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Abstract 

Background:  Glioblastoma is one of the most common brain cancers in adults, and is characterized by recurrence 
and little curative effect. An effective treatment for glioblastoma patients remains elusive worldwide. 7-methylguano-
sine (m7G) is a common RNA modification, and its role in tumors has become a research hotspot.

Methods:  By searching for differentially expressed genes related to m7G, we generated a prognostic signature via 
cluster analysis and established classification criteria of high and low risk scores. The effectiveness of classification was 
validated using the Non-negative matrix factorization (NMF) algorithm, and repeatedly verified using training and test 
groups. The dimension reduction method was used to clearly show the difference and clinical significance of the data. 
All analyses were performed via R (version 4.1.2).

Results:  According to the signature that included four genes (TMOD2, CACNG2, PLOD3, and TMSB10), glioblastoma 
patients were divided into high and low risk score groups. The survival rates between the two groups were signifi-
cantly different, and the predictive abilities for 1-, 3-, and 5-year survivals were effective. We further established a 
Nomogram model to further examine the signature,as well as other clinical factors, with remaining significant results. 
Our signature can act as an independent prognostic factor related to immune-related processes in glioblastoma.

Conclusions:  Our research addresses the gap in knowledge in the m7G and glioblastoma research fields. The estab-
lishment of a prognostic signature and the extended analysis of the tumor microenvironment, immune correlation, 
and tumor mutation burden further suggest the important role of m7G in the development and development of this 
disease. This work will provide support for future research.

Keywords:  m7G methylation, Immune infiltration, Signature, Biomarkers, Cancer, Health informatics, Neuroscience, 
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Introduction
Glioblastoma is the most common adult primary brain 
cancer. It is the most malignant glioma of astrocytic 
tumors. About 50% of the primary central nervous sys-
tem malignant tumors are categorized as glioblastoma, 
with an incidence rate of 3.2 cases per 100,000 people [1]. 
Despite the unremitting efforts of researchers to design 
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new treatment strategies, primary glioblastoma has 
always persisted in an invasive manner and the patient 
mortality rates have increased accordingly [2]. Therefore, 
preventing the recurrence of glioblastoma is necessary to 
reduce its mortality. For patients with newly diagnosed 
glioblastoma, the standard treatment regimen consists 
of safe and feasible surgery, radiotherapy, and temozolo-
mide chemotherapy for up to six treatment cycles [3, 4]. 
Patients with recurrence are treated by reoperation and 
radiotherapy. However, these methods have little effect 
on improving the overall survival rate [5]. Therefore, 
finding new and feasible treatments is a common goal 
among researchers.

RNA modification is a reversible and dynamically 
regulated process that is involved in major biological 
processes [6]. Transfer RNA (tRNA) modification is the 
most common RNA modification [7]. tRNA is a classical 
non-coding RNA. It functions in the translation process 
by providing amino acids to ribosomes according to the 
specific codon in the mRNA. tRNA is modified to form 
a precise L-shaped structure to perform these functions 
[8, 9]. In tRNA modification, 7-methylguanosine (m7G) 
is one of the most conservative modified nucleosides, 
which widely exists in eubacteria, eukaryotes, and a few 
archaea [10]. In most cases, m7G modification occurs at 
position 46 of the variable region [11]. m7G is installed 
at the 5′ cap in a co-transcriptional manner during tran-
scription initiation. It can stabilize transcripts, prevent 
exonucleolysis and degradation, and regulate the mRNA 
life cycle [12].

For the relationship between RNA modification and 
glioblastoma, Cui et al. showed that mettl3 and mettl14 
can inhibit tumor formation and demonstrated that m6A 
methylation can actually reduce the stability of key car-
cinogenic transcripts [13]. However, Visvanathan et  al. 
confirmed that mettl3 is a cancer-promoting gene that 
can promote the survival of glioma cancer cells by sta-
bilizing SRY box 2 (Sox2, [14]). These two contradictory 
experimental results make it difficult to clearly explain 
the effects of RNA modifications in glioblastoma. Some 
studies have shown that methyltransferase like 1 (mettl1) 
is a tumor suppressor gene in colon cancer [15]. Other 
reports have shown that eukaryotic translation initiation 
factor 4E (eIF4E) is very important for cancer cell trans-
formation and has oncogenic potential in cancer devel-
opment, as a eukaryotic translation initiation factor, it 
is significant to bind to the m7G cap existing at the 5 ‘- 
UTR of most eukaryotic mRNAs [16]. However, the rela-
tionship between m7G and glioblastoma has rarely been 
explored, giving us a strong curiosity in this field.

Thus, in this article, we cluster patients according to 
their expression of m7G-related genes and construct 
a scoring signature in which risk score is significantly 

related to clinical features and disease progression. We 
displayed the impact of m7G on glioblastoma as clearly 
as possible by using dimensionality reduction methods. 
Our results suggest a possible role of m7G-related genes 
that may indicate its potential as a therapeutic target in 
glioblastoma.

Methods
Glioblastoma dataset sources
Gene expression, clinical features, and simple nucleotide 
variation of glioblastoma samples were obtained from the 
following public databases: The Cancer Genome Atlas 
(TCGA), Gene Expression Omnibus (GEO), and Chinese 
Glioma Genome Atlas (CGGA). Specifically, GSE13041 of 
the GEO dataset was included in the analysis. Copy num-
ber variations (CNVs) of glioblastoma was downloaded 
through UCSC Xena (http://​xena.​ucsc.​edu/). Genes 
related to m7G were extracted from Gene Set Enrich-
ment Analysis (GSEA, http://​www.​gsea-​msigdb.​org/​gsea/​
index.​jsp), including GOBP_RNA_CAPPING (n = 34), 
GOMF_M7G_5_PPPN_DIPHOSPHATASE_ACTIVITY 
(n = 8), GOMF_RNA_7_METHYLGUANOSINE_CAP_
BINDING (n = 12), and GOMF_RNA_CAP_BINDING 
(n = 19). After sorting and deleting duplicate genes, a 
total of 46 m7G-related and 11 immune checkpoint 
inhibitor (ICI) -related genes were included in the study. 
The specific genes were shown in Table S1. Among all the 
46 obtained m7G-related genes, 44 of them were ana-
lyzed here, the reason of which was that only these 44 of 
46 m7G related genes were expressed in the merge sam-
ples of TCGA, GEO and CGGA.

Non‑negative matrix factorization (NMF) clustering
NMF is a novel way of clustering. Using the NMF R 
package, it can extricate sample classification from diffi-
cult positions where gene space is in high dimensional-
ity and there are too few samples to further explore [17]. 
With this method, 659 patient records were divided into 
groups A and B according to their expression levels of 
m7G-related genes. The classification of 659 patients into 
groups C1, C2, and C3 from the different genes of group 
A and B additionally utilized the NMF cluster method.

Gene set variation analysis (GSVA) and enrichment analysis
GSVA is an updated algorithm to GSE, being the start-
ing point of pathway-centric models of biology [18]. It 
can detect minimal changes to biological pathways and 
calculate pathway activity scores. In this study, we chose 
c2.cp.kegg.v7.4.symbols for the gene set [19], which was 
downloaded from the Molecular Signatures Database 
(MSigDB) database. The limma R package was then used 
to estimate the different biological processes that were 
enriched.

http://xena.ucsc.edu/
http://www.gsea-msigdb.org/gsea/index.jsp),
http://www.gsea-msigdb.org/gsea/index.jsp),
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Signature construction and nomogram formation
To verify m7G-related gene modifications in glioblas-
toma, the gene scoring system, named as the m7G 
score, was generated. After classification according to 
the expression levels of m7G-related genes, the differ-
entially expressed genes (DEGs) of each group were 
found. Least absolute shrinkage and selection operator 
(LASSO) regression was cited to determine the optimal 
number of genes for the stability of the signature. Uni-
variate Cox regression analysis was conducted to esti-
mate the weight of each gene in the signature. The risk 
score formula is as follows:

where Exp is the gene expression level and Coef is the 
weight coefficient of each gene.

Application of single‑sample gene‑set enrichment analysis 
(ssGSEA) in the tumor microenvironment (TME)
ssGSEA scoring was used to quantify the relative cell 
infiltration with respect to the TME in the glioblastoma 
patient cohort. A higher score indicates a greater abun-
dance of cell infiltration. Specifically, the ESTIMATE 
score is positively related to the immune score and the 
stromal score, and the sum of the Estimation of STro-
mal and Immune cells in MAlignant Tumours using 
Expression data (ESTIMATE) score and tumor score 
is unified. High tumor purity indicates the presence of 
more tumor cells and less immune and stromal cells 
within the TME [20].

Dimensionality reduction of data
Abstract data and ambiguous display methods can 
impede data interpretation and comprehension. Thus, 
we are committed to attempting various ways of exhibi-
tion of samples. Among the emerging algorithms, the 
dimensionality reduction method attracted our atten-
tion. We used decision curve analysis (DCA) and prin-
cipal component analysis (PCA) to better display the 
significance of the analysis

Comparison of different signatures
In order to further test the practicability of our new sig-
nature, we compared it with four other GBM signatures 
published in recent three years [21–24], and the results 
were displayed by C-index and Root Mean Square 
(RMS) value.

Riskcore =

N

i=1

Coef i·Expi

Cell culture and generation of lentiviral‑transfected cell 
lines
The human glioma cell lines (LN18 and T98G) were 
obtained from the Cell Bank of Shanghai Institutes 
of Biological Sciences, Chinese Academy of Sciences 
(Shanghai, China). The LN18 and T98G cells were cul-
tured in RPMI 1640 medium (Gibco, CA, USA) with 
10% fetal bovine serum (FBS, Gibco, USA) and 1% pen-
icillin-streptomycin solution (Gibco, CA, USA) at 37 °C 
in a humidified incubator containing 5% CO2. All of the 
cell lines tested negative for mycoplasma using a Myco-
plasma Detection kit (Lonza). For generation of the 
inducible POLD3 knockdown cell lines was achieved 
using a pool of siRNA duplexe (lentiviral inducible 
human siRNA) using the following human PLOD3-spe-
cific siRNAs, synthesized by Genolution: #siRNA1, 5′- 
GGU UAA AGA AGG AAA UGG AUU − 3′; #siRNA2, 
5′- GGA AGU ACA AGG AUG AUG AUG ACG ACG 
A - 3′. The siRNA duplexes were transfected into cells 
using Lipofectamine® RNAiMAX Reagent according to 
the manufacturer’s protocols.

Western blot
Human gliomaLN18 and T98G cells (1 × 105) were 
seeded in 6-well plates. Western blot analyzes were 
performed as described previously [25]. Briefly, after 
24 h, cells were treated for indicated times with DMSO 
(vehicle) or FHP01 or XAV939 (Merck). After trans-
fected, cells were washed with cold PBS and total pro-
tein extracts obtained by adding RIPA Lysis buffer. 
After mechanicals detachment with cell scrapers, total 
lysates were collected in tubes, vortexed, and incubated 
for 15 min. For Western blot analysis, 10 μg of proteins 
derived from total lysates was loaded on 8% polyacryla-
mide gels with 1× of Laemmli buffer and resolved by 
SDS-PAGE, transferred to Immobilon-P PVDF mem-
brane (Millipore, IPVH00010), probed with PLOD3 
antibody (Themo Fisher, Product #PA5–106279) and 
GAPDH monoclonal antibody (Themo Fisher, Product 
#AM4300).

Cell proliferation assay
The stably transfected LN18 and T98G cells were 
divided into negative control and siRNA1, siRNA2 trans-
fected groups and seeded onto a 96-well plate at a den-
sity of 5 × 104 cells/ml. Next, the Cell Counting Kit-8 
(CCK-8 Kit; Dojindo, Japan), based on the manufac-
turer’s instructions, was added to determine the prolif-
erative capacity of cells. Optical density (OD) values were 
obtained at 450 nm and was measured at 1, 2, 3, 4 and 
5 days after seeding using an automatic microplate reader 
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(TEAN, Swiss). Three replicate analyses were performed 
for each sample.

Transwell assay
A transwell cell migration assay was used to test the abil-
ity of cells to metastasize. The cell density of different 
groups was adjusted to 1 × 105 cells/ml, and 100 μl cell 
suspension of different groups were added to the upper 
chamber with or without Matrigel (Corning, USA). The 
medium containing 20% FBS was added in the lower 
24-well plate chamber. After 24 h, the bottom LN18 
and T98G cells were treated with 4% polyoxymethyl-
ene for 15 min, deionized water, and 0.1% crystal violet 
for 30 min. Finally, the LN18 and T98G cells migrating 
to the lower surface of transwell chamber were counted 
using a microscope in six random fields utilizing a 200x 
microscope.

Statistical analysis
Chi-square or Fisher’s exact tests were used to compare 
categorical variables. Two groups of continuous vari-
ables were compared using a t test, while three or more 
groups used one-way ANOVA and Kruskal-Wallis tests. 
Prognostic analysis utilized the survival R package and 
Kaplan-Meier method to examine the difference. In the 
methods mentioned above, P < 0.05 indicated statistical 
significance. A receiver operating characteristic (ROC) 
curve was employed to validate the effectiveness of pre-
diction. An area under curve (AUC) > 0.7 was considered 
prominent. R (version 4.1.2) and R Bioconductor package 
were the foundation of the analysis.

Results
Variation of m7G‑related genes in glioblastoma
A total of 46 m7G-related genes were obtained from the 
GSEA dataset (Table S1). Gene mutations in somatic cells 
are displayed in Fig. 1A. Overall, 27 of 390 samples expe-
rienced mutations with an incidence of 6.92%. From the 
CNV data from TCGA cohort, the mutations of m7G-
related genes in glioblastoma were displayed in detail 
(Fig. 1B). It turned out that the main alteration was domi-
nated by the deletion of copy number. The relationship 
between gene position on the chromosome and CNV 
mutation was visualized through a cycle graph (Fig. 1C). 
Furthermore, we examined the expression levels of each 

m7G-related gene in glioblastoma and normal samples. 
The results illustrate that all m7G-related genes are dis-
tinctly expressed in normal tissues and tumors with sig-
nificant differences. Interestingly, all m7G-related genes 
other than NUDT3, EIF4E1B, and EIF4E3 were more 
highly expressed in normal samples compared with 
tumors (Fig.  1D). The prognostic analysis of each gene 
was also conducted, showing highly significant differ-
ent survival rates according to gene expression (Fig. S2). 
Consistent with the impact of genes on survival, the 
genes were defined as risk factors, whose expression lev-
els were negatively correlated with survival. Favorable 
factors were genes with a positive relationship between 
expression levels and survival. The expression correlation 
network of m7G-related genes is depicted in Fig. 1E. The 
results represented above reveal the comprehensive land-
scape of m7G-related genes and glioblastoma.

Clustering by m7G expression level
With the help of the sva R package, data from TCGA, 
CGGA, and GSE13041 were merged to form a new 
sequence. When k = 2, the best clustering effect was 
obtained (Fig. 1F). Then, the new sequence of patients 
was divided into group A and B according to the 
expression levels of m7G-related genes (Fig.  1G). The 
PCA dimensionality reduction method validated the 
effectiveness of the grouping (Fig.  1H). The survival 
status is clearly significantly different between group 
A and group B (Fig.  1I). The relationship between the 
grouping, data source, and clinical manifestation is 
depicted in Fig. 2A. GSVA pathway enrichment analy-
sis according to grouping shows that pathways in group 
A are downregulated, while upregulated in group B 
(Fig.  2B). The allocation is also significantly related to 
immune cells, implying an interaction between m7G 
and immune-related processes (Fig.  2C). To examine 
the genome wide changes between the two groups, 
1253 genes with a prominent expression difference 
were listed (Table S2). Notably, the different genes are 
related to brain disease in accordance with disease 
ontology analysis (Fig.  2D and Table S3). Gene ontol-
ogy (GO) enrichment analysis indicates a negative cor-
relation between genes obtained above and synapse 
organization, and a positive correlation of leukocyte-
mediated immunity and myeloid leukocyte activation 

(See figure on next page.)
Fig. 1  Variation of m7G related genes in glioblastoma. A CNV of m7G related genes in somatic cells. The mutation frequency is listed on the right. 
B Copy number of each m7G related gene in detail. GAIN infers to amplification and LOSS indicate deletion. C Gene location on chromosome 
with mutation information. Blue dots are identical to deletion and red dots are amplification. D Expression level of m7G related genes in normal 
and Glioblastoma samples. E Expression modification of m7G related genes and their roles in regulation. F Cumulative distribution function curve 
proves the most effect way of clustering. G Grouping based on the expression of m7G related genes. Group 1 indicate group A and group 2 means 
group B. H Group A and B are separated, proving the significance of grouping. I Survival analysis between group A and B. P < 0.05 is witnessed as 
significant
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Fig. 1  (See legend on previous page.)
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(Fig.  2E and Table S4). Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis shows an 
accumulation of genes in synapse-related pathways, 
such as the dopaminergic synapse and synaptic vesi-
cle cycle, and tumorigenesis, such as transcriptional 
misregulation in cancer and glioma (Fig.  2F and Table 
S5). These results suggest that m7G participates in the 
development of glioblastoma through synapse-related 
pathways.

Consistent with the DEGs, patients were grouped 
into three portions with the best effect, demonstrated 
by the NMF algorithm (Fig.  3A, B). The survival time 
and expression levels of m7G-related genes are remark-
ably different among these groups, demonstrating the 
conspicuous diversity and effectiveness of the division 
(Fig. 3C, D). The different gene expression levels of each 
patient and clinical features were distributed by group 
(Fig. 3E). Most of the genes had opposite expression pat-
terns between groups C2 and C3, while group C1 showed 
random expression patterns.

Foundation of the m7G score signature
To further investigate the predictive value of these genes, we 
aimed to establish a prognostic signature for analog com-
putation. First, by merging the expression levels of the dif-
ferent genes and survival information, 53 prognosis-related 
differential genes were identified through univariate Cox 
regression with hazard ratio (HR) < 0.6 and HR > 1.6 as criti-
cal values (Table S6). Then, the merged group of patients 
was separated to the training group (n = 330) and test 
group (n = 329) with the assistance of the caret R pack-
age. Next, using the data from the training group, four 
genes (TMOD2, CACNG2, PLOD3 and TMSB10) were 
selected to form the signature. The risk score calculation for-
mula is as follows: risk score = (− 0.3206 × TMOD2 expres-
sion) + (− 0.2556 × CACNG2 expression) + (0.3019 × PLOD3 
expression) + (0.2177 × TMSB10 expression) (Fig.  4A). 
Patients in the training group were marked as high risk or low 
risk relative to the median risk score value (1.1168). Patients 
in the test group and the entire samples were also considered 
as high- or low- risk group using the median risk score. The 
modeling process is displayed in Fig. 4B.

After calculating the risk score of each patient, groups 
A and B have notably different risk scores, while the dif-
ferences among C1, C2, and C3 are not that prominent 
(Fig.  4C, D). The low and high risk score groups have 

remarkably different m7G-related gene expression lev-
els (Fig.  4E). Univariate Cox regression indicated that 
age and risk score are relevant to prognosis (Fig.  4F). 
Multivariate Cox regression further confirmed that 
these three elements are independent prognostic fac-
tors (Fig.  4G). The concordance index comparison of 
each element illustrates that our signature has the best 
predictive accuracy compared with age and gender 
(Fig. 4H). These results initially verify the accuracy and 
feasibility of the signature.

Validate of the signature at the clinical level
To further identify the applicability of the signature in 
clinical characteristics, we tested and verified our signa-
ture using clinical indexes. First, we performed survival 
analysis between the high and low risk score groups with 
respect to gender, age, isocitrate dehydrogenase (IDH) 
status, RPS type, race, and tumor status using all patient 
data. The results confirm that patients with different gen-
der, age, IDH status, and RPS type have varied survival 
times, while race and tumor status do not influence sur-
vival (Fig. S2). Next, in the training group, the survival 
differences between the high and low risk score groups 
are significant (Fig.  5A). Additionally, patients with low 
risk scores are clearly more likely to survive and have 
higher expression levels of TMOD2 and CACNG2, but 
lower expression levels of PLOD3 and TMSB10 (Fig. 5B). 
These results are consistent with the former verification 
and risk score algorithm. The ROC curve demonstrated 
the predictive ability (Fig. 5C) of this approach. The same 
analysis was conducted in the test group (Fig. 5D-F) and 
the whole dataset (Fig.  5G-I), and the results were con-
sistent with those of the training group.

After validating the m7G signature, another forecast 
pattern reconciling the risk score and clinical features, 
such as age, was generated. The nomogram vividly dis-
plays the weight of each factor and prognostic indication 
of the different scores (Fig.  6A). The calibration curve 
indicates the unity of the observed and predicted 1-, 
3-, and 5-year survival rates (Fig. 6B). According to 659 
GBM samples, we divided the new risk value of the Nom-
ogram into high and low groups, as is shown in Fig. 6C. 
Compared with the low-risk group (n = 329), the OS of 
the high-risk group (n = 330) was significantly lower, in 
which HR = 3.07 (2.54–3.70), p < 0.001. The ROC curve 
of 1-year prediction shows that the AUC of the risk 

Fig. 2  Conclusion and enrichment analysis of DEGs. A Heat map merging clinical information, m7G related gene expression and m7G cluster 
group. B Gene set variation analysis (GSVA) enrichment analysis of biological pathway between m7G cluster A and B. C Different content of immune 
cells in different group displayed respectively. D Disease Ontology analysis aiming at different expression genes (DEGs) of m7G cluster. E, F Gene 
Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the basis of DEGs mentioned above

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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signature, nomogram model, and age are all > 0.6, rep-
resenting the effectiveness of prediction (Fig. 6D). Using 
the DCA dimension reduction method, the predictive 
efficiency is well exhibited (Fig.  6E). The same analy-
sis was performed to analyze the 3-year (Fig. 6F, G) and 
5-year (Fig.  6H, I) prediction results. All of the results 
described above show the effectiveness of the nomogram 
model.

Broad relevance to immune cells, TME, tumor mutational 
burden (TMB), and stem cells
From the former analysis, we became interested in the 
relationship between m7G and the TME. The heat map 
displays that group C3 has higher stromal scores and 
immune scores, indicating that group C3 has an abun-
dance of stromal and immune cells. There are relatively 
fewer tumor cells present, thus resulting in lower tumor 
purity scores (Fig. 7A). The definite value is demonstrated 
in Fig. 7B. Furthermore, we explored the intersection of 
immune cells. The correlations between the genes of the 
signature and immune cells were analyzed using the cib-
ersort algorithm and is displayed in a heat map (Fig. 7C). 
The relevance of the risk score and immune cells via dif-
ferent calculation methods is exhibited in Fig.  7D. The 
risk score is positively related to immune checkpoint 
inhibitor genes, most notable of which are PDCD1 (PD1) 
and CD274 (PD-L1) (Fig. 7E).

We also investigated the relationship between the 
tumor mutational burden (TMB) and risk score. The 
results indicate that the low risk score group has lower 
mutation percentages in many genes, especially TP53, 
TTN, and NF1, with 5, 11, and 8% respective decreases 
compared with the high risk score group (Fig.  8A, B). 
Then, patients were divided into high mutation and low 
mutation groups. Survival analysis suggested a mean-
ingful difference between these two groups (Fig.  8C). 
However, when mutation risks were reconciled with risk 
score, the differences of survival became vague (Fig. 8D). 
In addition, we determined that the stem cell index is 
negatively related to risk score (Fig.  8E), suggesting a 
correlation between glioblastoma stem cells (GSCs) and 
m7G, and implying a research direction for future in-
depth investigation.

Comparison of m7G and other GBM related sinatures
Four signatures about GBM which were published within 
three years were selected to compare to our ones. The 
results were shown in Fig. 9A, B. The C-index value of the 

signature of GBM related genes in the manuscript is the 
highest, which is 0.65, also, the RMS value is the small-
est (HR: 1.554, p < 0.001), representing low dispersion and 
high reliability.

Down‑regulation of PLOD3 restrained proliferation 
and migration abilities of glioma cells
To reveal malignant behaviors of the hub gene modu-
lating m7G modification patterns of glioma, we first 
validation biological behaviors of down-regulated 
expression of hub gene, PLOD3, in LN18 and T98G 
cells (Fig. 10A, S3, S4). According to the results of the 
CCK-8 assay, down-regulated level of PLOD3 expres-
sion significantly restrained the proliferation ability of 
glioma cells compared with control group (Fig.  10B). 
Transwell cell migration assay also indicated that the 
down-regulation level of PLOD3 expression signifi-
cantly inhibited the metastasis ability of glioma cells 
compared with control group (Fig. 10C, D). Overall, the 
down-regulation of PLOD3, the hub gene modulating 
m7G modification patterns, significantly suppressed 
proliferation and migration capacity of glioma cells.

Discussion
Although emerging evidence has demonstrated the 
potential role of m7G in cancer and tumorigenesis, 
research on m7G in cancer is still relatively insufficient. 
In this study, we first displayed the overall mutation pro-
file of m7G-related genes in glioblastoma samples using 
array data from the TCGA, CGGA, and GEO public 
datasets. Notably, a novel detection method called m7G 
Mutational Profiling sequencing (m7G-MaP-seq) has 
already been discovered to detect internal m7G modifi-
cations [26]. Although the methodology is different, the 
purpose of this technique is also to further investigate 
the role of mutation modification patterns in disease pro-
gression. This emphasizes the goal of our research from 
another perspective. The grouping process is guided 
by the NMF algorithm, indicating the most meaning-
ful and distinctive cluster method. The construction of 
a prognostic signature showed remarkable significance 
and can act as an independent prognostic factor with a 
strong predictive effect. The cut off value of the risk score 
was 1.1168, and proved to be significant, as the survival 
analysis, TMB, and TME analyses were all statistically 
different.

Glioblastoma is a focus of many researchers because 
of its high recurrence rate and poor treatment effects. 

(See figure on next page.)
Fig. 3  Gene cluster of glioblastoma patients. A Non-negative matrix factorization (NMF) algorithm confirm that three group is the most suitable 
way of classification. B The effectiveness of different grouping methods according to NMF algorithm. C Survival analysis of different gene clusters 
with p < 0.05 as statistically significant borderline. D Expression of m7G related genes in gene clusters C1, C2 and C3. E Heat map of clinical 
information, clusters and DEGs
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Fig. 3  (See legend on previous page.)
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According to the WHO classification standard updated 
in 2016, which is based on the mutation status of the 
IDH 1 or 2 genes, wild-type genotypes accounted for 
more than 90% of cases [27]. This typing method has 
strong prognostic significance in this disease. For treat-
ment methods, Han [28] summarized new molecular 
therapies that target mutant IDH, while therapies for 
wild-type genotypes need additional research. m7G has 

recently become a research hotspot, with many research-
ers becoming particularly interested in its role in tumori-
genesis. m7G is a form of RNA methylation, in addition 
to N6-methyladenosine (m6A), 2-O-dimethyladenosine 
(m6Am), N1-methyladenosine (m1A), and 5-methylcyto-
sine (m5C) [29]. Numerous studies have confirmed that 
m7G cap is a unique molecular module that can recruit 
cellular proteins and mediates cap-related biological 

Fig. 4  Construction of signature and statistically validation. A Column chart represents the weight of genes in the signature. B Sankey diagram to 
better state the modeling progress. C, D Phenotypic relationship between cluster and risk score. E Relationship of m7G related genes in high and 
low risk score group. F, G Forest maps illustrate uni and multi variant cox regression analysis. HR > 1 demonstrates that the element is risk factor. H 
C-index value estimates the probability that the predicted results are consistent with the actually observed results. In this diagram, our signature has 
the best performance
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functions, such as pre-mRNA processing, nuclear out-
put, and cap-dependent protein synthesis [30]. Some 
articles have shown that RNA modifications are involved 
in cancer development and progression, including one 
by Barbieri [31]. However, the specific role of m7G in 
tumorigenesis is remains understudied. Therefore, we 
conducted a detailed analysis on the role of m7G in glio-
blastoma to address this gap in knowledge.

The scoring system composed of a m7G prognostic sig-
nature and grouping boundary value proved to be effective 
in many aspects. Tmod2 regulates the stability of F-actin 
and dendrite developing during dendrization and synap-
tic formation. These findings provide new insights into 
the actin regulatory mechanisms of neuronal develop-
ment, revealing potential pathways that are disrupted in 
many neurological disorders [32]. CACNG2 can affect the 

Fig. 5  Signature consolidation through clinical information. A Survival analysis of high and low risk score group in train session. B Risk curve, 
survival status and gene expression of each patient in train session. C Receiver operating characteristic (ROC) curve in order to testify the prediction 
ability. Area under curve (AUC) > 0.7 is considered as ideal state. D-F Same analysis in test session. G-I Same analysis utilizing all patients’ information
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susceptibility to postoperative chronic pain [33] or chronic 
pain caused by nerve injury [34]. Existing research shows 
that elevated expression levels of PLOD3 can acceler-
ate tumor progression and indicate poor prognosis [35], 
which is consistent with our signature where the weight 
of PLOD3 was positive. Although the role of TMSB10 in 
glioblastoma has not been studied, existing publications 
have shown that TMSB10, as a cancer-promoting gene, 
can promote cell invasion and cancer progression. This 
has been demonstrated in gastric cancer [36], renal clear 

cell carcinoma [37], and lung cancer [38]. The abovemen-
tioned results support the complex relationship between 
these fours genes and cancer, which is quantified by the 
risk score calculation formula in glioblastoma. Our cor-
relation analysis of immunity lays a foundation for the 
exploration of immunotherapy in glioblastoma. Subse-
quent analysis also verified the relationship between m7G 
and the TME and TMB. Glioblastoma shows significant 
cellular heterogeneity, among which stem-like GSCs was 
the most significant [39]. There is increasing evidence that 

Fig. 6  Establishment of nomogram and its forecast performance. A A putative displaying pattern of influence factors and weight of clinical model. 
B Calibration curves of nomogram to ascertain the prediction. C Overall survival of Nomogram model. D Receiver operating characteristic (ROC) 
curve shows the 1-year forecast probability through m7G score signature, nomogram, age and gender separately in detail. E Decision curve analysis 
(DCA) dimensionality reduction method to illustrate the accuracy of forecast. F, G Same analysis in 3-years prediction. H, I Same analysis in 5-years 
prediction

(See figure on next page.)
Fig. 7  The relationship of signature and TME. A Single-sample gene-set enrichment analysis (ssGSEA) measured tumor miccroenvironment (TME) 
score and content of immune cells in each sample. B TME score in high and low immune group displayed comparatively. C Relevance of genes 
and immune cells using cibersort algorithm. D The relationship of immune cells and high and low risk score through 7 different algorithms. E The 
expression relationship of risk score and immune checkpoint inhibitor (ICI)
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Fig. 7  (See legend on previous page.)
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GSCs play an important role in tumor growth and treat-
ment responses [40]. Therefore, we studied the correlation 
between glioblastoma and stem cells.

Based on the public database, four novel genes were 
discovered that are likely to be related to m7G. They 
are likely to affect the development and prognosis of 
GBM through corresponding pathways. We selected 
PLOD3 with the largest risk coefficient for experimen-
tal verification. As we guessed, the down-regulation 

of PLOD3 significantly inhibited the proliferation 
and migration of glioma cells. Our research strongly 
addresses the current gap in the m7G and glioblastoma 
research fields, utilizes a macroanalysis of the phe-
notypes of m7G-related genes in glioblastoma, estab-
lishes a prognosis evaluation system, and quantifies 
the impact of m7G on glioblastoma at the micro level. 
Overall, our work lays a solid foundation for future 
research.

Fig. 8  The influence of risk score clustering on TMB. A, B TMB in low and high risk score group. C Survival forecast analysis compared high-TMB 
group with low-TMB group. D Merging comparison of risk score group and TMB group. (E) Relevance of steam cell index and risk score of the 
signature
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Fig. 9  Signature comparison. A Comparison of the C-index value between m7G and four individual signatures. B Root Mean Square (RMS) values 
among five signatures

Fig. 10  Experimental verification of PLOD3. A Biological behaviors of down-regulated expression of PLOD3 in LN18 and T98G cells. B Results of the 
CCK-8 assay of the influence of the PLOD3 expression on glioma cells. C, D Outcomes of the Transwell cell migration assay of PLOD3
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