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Abstract 

Background: Pathophysiology of transformation of inflammatory lesions in chronic pancreatitis (CP) to pancreatic 
ductal adenocarcinoma (PDAC) is not clear.

Methods: We conducted a systematic review, meta-analysis of circulating metabolites, integrated this data with tran-
scriptome analysis of human pancreatic tissues and validated using immunohistochemistry. Our aim was to establish 
biomarker signatures for early malignant transformation in patients with underlying CP and identify therapeutic 
targets.

Results: Analysis of 19 studies revealed AUC of 0.86 (95% CI 0.81-0.91, P < 0.0001) for all the altered metabolites 
(n = 88). Among them, lipids showed higher differentiating efficacy between PDAC and CP; P-value (< 0.0001). Path-
way enrichment analysis identified sphingomyelin metabolism (impact value-0.29, FDR of 0.45) and TCA cycle (impact 
value-0.18, FDR of 0.06) to be prominent pathways in differentiating PDAC from CP. Mapping circulating metabolites 
to corresponding genes revealed 517 altered genes. Integration of these genes with transcriptome data of CP and 
PDAC with a background of CP (PDAC-CP) identified three upregulated genes; PIGC, PPIB, PKM and three downregu-
lated genes; AZGP1, EGLN1, GNMT. Comparison of CP to PDAC-CP and PDAC-CP to PDAC identified upregulation of 
SPHK1, a known oncogene.

Conclusions: Our analysis suggests plausible role for SPHK1 in development of pancreatic adenocarcinoma in long 
standing CP patients. SPHK1 could be further explored as diagnostic and potential therapeutic target.

Keywords: Chronic pancreatitis, Pancreatic ductal adenocarcinoma, PDAC with background of CP, SPHK1, 
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Introduction
Pancreatic adenocarcinoma of ductal origin is reported 
to be the third leading cause of cancer related mortal-
ity [1]. Chronic pancreatitis (CP) poses 2-3 fold higher 
risk of developing PDAC in comparison to general 
population [2, 3]. However, very little is known about 
the malignant transformation of CP to PDAC. Hence 
an urgent need arises for studying complex networks of 
exocrine disease of pancreas progressing to pancreatic 
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cancer. Most of the times patients present at advanced 
stage of the disease with a poor prognosis and overall 
survival rate less than 10% [4]. Identification of accurate 
biomarkers during the progression of acute to chronic 
pancreatitis and to various stages of pancreatic cancer 
(PDAC) [5, 6] is still a highly coveted goal. Metabo-
lomics approach aids in assessing the metabolic altera-
tions to reveal mechanisms of metabolic stress during 
CP to PDAC transformation and design new diagnos-
tic and therapeutic approaches [7]. In this study, we 
performed systematic review and meta-analysis of cir-
culatory metabolite biomarkers in CP and PDAC. In 
addition, we chose to integrate the genes corresponding 
to altered metabolites with our experimental transcrip-
tome data in CP, PDAC and PDAC-CP to identify genes 
and major metabolic pathways that are likely involved 
in malignant transformation of CP.

Study design
In order to achieve our goal, we first identified metab-
olomics studies (n =  25) in CP and PDAC, performed 
meta-analysis and identified metabolic networks using 
metaboAnalyst. Then, our aim was to confirm the 
metabolite alterations at the level of corresponding 
gene expression. Therefore, we retrieved genes corre-
sponding to altered metabolites employing relational 
databases and integrated with dysregulated gene data-
sets that were extracted from transcriptomes in CP, 
PDAC-CPand PDAC. To validate our findings, immu-
nohistochemistry was performed on pancreatic tissues 
from CP, PDAC-CP and PDAC patients.

Materials and methods
All authors had access to the study data, reviewed and 
approved the final manuscript. Systematic review and 
meta-analysis were conducted using a predefined pro-
tocol (Additional file  1: Table  S1) as recommended by 
MOOSE guidelines [8].

Systematic literature search
A systematic search of PubMed, Web of Science and Sco-
pus, was carried out to identify biomarker studies that 
reported metabolites in CP and PDAC (Fig. 1). The fol-
lowing terms were applied to search criteria: “pancreas 
or pancreatic” and “cancer or carcinoma or chronic pan-
creatitis” and “metabolite profiling or metabolomics or 
metabolome or metabolite analysis or metabolic charac-
terization” and “serum or plasma or biomarkers or mark-
ers”. The literature search was conducted from March 
2005 till December 2021. The references that were found 
relevant from letters, thesis and posters presented dur-
ing conferences were reviewed for further analysis.

Inclusion and exclusion criteria
Title and year of publications, authors and abstracts 
were extracted to EndNote X7(Thomson Reuters, NY, 
USA). Following redundancy check, an initial screening 
process was employed to screen the titles and abstracts 
of the eligible articles. Articles found relevant were fur-
ther selected for reading. Authors have been advised to 
avoid bias and a consensus was made in article selection. 
Only studies that examined and validated using metabo-
lomic platforms in CP and PDAC especially in serum or 
plasma-based marker discovery were eligible. Studies 
included the following criteria: (1) Biomarker in circula-
tion (serum / plasma); (2) metabolomics platform (GC/
MS, LC/MS, NMR); (3) biomarker selection was selected 
based on statistical significance and further evaluation 
by statistical learning for discrimination of PDAC from 
healthy control or CP; (4) accuracy, sensitivity, specificity 
and area under the curve (AUC-ROC, etc.) were deemed 
as suitable prediction metrics. Exclusion of studies was 
followed if (1) no suitable control groups were used; (2) 
the studies were conducted on animal tissues, cell lines 
and urine samples; (3) there was duplication of data 
and (4) they are letters, reviews, theses, and conference 
proceedings.

Study data extraction
The data were abstracted by at least two independ-
ent researchers. A data extraction form was made in 
accordance with earlier systematic review guidelines [9]. 
For preliminary analysis, information pertaining to the 
study including first author, year of publication, patient/
control characteristics (age, gender, clinical stage) were 
extracted. The nature of biological specimen, platforms 
employed for analysis, proper targeted / untargeted 
approach, sample collection, storage, sample preparation, 
pretreatment description, analytical standards, validation 
and metabolite identification methods were described. 
The list of biomarker panels were extracted. For each bio-
marker study comprising controls, CP and PDAC, fold 
changes values were noted or the biomarker levels were 
grouped as elevated or low respectively. Total patients for 
each study along with the biomarker panel, area under 
curve, sensitivity and specificity values were noted. Fol-
lowing extraction of biomarker data, a third independent 
researcher reviewed abstracted data. Data were discussed 
and sorted in case of discrepancy.

Outcome measures
The study outcome measures are

1) Altered metabolite levels in CP and PDAC
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2) Subgrouping of metabolites for efficient differentia-
tion of CP and PDAC

3) Identification of metabolic pathways
4) Integration of corresponding genes of altered metab-

olites with pancreatic transcriptome to identify 
genes and major metabolic pathways with potential 
involvement in malignant transformation.

Reporting methodological quality assessment
Metabolomics standards initiative
prescribes gold standards in metabolomic experiments, 
sample preparation, experimental analysis, quality con-
trol, metabolite identification, and data pre-processing 
[10]. General guidelines were followed for evaluation 
of a biomarker study, defined objective, definitive clini-
cal question, reliable data source, significant statistical 
analysis, and secondary validation [11, 12]. We devel-
oped a quality reporting panel to fully assess the criteria 
in the selected studies with (1) reference standards (e.g., 
CA19.9 for pancreatic cancer/ PDAC) (2) the sampling 
and experimental procedures, metabolite identification 
and (3) the bioinformatic analysis including data mining, 
parsing, statistical analysis, and modeling using HMDB 
database. Meta-analysis was carried out using MedCalc 
statistical software (ver. 19.2.6) for all publications which 
reported AUC, sensitivity by deriving standard error. To 
assess the risk of bias, publication bias was carried out for 
publications which reported standard error and AUC val-
ues using MedCalc software [13].

Statistical and pathway enrichment analysis
Data pertaining to 25 biomarker studies data were iden-
tified and entered into MS-excel. Meta-analysis was 
performed using MedCalc software for all publications 
which reported AUC, specificity, sensitivity by deriv-
ing standard error. We computed the standard error 
from samples size(n) for each study from AUC and then 
grouped the studies as all metabolites, lipids, carbohy-
drates and amino acids. Using a two tailed critical value 
of normal distribution, and keeping sample size between 
two groups we computed AUC, the standard error and 
95% confidence interval. AUC and standard error were 
used to generate the forest plots for all metabolite mark-
ers, carbohydrate, amino acid and lipid metabolites. 
Assessment of statistical heterogeneity by forest plots 
and publication bias were by funnel plot asymmetry were 
performed using Egger’s intercept. The compound name 
standardization was followed using Human Metabo-
lome Database version 4.0 [14]. The pathway analysis 
was conducted using metaboAnalyst (Ver5) [15]. The 

Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
the small molecule pathway (SMP) were used to identify 
pathways of significance to the study [16]. The analysis 
algorithm was a hypergeometric test for overrepresenta-
tion analysis, and the relative betweenness centrality was 
selected for pathway topology analysis. Pathways that 
had an adjusted P-value (false discovery rate, FDR) of less 
than 0.05 were considered to be significantly enriched. 
Subgroup analysis was screened by metaboAnalyst [17] 
and overall mapping pathways were derived for meta-
bolic intermediates and networks of significance to dif-
ferentiate healthy controls from PDAC, healthy controls/
CP from PDAC and CP from PDAC.

Transcriptome analysis and gene ontology
For integrating the genes of altered metabolites identified 
from meta-analysis, transcriptome profiles were gener-
ated in pancreatic tissues with CP, PDAC-CP, PDAC and 
healthy tissue. Paraffin embedded tissue blocks (FFPE) 
were retrieved from the archived samples. A total of 12 
tissues were included of which 3 were normal pancreatic 
tissues (from trauma cases), 3 with CP, 4 with PDAC-CP 
and 2 with PDAC. All the participants provided written 
informed consent and the study protocol conformed to 
the ethical guidelines of the 1975 Declaration of Helsinki. 
The study was approved by the Institutional Review Board 
(Protocol #AIG/AHF-IRB:02/31/20) of Asian Healthcare 
Foundation, a research wing of AIG hospitals. Transcrip-
tome datasets are available online, (Vishnubhotla, Ravi-
kanth (2021), “Transcriptome Dataset”, Mendeley Data, 
V1, doi: https:// doi. org/ 10. 17632/ 2jjbp vfm72.1). CP was 
diagnosed with the clinical symptoms: chronic abdominal 
pain, pancreatic calcifications, abdominal pain and mor-
phological characteristics from duct pancreatograms and 
exocrine pancreatic insufficiency. PDAC was diagnosed 
by histopathologic examination. Patients who developed 
PDAC with long standing CP were considered as PDAC-
CP (Additional file 1: Table S2). RNA was isolated from 
the FFPE blocks using RNeasy FFPE kit (Qiagen) as per 
manufacturer’s instructions. cRNA was synthesized and 
hybridized to Affymetrix Human Transcriptome arrays 
2.0 and scanned. Transcriptome data was analyzed using 
Affymetrix Transcriptome Analysis Console 3.0.0.466. 
Transcriptome data is represented as splicing index 
which is similar to the fold change (FC) that is often used 
on the gene level. The exon expression is first normalized 
to the expression of the corresponding gene before cal-
culating the ratio between CP and PDAC-CP. Transcript 
level dysregulation were identified between the patient 
groups. GO enrichment analysis were performed using 
PANTHER and GO ontology database [18].

https://doi.org/10.17632/2jjbpvfm72.1
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Integration of genes of altered metabolites 
with transcriptome
Genes corresponding to the altered metabolites differen-
tiating CP and PDAC were extracted from relational data-
base of metabolic pathways [19] that integrates KEGG 
reactome [20] and HMDB [14]. We retrieved dysregulated 
gene list from the transcriptome data of CP and PDAC-
CP generated from our laboratory. The two gene sets were 
compared to identify common and unique genes between 
CP and PDAC-CP with a likely role in malignant transfor-
mation. Additionally, dysregulated gene list from PDAC-
CP was also compared to that of PDAC. TSGene 2.0 [21] 
database was compared to retrieve tumour suppressor 
genes from our identified gene datasets.

Immunohistochemistry
To validate the findings of integrating meta-analysis of 
metabolome and in-house transcriptomic data, we per-
formed immunohistochemistry on the paraffin embed-
ded tissue sections of CP(n = 6), PDAC-CP (n = 5) and 
PDAC (n =  4) obtained from department of pathology 
archives. 4 um sections were stained with anti-human 
SPHK1-HRP antibody (mouse origin, Santacruz biotech-
nologies Inc., USA), CD31 antibody (mouse origin) using 
BioGenex detection system. Each tissue was observed 
using a light microscope at a total magnification of 40X 
and documented using a computer with cellSens imag-
ing software and a camera that had been integrated with 
Olympus BX63 microscope. Photographs were taken 
randomly with a total of ten visual fields per one tissue 
for acini, blood vessel, duct, islet and standardized using 
a global white balance. The brown colour intensity was 
calculated using the plugin program in Image J, IHC 

profiler [22] which quantified the intensity of the images. 
The results of quantification were expressed as H-Score 
[23] based on the formula: (% low positive × 1) + (% 
positive × 2) + (% high positive × 3). Fisher’ exact test 
was used to compare SPHK1 expression among the two 
groups: CP, PDAC-CP and PDAC-CP, PDAC with an α 
of 0.05 as a cut-off to denote statistical significance.

Results
Systematic review
Studies were included from Web of Science, Scopus, Pub-
Med and were screened for title, abstract and duplications 
were deleted. Inclusion and exclusion criteria were followed 
as described earlier. Letters, reviews, theses, conference 
posters or proceedings were also excluded. 54 studies were 
found to be eligible for further full-text assessment, and only 
25 studies could be included for systematic review (Fig. 1).

Characteristics of studies included
The characteristics of studies included are described in 
Additional file  2: Dataset S1. A total of 10,951 controls 
(either healthy controls or CP patients were considered 
as controls) and 2248 patients with PDAC, pancreatic 
cancer were included in the analysis (Additional file  2: 
Dataset S1). Healthy controls were used in 15 stud-
ies while 8 studies used either healthy controls or CP 
patients to compare to PDAC and 2 used CP as controls. 
Apart from one study [24] which included 240 PDAC and 
7772 controls, the sample size of the remaining studies 
were relatively small, of which six studies out of 25 com-
prised more than 100 PDAC patients. Tumour stage was 
provided in 16 studies, out of which 6 studies included 
PDAC patients who were in resectable stages [25–30].

Fig. 1 Schematic flowchart of systematic review
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Metabolomics design properties of included studies
The study design and metabolomic methods followed 
in the studies were tabulated (Additional file 2: Dataset 
S1). Untargeted metabolomics approach was followed 
by 17 studies (68%) while 2 studies used only lipidomics. 
Among studies that used targeted metabolomics, focus 
was on amino acids [24, 25, 31–33] and fatty acids [34]. 
Most preferred platform was Mass spectrometry based 
assessment of novel biomarkers (20 studies), followed 
by NMR (5 studies) [31, 35–38]. Eleven studies collected 
samples under fasting condition, and only two studies 
performed outlier detection, using Principal component 
analysis.

Meta‑analysis and publication bias
Studies included in the meta-analysis identified panels 
of lipids, carbohydrates and amino acids to differenti-
ate CP from PDAC. The heterogeneity was more than 
95% in all classes of biomarkers and all were statistically 
significant. Among the studies which reported AUC, 
heterogeneity was higher in amino acids followed by 
phospholipids and carbohydrates (Fig.  2). Heteroge-
neity was more than 90% when random effects meta-
analysis was performed for studies reporting sensitivity 
and were statistically significant (SI Additional file  1: 
Fig. S1). A total of 19 metabolomic studies compared 
either healthy, CP and PDAC patients and reported 
AUC values. Standard error was calculated from AUC 
values for generating forest plots. For all the circulatory 
biomarkers detected, the AUC was observed to be 0.86 
(95% confidence interval 0.81 to 0.91), with heteroge-
neity 97.92% using the random effects model (Fig. 2A). 
We further classified these biomarker studies to amino 
acid, carbohydrate and lipid metabolites. Compared 
to other metabolite biomarkers we observed that, lipid 
metabolites (Fig. 2B) differentiate PDAC from CP with 
higher AUC 0.93 (95% confidence interval 0.90 to 0.95 
with heterogeneity 77%, P-value (< 0.0001) followed 
by amino acids with AUC 0.83(95% confidence inter-
val 0.77 to 0.90 with heterogeneity 98.51%, P-value 
(< 0.0001) (Fig.  2D) and carbohydrates (Fig.  2C) with 
AUC 0.863 (95% confidence interval 0.82 to 0.91 with 

heterogeneity 79%, P-value (0.0002). Egger’s test and 
funnel plot (Additional file 3: Dataset S2; p value = 0.5) 
suggest no publication bias among the selected bio-
marker studies (Additional file 1: Fig. S1).

Pathway enrichment analysis of potential biomarkers
To identify metabolic pathways differentiating PDAC 
from CP, we have categorized the studies into 3 
groups; i) controls vs PDAC ii) controls/CP vs PDAC 
iii) CP vs PDAC. Glycerophospholipid metabolism 
with 45 metabolites (impact value of 0.22, FDR of 
1) was the most prominent pathway in differentiat-
ing healthy controls from PDAC (Fig.  2E) Glutamate 
(impact value of 0.5, FDR of 1.36E-02) and arginine 
metabolism (impact value of 0.19, FDR of 3.45E-03) 
were the two prominent pathways derived from list 
of 13 biomarkers (Fig. 2F) differentiating healthy con-
trols/CP from PDAC. Sphingomyelin pathway (impact 
value of 0.29, FDR of 0.45) and TCA cycle (impact 
value of 0.18, FDR of 0.06) were the two promi-
nent pathways derived from a list of 30 biomarkers 
(Fig.  2G) (Additional file  4: Dataset S3) that differ-
entiated CP from PDAC. We further grouped all the 
biomarkers from these studies and an overall meta-
bolic flux among various intermediates was generated 
(Fig.  3A). A total of 517 genes corresponding to the 
30 metabolites differentiating CP from PDAC were 
extracted from relational databases to integrate with 
transcriptome data sets (Additional file 5: Dataset S4).

Transcriptome in CP, PDAC‑CP and PDAC
Transcriptome datasets were generated in pancreatic 
tissues with CP, PDAC-CP and PDAC (Fig.4 and Addi-
tional file 1: Fig. S2). Comparison of transcriptome data 
between controls and CP identified 4902 genes to be 
dysregulated (2622 upregulated and 2280 downregu-
lated). Likewise, comparison of data between controls 
and PDAC-CP identified a total of 6691 genes to be dys-
regulated (3571upregulated and 3120 downregulated). 
While comparison of controls and PDAC identified 7350 
genes to be dysregulated (5421 upregulated and 1929 
downregulated).

(See figure on next page.)
Fig. 2 Forest plots of altered metabolites identified in meta-analysis (A) Forest plot of 19 metabolomic studies using AUC values and computed 
standard error. Heterogeneity  (I2) was assessed for fixed and random effects (B) Forest plot of lipid metabolites retrieved from 11 studies (C) Forest 
plot of carbohydrate metabolites retrieved from 6 studies (D) Forest plot of amino acid metabolites retrieved from 13 studies. Metabolic pathway 
analysis using metaboAnalyst identified (E) Enriched glycerophospholipid pathway for circulatory metabolites detected in healthy control and 
PDAC. Metabolites marked in red are altered in PDAC patients as compared to healthy controls (F) metaboAnalyst analysis identified enriched 
arginine and glutamate metabolism for circulatory metabolites detected in PDAC as compared to healthy controls/chronic pancreatitis. Metabolites 
are marked in red and their fold changes are in blue color (G) metaboAnalyst analysis identified enriched sphingomyelin pathway and TCA cycle for 
circulatory metabolites detected in PDAC and CP patients. Metabolites are marked in red and their fold changes are in blue color
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Fig. 2 (See legend on previous page.)
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Integrating genes corresponding to altered metabolites 
and transcriptome data set
We first compared transcriptome data sets of CP vs con-
trol and PDAC-CP vs control. The dysregulated genes in 
CP vs control (4902 genes), PDAC-CP vs control (6691 
genes) were then compared with 517 dysregulated genes 
obtained from altered metabolites separately. This resulted 
in identifying a total of 102 genes common between tran-
scriptome and metabolome data sets (Fig.  3B). Distribu-
tion of 102 genes and types of metabolites are represented 
in (Fig.  3C) (Additional file  5: Dataset S4). Of the 102 
genes, 28 in CP (23 upregulated and 5 downregulated) and 
33 genes in PDAC-CP (1 upregulated and 32 downregu-
lated; AKR1B1, − 2.76, Fig. 4D and KMT2C, − 2.67 Fig. 4E 
were tumour suppressors) were unique. The uniquely 
upregulated gene in PDAC-CP was SPHK1(Fig.  4A). Of 
the remaining 41 genes, three (PIGC, PKM and PPIB) were 
commonly upregulated with oncogenic potential (Fig. 4B) 

and 31 were commonly downregulated among CP and 
PDAC-CP (Fig.  4C), of which, 3 (AZGP1, EGLN1 and 
GNMT) were tumour suppressors (Fig. 3A).

Integrating genes corresponding to altered metabolites 
with transcriptome data in PDAC with a background of CP 
and PDAC
Integrating 517 genes corresponding to altered metabo-
lites and comparing with transcriptomes datasets of 
PDAC-CP and PDAC resulted in a total 127 genes that 
were dysregulated. There were 11 dysregulated genes 
common between PDAC-CP and PDAC; of which 3 were 
upregulated with oncogenic potential (PIGC, PKM and 
PPIB) and 8 were downregulated with no functional rel-
evance. While 24 genes were down regulated (tumour 
suppressors AKR1B1 and KMT2C), SPHK1(2.11 fold) was 
the only upregulated gene in PDAC-CP. Splicing index of 
identified genes are listed in Additional file 6: Dataset S5.

Fig. 3 Metabolic networks, genes and integration of transcriptome (A) Metabolites mapped from selected studies (red) and their networks of 
significance operating in chronic pancreatitis and pancreatic cancer patients. PIGC, PPIB and PKM are upregulated in CP, PDAC-CP. AZGP1, EGLN1 
and GNMT are downregulated in CP and PDAC-CP. SPHK1 upregulated in PDAC-CP and AK1RB1, KMT2C are downregulated in PDAC-CP. These 
genes are mapped to their respective metabolic pathways (B) Integration of metabolome and transcriptome yielding 102 common genes in 
chronic pancreatitis and pancreatic cancer human tissues (C) Distribution of genes and types of metabolites



Page 8 of 14Ketavarapu et al. BMC Cancer           (2022) 22:792 

GO enrichment
We performed gene ontology (GO) enrichment analysis 
using PANTHER for the 102 dysregulated genes and found 
that majority of them were with hydrolase and transferase 
activity with predominant cytoplasmic localization affect-
ing metabolic activity (Additional file 1: Fig. S4).

SPHK1 expression in pancreatic tissues 
by immunohistochemistry
SPHK1 expression in acini and islets was compara-
tively low in PDAC-CP and PDAC in comparison to 
CP (H-score: acini- CP 262, PDAC-CP 138, PDAC 
133; Islets-CP 250, PDAC-CP 150, PDAC 163). 
While the expression was marginally high in ducts 
(H-score: CP 175, PDAC-CP 193, PDAC 238), SPHK1 
expression was significantly high in blood vessels in 
PDAC-CP (high positives 12/13, low positives 7/15) 
in comparison to CP (high positives 1/13, low posi-
tives 8/15) with a P-Value (0.015) (H-score: blood 
vessels- CP 189, PDAC-CP 242, PDAC 233), Fig.  5, 
Additional file 1: Table S5.

Discussion
Earlier studies performed systematic review on metabo-
lomics based diagnostic biomarkers and meta-analysis on 
cancer risk and clinical trials to determine survival trends 
in Pancreatic Cancer/PDAC [39–41]. We conducted a sys-
tematic review, meta-analysis of studies reporting altered 
metabolites in CP and PDAC, integrated with human pan-
creatic transcriptome, and identified enhanced expression 
of SPHK1 a known oncogene in PDAC-CP.

Systematic review of metabolic profiles in CP and 
PDAC identified 25 studies, among them meta-analysis 
was conducted on 19 studies as they reported AUC, sen-
sitivity and specificity. These studies employed plasma/
serum for metabolomics and developed panels com-
prising of lipids, amino acids, carbohydrates and other 
organic compounds to differentiate PDAC from CP/
healthy controls. There were differences in the panels 
and biomarkers in different studies probably because 
of different methodology used and differences in sam-
ple size. Therefore, we sub-grouped the metabolites and 
demonstrated that lipids are superior in differentiating 

Fig. 4 Transcriptomics (A) Splicing index of SPHK1(4.01), upregulated gene in PDAC-CP tissue, red and green lines represent splicing index 
between CP and PDAC-CP (B) Venn diagram of genes overlapped in CP and PDAC-CP tissues, genes unique in CP, 1553 genes (pink) 13.4%, unique 
in PDAC-CP, 4220 genes 36.5%(blue), overlapped between CP and PDAC, 5912 genes, 50.1%(purple) (C) Volcano plot of CP, PDAC-CP, fold-change 
vs P-value for genes (D) Splicing index of AKR1B1 (− 9.65) down regulated gene in PDAC-CP tissue, red and green lines represent splicing index 
between CP and PDAC-CP (E) Splicing index of KMT2C (− 59.4) downregulated gene in PDAC-CP tissue, red and green lines represent splicing index 
between CP and PDAC-CP
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PDAC from CP as compared to amino acids and carbo-
hydrates from the forest plots. Further, pathway enrich-
ment analysis of all metabolites among HC vs PDAC, 
HC/CP vs PDAC and CP vs PDAC groups employing 
metaboAnalyst showed glycerophospholipid pathway in 
HC vs PDAC, glutamate and arginine metabolic pathway 
in HC/CP vs PDAC and sphingomyelin, TCA intermedi-
ates in CP vs PDAC groups involving 30 metabolites. In 
addition, a comprehensive intermediary metabolic cross-
talk generated from these 30 metabolites resulted in 12 
different metabolic pathways including phospholipid and 
sphingomyelin pathways (Fig. 3A).

Since our aim was to identify genes of altered metabolic 
pathways in PDAC-CP, further analysis was focussed on 
the 30 metabolites in CP and PDAC by retrieving the 
corresponding genes (n = 517) from relational data bases 
of these circulating metabolites. In order to confirm 
whether these are the reflection of tissue metabolism, 
genes data set (derived from circulatory metabolites) 
were compared with the human transcriptome data set 
(pancreatic tissues) from our laboratory, Fig. 6. Compari-
son of gene set from metabolites with gene set from tran-
scriptome yielded 102 genes common between CP and 
PDAC-CP indicating that these genes may be involved in 
the transformation of inflammatory lesions to malignant 
lesions. Some of the most significantly dysregulated genes 
in our dataset (Additional file 1: Table S3) after integra-
tion with transcriptome were enzymes associated with 
sphingolipid, ceramide and phospholipid metabolism.

Of these 102 genes that were common in CP and 
PDAC-CP, 3 genes were upregulated; PIGC, PKM, PPIB 
common to both CP and PDAC-CP (Additional file  1: 
Fig. S3), with known oncogenic potential. In addition, 3 
tumour suppressors genes were down regulated: GNMT, 
AZGP1 and EGLN1 (Additional file 1: Fig. S3). Increased 
expression of tumorigenic genes and decreased expres-
sion of tumour suppressor genes suggest a role for these 
genes in PDAC-CP. Interestingly, SPHK1, with known 
oncogenic characteristics was the only gene upregulated 
with > 2.0-fold change and tumour suppressors namely 
AKR1B1 and KMT2C were down regulated in PDAC-CP.

In addition, we also compared transcriptome datasets 
from PDAC-CP and PDAC with genes corresponding to 
altered metabolites. Interestingly, among the 127 genes 
that were dysregulated (Additional file  1: Table  S4), the 
only gene with an upregulation of 2 fold was SPHK1 seen 
in the PDAC-CP, but not PDAC. Although, upregula-
tion of SPHK1 is reported in multiple cancers including 
PDAC [42–44], our transcriptome data in PDAC was less 
than the cut off of 2-fold change.

SPHK1 catalyses generation of Sphingosine-1phosphate 
(S1P) from ceramide. SPHK1 is involved in regulation of 
multiple cellular processes, such as cell survival, cellular 
migration, angiogenesis and cancer progression. Our meta-
analysis/pathway enrichment analysis by metaboAnalyst 
and integration of corresponding genes of altered metabo-
lite with transcriptome revealed Sphingomyelin pathway 
and SPHK1 upregulation pointing to its potential role in 

Fig. 5 Representative images of SPHK1 expression in acini (A)-(C), duct (D)-(F), islet (G-I), blood vessel(J-L) and CD31 expression in blood 
vessel(M-O) among CP, PDAC-CP and PDAC. Images were captured using Olympus BX63 microscope, 40X objective, scale bar = 10 μm
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Fig. 6 Integration of metabolome data derived from meta-analysis and experimental transcriptome among healthy control, CP, and PDAC-CP 
patients.
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early neoplastic transformation of inflammatory lesions in 
long standing chronic pancreatitis patients. However, the 
genetic and epigenetic mechanisms of SPHK1 upregula-
tion need to be further explored. Enrichment of TCA cycle 
intermediates by metaboAnalyst along with sphingomy-
elin pathway favours aerobic glycolysis as a requirement 
for cancer cells [45] when the cancer cells reprogram their 
metabolic pathways by switching on the aerobic glycolysis, 
due to their need for mitochondrial ATP, for rapid cell divi-
sion [46]. Conversion of various metabolites to TCA cycle 
intermediates is a channel for the cancer cells to fuel their 
needs and also for the exchange of nutrients [47].

Among the commonly dysregulated genes PIGC 
showed upregulation in both CP and PDAC-CP indicat-
ing that it may have a role. PIGC catalyses biosynthesis 
of glycosylphosphatidylinositol [48] and its dysregulation 
was implicated in the pathogenesis of several malignant 
tumour types [49]. Elevated expression of Phosphati-
dylinositol glycan anchor biosynthesis class C (PIGC) 
was shown to promote proliferation and cancer cell 
migration [50]. However, these findings have to be stud-
ied in the context of CP progressing to PDAC under 
in vivo conditions. Our data also shows down regulation 
of tumour suppressor genes AZGP1, EGLN1 and GNMT 
of which AZGP1, a Zinc α2-glycoprotein which when 
silenced was shown to increase invasiveness of pancreatic 
cancer by induction of mesenchymal transition [51]. Our 
analysis showed 10-fold decrease in AZGP1 in PDAC-CP, 
indicating its importance. AKR1B1 has been implicated 
in physiological and biochemical pathways, such as car-
bohydrate metabolism, inflammation and prostaglandin 
synthesis [52, 53]. Our data also showed down regulation 
of KMT2C, which is known to regulate DNA repair [54, 
55]. It’s down regulation concomitant with dysregulation 
of oncogenes and tumour suppressors may lead to malig-
nant transformation of inflammatory lesions.

Our results demonstrate that SPHK1 was differentially 
expressed in acini, islets, ducts and blood vessels in CP, 
PDAC-CP and PDAC. SPHK1/S1P signalling is known 
to play a crucial role in inflammation, cell migration, 
and vascular development. Sphk1 is widely upregulated 
across a diverse range of human cancers and has been 
inextricably linked to tumorigenesis [56–60]. SPHK1 was 
earlier reported to be upregulated in pancreatic ductal 
adenocarcinoma demonstrating resistance to gemcit-
abine [61], its regulation of angiogenesis [62] and miRNA 
506/SPHK1 axis as a therapeutic target [63]. Upregula-
tion of SPHK1 expression in the current study shows a 
novel role of SPHK1/S1P axis during the progression of 
CP to PDAC-CP angiogenesis. The exact mechanism of 
angiogenic factor secretion during the progression of CP 
to PDAC-CP and pancreas cell type S1PRs (Sphingosine 
1 phosphate receptors) needs to be further characterized.

Limitation of the study is small size of the tissue tran-
scriptomes and validation sets. We have also performed 
RNA sequencing on NGS (Ion Proton; Life technologies) 
to confirm the dysregulated genes. Despite small sample 
size, validation of SPHK1 in pancreatic tissues confirms 
higher expression in blood vessels indicating that SPHK1 
has a role in angiogenesis during progression of CP to 
PDAC-CP. Data from both the platforms were compara-
ble and therefore our results are reliable and may be suit-
able candidates for further validation in a large number 
of samples before it can be used in clinical practice.

In conclusion, the identification of sphingomyelin path-
way from metaboAnalyst, upregulation of SPHK1 in the 
integration of genes associated with metabolome and 
transcriptome (CP and PDAC-CP) and comparison of 
transcriptome data between PDAC-CP and PDAC, both 
indicate a role for SPHK1in the malignant transformation 
of inflammatory lesions in CP. SPHK1 needs to be stud-
ied further for exploiting its diagnostic and therapeutic 
potential in long standing CP patients.
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