IHC scores 8 − 12. Patients were stratified into the low- and 
high-expression groups based on the median IHC score (median value = 6). G The Kaplan–Meier survival analysis of 55 PDAC patients from PUMCH 
cohort. ns, not significant; *, P < 0.05, **, P < 0.01 and ***, P < 0.001

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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gene expression analysis was performed between KRT7 
high- and low-expression group in TCGA cohort. Inter-
estingly, S100A2 (S100 Calcium Binding Protein A2), 
as a prognostic biomarker involved in immune infil-
tration and immunotherapy response in PC, was one 
of the top 10 upregulated genes (Fig.  8A). Therefore, 
we applied the ESTIMATE algorithm to estimate lev-
els of infiltrating stromal and immune cells, where the 
results showed that KRT7 high-expression group has 
a significantly lower estimate score, stromal score, and 
immune score (Fig. 8B). In addition, we discovered that 
the expression of KRT7 was positively correlated with 
the expression of S100A2 and representative immune 
checkpoints, including CD274, CD276, HAVCR2, 
and VTCN1 (Fig.  8C). Given the extensive degree of 

intra-tumoral heterogeneity in PC, we further exam-
ined the expression of KRT7 among different cell clus-
ters in TME on single-cell level. We identified 10 main 
cell types including malignant, ductal, acinar, endo-
crine, endothelial, fibroblast, stellate, macrophage, 
T and B cells (Fig.  8D). We then analyzed malignant 
cells and further divided them into 8 subgroups (clus-
ter 0 − 7, Fig.  8E). By comparing gene expression lev-
els among different clusters, we found that KRT7 was 
highly expressed in cluster 4, 5 and 6, accompanying 
with a higher expression of S100A2 or CD276 (Fig. 8F 
and G). We also analyzed the gene expression features 
and correlations with prognosis of AURKA, CDKN2A 
and RARB, but none of them was as significant as KRT7 
(Fig. S8). These findings suggest that the expression 

Table2  Clinical characteristics of pancreatic cancer patients in the PUMCH cohort

PUMCH Peking Union Medical College Hospital, OS Overall survival,

IHC Immunohistochemistry

Variables Total KRT7 Low expression KRT7 High expression

n = 55 (%) n = 28 (%) n = 27 (%)

Age
   < 65 28 (50.9) 16 (57.1) 12 (44.4)

   ≥ 65 27 (49.1) 12 (42.9) 15 (55.6)

Gender
  Female 25 (45.5) 14 (50.0) 11 (40.7)

  Male 30 (54.5) 14 (50.0) 16 (59.3)

Tumor grade
  Well 4 (7.3) 2 (7.1) 2 (7.4)

  Moderately 32 (58.2) 16 (57.1) 16 (59.3)

  Poorly 19 (34.5) 10 (35.8) 9 (33.3)

Stage
  I − IIA 19 (34.5) 13 (46.4) 6 (22.2)

  IIB − IV 36 (65.5) 15 (53.6) 21 (77.8)

T
  T1 − T2 35 (63.6) 17 (60.7) 18 (66.7)

  T3 − T4 20 (36.4) 11 (39.3) 9 (33.3)

N
  N0 23 (41.8) 14 (50.0) 9 (33.3)

  N1 − N2 32 (58.2) 14 (50.0) 18 (66.7)

M
  M0 51 (92.7) 27 (96.4) 24 (88.9)

  M1 4 (7.3) 1 (3.6) 3 (11.1)

Status
  Alive 38 (69.1) 23 (82.1) 15 (55.6)

  Dead 17 (30.9) 5 (17.9) 12 (44.4)

OS time (months)
  Median (range) 15 (3 − 38) 15 (3 − 36) 13 (3 − 38)

KRT7 IHC score
  Median (range) 6 (1 − 12) 6 (1 − 6) 9 (8 − 12)
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Fig. 8  Identification of the correlation between KRT7 high expression and immune-suppressive status based on integrated analysis of bulk-seq and 
scRNA-seq. A Volcano plot of the DEGs between the high and low KRT7 expression groups in TCGA cohort. Patients were stratified into the high and 
low groups according to the median of KRT7 expression. B Comparison of estimate score, immune score and stromal score between the high and 
low KRT7 expression groups in TCGA cohort. C Correlation analyses between the expression of KRT7 and immune-related genes, including eight 
immune checkpoints in TCGA cohort. D and E The UMAP plots of diverse cell types in PDAC tissues colored by major cell lineage (D) and eight 
malignant clusters colored by cluster (E). F Relative expression of KRT7 among eight malignant clusters visualized by UMAP projection. G Relative 
expression of KRT7 and immune-related genes in each malignant clusters visualized by dot plot. **, P < 0.01 and ***, P < 0.001
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of KRT7 is correlated with immunosuppression in PC 
microenvironment and malignant cells with higher 
KRT7 expression may have greater resistance to anti-
tumor immunity.

Expression of KRT7 is associated with cic formation, cell 
cluster, cell proliferation, migration, and invasion of PC cell 
lines
To clarify whether KRT7 expression is associated with 
CIC formation, we first compared the expression levels of 
KRT7 among different PC cell lines in three independent 
datasets (Fig.  9A). Four cell lines with relatively higher 
and lower expression of KRT7 at both mRNA and protein 
levels were selected respectively for CIC formation assay 
(Fig. 9B). We found that BxPC-3 and CFPAC-1 cell lines 
with relatively higher expression levels of KRT7 showed 
higher frequencies of CIC formation than PANC-1 and 
MIA PaCa-2 with relatively lower expression levels of 
KRT7 (Fig.  9C and D). The related networks and func-
tions of KRT7 mainly involve in cytoskeleton remodeling, 
cell differentiation, and protein localization-related func-
tions (Fig.  9E). Next, we knocked down the expression 
of KRT7 in BxPC-3 and CFPAC-1 cell lines. Silencing 
the expression of KRT7 by siRNA significantly inhibited 
CIC formation and reduced cell clusters in both cell lines 
(Fig.  9F and G). We also found that KRT7 knockdown 
decreased the expression of E-cadherin and RHOA, 
which may be responsible for the decline of CIC frequen-
cies (Fig. 10A). Furthermore, silencing the expression of 
KRT7 also suppressed the proliferation, migration, and 
invasion of both cell lines (Fig. 10B − E).

Discussion
The global burden of PC has increased continuously 
over the past few decades, and as the leading cause of 
cancer-related death worldwide, its 5-year survival rate 
approached 10% for the first time in 2020 [1]. Due to the 
lack of an effective screening for PC at an early stage, 
most patients are diagnosed at locally advanced or meta-
static stage. Even after standardized treatment, including 
surgery and adjuvant chemotherapy, patients still have to 
face the great risk of recurrence and death [3]. Therefore, 
reliable biomarkers for early detection screening and pre-
dicting OS of PC patients are urgently needed.

Acquiring necessary nutrients from a frequently nutri-
ent-poor environment and utilizing these nutrients to 
maintain rapid proliferation and progression is a com-
mon feature of cancer cell metabolism [32]. Beyond scav-
enging nutrients from extracellular microenvironment, 
cancer cells also engulf and digest whole living cells via 
two mainly CIC processes, “cell cannibalism” and “ento-
sis”, for nutrient recovery [33]. Previous studies have 
demonstrated that cannibalistic activity is a hallmark of 
cancer, conferring metabolic advantages on cancer cells 
under energy stress [8, 15]. Meanwhile, cancer cells with 
higher aggressiveness can become the “winner” subpopu-
lation eliminating their less competitive neighbors, which 
promotes the fittest clones expanding within heteroge-
neous cancer cell populations [16]. CIC structures are 
prevalent in PC tissues and homotypic CIC (cancer cells 
internalized other cancer cells) constitutes the main sub-
type of overall CIC structures in PC [7, 34]. Considering 
that CIC phenomena in cancer represent a highly aggres-
sive behavior, indicating that CIC-mediated cell competi-
tion, by selecting the best competitive clones, may be a 
potential mechanism to promote PC progression. How-
ever, no previous studies investigated the relationship 
between CIC-related genes and PC patient’s prognosis 
through comprehensive bioinformatics analysis.

In present study, we developed a risk scoring model 
based on four CIC-related genes (KRT7, AURKA, 
CDKN2A and RARB) in TCGA cohort, and further per-
formed external validation for its robustness. Accord-
ing to the values of hazard ratio, KRT7 and AURKA 
were considered as the risk genes, while CDKN2A and 
RARB were considered to be protective. KRT7 belongs 
to type II cytokeratin involving in cytoskeleton remod-
eling, epithelial intermediate filaments formation, and 
motility enhancement of cells [35]. Previous studies have 
indicated that KRT7 is overexpressed in many cancers, 
including ovarian, gastric, colorectal, and pancreatic 
cancer, which can facilitate the migration and invasion 
of cancer cells [36–39]. AURKA is a regulator kinase of 
cell cycle involved in microtubule formation, spindle pole 
stabilization during chromosome segregation, and func-
tionally contributes to tumorigenesis and progression 
[40]. AURKA-mediated phosphorylation is necessary for 
CIC-related processes, which promotes entosis in breast 

Fig. 9  Identification of the correlation between KRT7 expression and CIC formation in PC cell lines. A KRT7 expression levels among 15 PC cell lines 
in three independent datasets. B The expression levels of KRT7 mRNA and protein in BxPC-3, CFPAC-1, PANC-1 and MIA PaCa-2 cell lines. C The 
frequencies of CIC formation in four cell lines. D Representative immunofluorescent images of typical CIC structures for BxPC-3 and CFPAC-1 cells. 
Red arrows indicate CIC structures. Scale bar: 100 μm (left) and 10 μm (right). E Related networks and functions of KRT7 predicted by GeneMANIA 
website. F Representative immunofluorescent images of typical CIC structures for BxPC-3 and CFPAC-1 cells transfected with siRNA of KRT7 or 
negative control siRNA. Yellow arrows indicate CIC structures. Scale bar: 100 μm (top) and 10 μm (bottom). G The frequencies of CIC formation and 
cell cluster for KRT7-knockdown BxPC-3 and CFPAC-1 cells. Data represent means ± SD from three independent experiments. ns, not significant; *, 
P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001

(See figure on next page.)



Page 19 of 24Song et al. BMC Cancer          (2022) 22:894 	

Fig. 9  (See legend on previous page.)
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cancer cells through the regulation of microtubule plus-
end dynamics and cell rigidity [41]. CDKN2A, a well-
known tumor suppressor, can induce cell cycle arrest 
in G1 and G2 phases by inhibiting the binding of CDK4 
or CDK6 with cyclin D1 and initiating p53-dependent 
cell cycle arrest. CDKN2A inactivation is present in the 
majority of PC patients, increasing cellular fitness and 
proliferation, and promotes homotypic CIC formation 
in breast cancer cells [28, 42]. RARB, by binding reti-
noic acid (biologically active vitamin A), can limit cell 

proliferation and abnormality to inhibit tumorigenesis. 
Various studies have suggested that cancer cells elevate 
the expression levels of RARB promoter methylation and 
result in functional silencing [43, 44].

Based on the risk score of individuals, patients were 
divided into the low- and high-risk groups. Our results 
showed that PC patients in the high-risk group had sig-
nificantly poorer OS than those in the low-risk group, 
and the risk score was an independent prognostic fac-
tor with a credible efficacy confirmed by ROC analysis 

Fig. 10  Silencing KRT7 expression downregulated the expression of E-cadherin and RHOA, and inhibited the cell proliferation, migrative and 
invasive abilities in both BxPC-3 and CFPAC-1 cell lines. A Western blot images and densitometric quantification of CIC-related protein expression 
levels in KRT7-knockdown BxPC-3 and CFPAC-1 cells. Relative expression levels were normalized to GAPDH loading control. B and C Effects 
of silencing KRT7 expression on migration and invasion of BxPC-3 and CFPAC-1 cell lines. Scale bar: 200 μm. D and E Effects of silencing KRT7 
expression on cell proliferation of BxPC-3 and CFPAC-1 cell lines. Data represent means ± SD from three independent experiments. ns, not 
significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001
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and nomogram model. To further explore the associa-
tions between established signature and differences of 
prognosis observed, biological functions, mutation 
profiles and immune features between two risk groups 
were compared in TCGA and ICGC cohorts. Functional 
enrichment analyses showed that several cancer-related 
terms and pathways were enriched, such as extracellular 
matrix organization, cell–cell junction, ECM-receptor 
interaction and PI3K-Akt signaling pathway, suggest-
ing that patients in the high-risk group may be at higher 
degree of cancer-related pathways activation and immu-
nosuppressive status [45]. Furthermore, a higher propor-
tion of patients with KRAS and TP53 somatic mutations 
were detected in the high-risk group, two well-known 
drivers of PC, increasing the risk of cancer in individuals. 
TMB, a numeric index, reflects cancer mutation quan-
tity. Thus, a higher TMB results in more tumor neoan-
tigens, which increases chances for immunotherapy and 
is clinically associated with better ICB responses [46]. 
In this study, patients in the high-risk group had signifi-
cantly higher TMB, indicating that these patients may 
benefit from ICB therapy. Previous studies have shown 
that the immune microenvironment plays a pivotal role 
in the progression of PC [45, 47, 48]. However, the roles 
of CIC-related genes for PC immune microenvironment 
are still unclear. In our results, higher infiltration lev-
els of M0 macrophages and lower infiltration levels of 
CD8+ T cells were observed in the high-risk group, sug-
gesting the presence of an immunosuppressive micro-
environment [49]. Besides, it has been reported that 
tumor-infiltrating B cells contribute to a better response 
to ICB therapy, and tumors of responders showed a 
higher infiltrating level of memory B cells, while lower 
infiltrating level of naïve B cells than tumors of non-
responders [50]. This finding may be the reason for our 
results that there are a significantly higher frequency of 
memory B cells and a significantly lower frequency of 
naïve B cells in the high-risk group. A previous study, 
by analyzing TCGA data, has identified six immune 
subtypes spanning cancer tissue types and molecular 
subtypes − wound healing (C1), IFN-γ dominant (C2), 
inflammatory (C3), lymphocyte depleted (C4), immuno-
logically quiet (C5), TGF-β dominant (C6). C3 subtype 
has the best prognosis, while C1 and C2 subtypes pre-
sent less favorable outcomes [51]. In our results, nearly 
half of patients in the low-risk group were C3 subtype, 
but most patients in the high-risk group were C1 and C2 
subtypes, which was consistent with the association of 
immune subtypes and prognosis. ICB therapy is one of 
the most successful anti-cancer immunotherapies [52]. 
However, low response rates limit PC patients to ben-
efit from ICB therapy [3]. We analyzed the expression of 
eight representative immune checkpoints between two 

risk groups and predicted ICB responses of individuals. 
As shown in our results, the high-risk group exhibited 
higher expression of CD274, CD276 and VTCN1 than 
the low-risk group. CD274 encodes PD-L1 protein, the 
immune inhibitory ligand of PD-1 death receptor, that 
is observed in various types of tumors, and serves as an 
immune suppressor by blocking T cells activation and 
cytokine production [52]. CD276 is widely expressed 
on a range of solid tumors, and plays a dual role in anti-
tumor immunity, as a co-stimulatory regulator enhanc-
ing the activity of T cells, or as a co-inhibitory regulator 
inhibiting T cells and NK cells functions [53].VTCN1 
is mainly expressed on tumor cells and tumor-associ-
ated macrophages, which promotes immune escape by 
inhibiting the proliferation of T cells and enhancing the 
function of regulatory T cells [54]. TIGIT, as the only 
downregulated immune checkpoint in the high-risk 
group, is primarily expressed on T cells and NK cells, 
which can inhibit anti-tumor immunity by impairing T 
cell functions, preventing NK cell-mediated lysis, and 
enhancing the suppressive activity of regulatory T cells 
[55]. Therefore, these findings may explain why a higher 
frequency ICB response rate was observed in the high-
risk group.

As the most important risk gene in our prognos-
tic model, we performed IHC scoring of KRT7 on 
PUMCH cohort to further validate the correlation of 
KRT7 expression with an unfavorable prognosis of PC. 
According to the comprehensive analysis of IHC scores 
and clinicopathological characteristics, high expres-
sion of KRT7 was significantly associated with higher 
stage, lymphatic metastasis, and shorter OS time. High 
intra-tumoral heterogeneity is the main obstacle in 
fulfilling an effective PC treatment [56]. The results of 
single-cell transcriptome analysis for PC have found 
that malignant cells contain distinct subpopulations, 
including those enriched for either proliferative or 
migrative features [26, 47]. Meanwhile, this heteroge-
neity is also found in established cancer cell line such 
as neuroblastoma, melanoma and breast carcinoma 
cell lines [57, 58]. Heterogeneous tumor populations 
can be divided into separate clusters with differently 
mechanical deformability [58]. Our results showed 
that the expression levels of KRT7 were varied among 
different malignant clusters and established cell lines, 
which may confer different degrees of the deformabil-
ity and motility to tumor cells. Moreover, silencing of 
KRT7 significantly diminished the CIC formation, cell 
cluster, cell proliferative, migrative and invasive abili-
ties. Considering that softer tumor cells preferentially 
internalize stiffer neighboring cells in CIC processes, 
we speculate that CIC structures observed in PC may 
be a positive selection to promote the survival of clones 
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with metabolic advantages and higher deformability, 
which promotes the invasion and metastasis of PC cells 
(unpublished data) [16, 59].

To the best of our knowledge, this study is the first 
attempt to construct a prognostic model based on CIC-
related genes and has shown a favorable efficacy on sur-
vival prediction in PC patients. However, our study has 
several limitations. First, this study mainly collected ret-
rospective data from public datasets, and thus prospec-
tive studies are needed to further validate our results. 
Meanwhile, an independent validation cohort with 
greater sample size and long-term follow-up is warranted 
in the future. Second, since there are only limited number 
of research delineated the dynamic CIC processes in PC, 
genes included in this study may perhaps not the core 
regulators of CIC in PC cells. Third, due to the nature of 
bioinformatics analysis, future studies are needed to fur-
ther elucidate the molecular mechanisms and biological 
implications of CIC-related genes such as KRT7 in PC 
progression.

In conclusion, our study developed a prognostic model 
for PC based on four CIC-related genes to screen patients 
at high risk and predict survival. KRT7 might be a con-
tributor of the immunosuppressive microenvironment in 
PC and it has shown great potential as a novel prognostic 
marker. More studies are needed to reveal new insights 
about CIC phenomena in cancer progression, which may 
shed inspiring light on PC therapy.
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