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Abstract 

Background: Associations of High-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, 
total cholesterol (CHL), and triglyceride (TRG) concentrations with risk of biliary tract cancer (BtC) were conflict-
ing in observational studies. We aim to investigate the causal link between circulating lipids and BtC using genetic 
information.

Methods: Single nucleotide polymorphisms of the four circulating lipids (n = 34,421) and BtC (418 cases and 159,201 
controls) were retrieved from two independent GWAS studies performed in East Asian populations. Two-sample 
univariate and multivariate Mendelian Randomization (MR) analyses were conducted to determine the causal link 
between circulating lipids and BtC.

Results: No significant horizontal pleiotropy was detected for all circulating lipids according to the MR-PRESSO 
global test (P = 0.458, 0.368, 0.522, and 0.587 for HDL, LDL, CHL, and TRG, respectively). No significant evidence of het-
erogeneity and directional pleiotropy was detected by the Cochran’s Q test and MR-Egger regression. Univariate MR 
estimates from inverse variance weighting method suggested that one standard deviation (1-SD) increase of inverse-
normal transformed HDL (OR = 1.38, 95% CI 0.98–1.94), LDL (OR = 1.46, 95% CI 0.96–2.23), and CHL (OR = 1.34, 95% CI 
0.83–2.16) were not significantly associated with BtC risk. Whereas 1-SD increase of inverse-normal transformed TRG 
showed a significantly negative association with BtC risk (OR = 0.48, 95% CI 0.31–0.74). In multivariate MR analy-
ses including all the four lipid traits, we found that 1-SD increase of LDL and TRG was significantly associated with 
elevated (OR = 1.32, 95% CI 1.04–2.01) and decreased (OR = 0.54, 95% CI 0.42–0.68) risk of BtC, respectively.

Conclusion: Circulating lipids, particularly LDL and TRG, may have roles in the development of BtC. However, the 
results of this study should be replicated in MR with larger GWAS sample sizes for BtC.
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Introduction
Biliary tract cancer (BtC) constitutes approximately 
3% of gastrointestinal malignancies with poor progno-
sis and involves a spectrum of invasive adenocarcino-
mas, including cholangiocarcinoma (cancers arising 
in the intrahepatic, perihilar, or distal biliary tree), and 
gallbladder carcinoma [1, 2]. The incidence of BtC var-
ies across the world: the highest incidence rate was 
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observed in East Asia and Latin America [2, 3]. In devel-
oped countries, BtC was rarely diagnosed in clinical 
practice. The varied BtC incidences in different regions 
were due to different underlying risk factors. Previous 
studies have demonstrated that a set of hepatic con-
ditions including hepatic inflammation, fibrosis, and 
cirrhosis are risk factors for intrahepatic cholangio-
carcinoma [4]. On the other hand, chronic irritation or 
inflammation of the gallbladder and cholelithiasis are 
deemed to be associated with a higher risk of gallbladder 
carcinoma [5–7]. Additionally, hyperlipidemia was also 
reported to associate with BtC development even after 
adjustment for body-mass index (BMI), diabetes, hyper-
tension, and alcohol drinking [8, 9].

Hyperlipidemia is characterized by high serum lev-
els of total cholesterol (CHL), triglycerides (TRG), low-
density lipoprotein cholesterol (LDL), and low level of 
high-density lipoprotein cholesterol (HDL). Previous 
observational studies suggested a role for the circulating 
lipids in biliary carcinogenesis. For example, Andreotti 
et al. reported that participants in the lowest quintile of 
serum HDL level had a 16.8-fold risk of BtC [9]. Another 
case–control study from China also suggested that serum 
levels of lipids were significantly associated with BtC risk 
[10]. However, the findings from observational studies 
might be subject to the inherent defects of this type of 
study design, namely residual confounding and reverse 
causality. So far, there has been no randomized clinical 
trial to assess the effect of statin use on BtC development. 
In this case, Mendelian randomization (MR) analysis 
could serve as a good surrogate. MR leveraging genetic 
data is less susceptible to such biases due to the fact that 
alleles are randomly assigned during meiosis and ger-
mline genetic variants are unaffected by disease process 
[11]. So far, MR analysis has been widely used to infer the 
causality between exposures and outcomes [12–14]. The 
findings of MR studies were of importance not only for 
the discovery of disease biomarkers, but also for the ther-
apeutic and prophylactic strategies of diseases [15]. Nev-
ertheless, the association of circulating lipids with BtC 
risk has not been determined by MR analysis. Herein, 
we conducted a two-sample MR analysis to address this 
need.

Methods
GWAS summary statistics of circulating lipids
We collected the GWAS summary data of circulating 
lipids from the Asian Genetic Epidemiology Network 
(AGEN; https:// blog. nus. edu. sg/ agen/). AGEN is a con-
sortium of genetic epidemiology studies of type 2 dia-
betes and cardiovascular disease related phenotypes 
including HDL, LDL, CHL, and TRG conducted among 
East Asian populations [16]. Plasma lipid levels were 

measured by standard biochemical methods [16]. In the 
GWAS of circulating lipids, 34,421 participants from 
China, Japan, Korea, Philippines, and Singapore were 
included. The participants were genotyped using com-
mercially available Affymetrix or Illumina genome-wide 
genotyping arrays, and the genotype data were then 
imputed to HapMap Project Phase II reference panel. 
Quality control criteria implemented in each population, 
including variant call rate and Hardy–Weinberg equilib-
rium (HWE). The GWAS details have been shown else-
where [16]. Briefly, in GWAS of circulating lipids, age, 
 age2, sex, and other study-specific covariates (e.g., princi-
pal components, sample recruitment sites) were adjusted 
in a linear regression model. The levels of circulating 
lipids (mg/dL) have been normal-inverse transformed in 
the GWAS. A meta-analysis for associations between the 
four lipid traits and ~ 2.4 million variants were then per-
formed by two independent analysts, each using Stouffer 
sample-size weighted fixed effects meta-analysis imple-
mented in METAL.

GWAS summary statistics of biliary tract cancer
To ensure the concordance of ancestry of study partici-
pants, in this study, we retrieved the GWAS summary 
data of BtC from Biobank Japan (BBJ) [17]. BBJ is a pro-
spective genome biobank that collaboratively collected 
DNA and serum samples from 12 medical institutions in 
Japan, managed by the Institute of Medical Science, the 
University of Tokyo. BBJ has recruited approximately 
260,000 participants, mainly of Japanese ancestry. All 
study participants had been diagnosed with one or more 
of 47 target diseases, among which the BtC was identified 
using ICD-10 codes of C22.1 and C23 and ICD-9 codes 
of 155 and 159.3. The BBJ participants were genotyped 
with the Illumina HumanOmniExpressExome BeadChip 
or a combination of the Illumina HumanOmniExpress 
and HumanExome BeadChips [18]. The genotype data 
were then imputed with 1000 Genome Project Phase 3 
version 5 genotype and Japanese whole-genome sequenc-
ing data (n = 1037). Variants with an imputation qual-
ity < 0.7 were excluded, resulting in a total of 13,530,797 
variants analyzed in the GWAS. For BtC, 418 cases and 
159,201 controls that were East Asian ancestry were 
included (https:// pheweb. jp/ pheno/ BtC). A generalized 
linear model that performed in SAIGE (version 0.37) 
was applied to conduct BtC GWAS, where age,  age2, sex, 
age × sex,  age2 × sex, and the top 20 principal compo-
nents were adjusted.

Genetic instrumental variables
We conducted a series of quality control steps to select 
eligible instrumental SNPs of circulating lipids. First, we 
extracted SNPs showing association with lipid levels at 
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the traditional GWAS threshold (P < 5 ×  10–8). Second, 
we performed a clumping process (R2 < 0.01; window 
size = 10,000  kb) based on the linkage disequilibrium 
(LD) estimates from the East Asian samples in 1000 
genomes project. Among those pairs of SNPs that had 
LD estimate above the specified threshold (0.01), we only 
retained the SNP that had the lower P value. Third, SNPs 
with a minor allele frequency < 1% were removed. Next, 
we extracted the statistics (i.e., beta coefficient and stand-
ard error) regarding the above selected SNPs from the 
BtC GWAS summary. If a particular requested SNP was 
absent in the BtC GWAS, we retrieved the data of a SNP 
proxy that had LD estimate R2 > 0.8 with the requested 
SNP. The effects of ambiguous SNPs with inconsistent 
alleles and palindromic SNPs with ambiguous strand 
were either corrected or directly excluded in the sub-
sequent two-sample MR analysis. The methodological 
details of MR analysis were presented elsewhere [19, 20].

Mendelian randomization analysis
The flowchart and schematic representation of MR anal-
ysis is shown in Fig.  1. First, we tested the horizontal 
pleiotropy using MR-PRESSO global test and removed 
the outliers (i.e., SNPs with P < 0.05) if the horizontal 

pleiotropy was presented. Second, we tested the between-
SNP heterogeneity using inverse variance weighting 
(IVW) method based on the SNPs that retained after 
pleiotropy correction. The Cochran’s Q statistic was 
used to check for the presence of heterogeneity. In this 
step, we removed the SNPs with P < 1.00 in MR-PRESSO 
analysis if the heterogeneity was significant (P value of 
Cochran’s Q statistic < 0.05). Third, we conducted MR 
analysis using IVW method. We obtained the IVW esti-
mate by meta-analyzing the SNP specific Wald estimates 
using multiplicative random effects. Given the small case 
number in the BtC GWAS, we calculated the statisti-
cal power for MR analysis using mRnd website (https:// 
shiny. cnsge nomics. com/ mRnd/) [21]. We also conducted 
a set of sensitivity analyses using MR-Egger regression, 
weighted median, and weighted mode methods. The 
MR-Egger regression is based on the InSIDE (INstru-
ment Strength Independent of Direct Effect) assump-
tion and consists of three parts: (i) a test for directional 
pleiotropy, (ii) a test for a causal effect, and (iii) an esti-
mate of the causal effect [22]. The weighted median and 
weighted mode methods are more robust than IVW and 
MR-Egger methods if more than 50% of SNPs are inva-
lid instruments [23, 24]. Finally, “leave-one-out” analysis 

Fig. 1 Flow chart (A) and schematic representation (B) of Mendelian randomization analysis in this study

https://shiny.cnsgenomics.com/mRnd/
https://shiny.cnsgenomics.com/mRnd/
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was conducted to detect the influential SNPs. To interro-
gate the presence of reverse causation, we conducted MR 
analyses in which the BtC was set as exposure and lipids 
were set as outcomes. In this analysis, we used a P value 
threshold < 5 ×  10–5 to select the genetic instruments 
due to there was no SNP reached the traditional GWAS 
threshold. A total of 42 variants were obtained after data 
clumping.

Considering the correlations among circulating lipids, 
we also performed a multivariable MR (MVMR) analysis 
including all of the four lipid traits to obtain the causal 
estimates (Fig.  1B). MVMR is an extension of MR that 
allows for the causal effects of multiple exposures on 
an outcome to be estimated [25]. MVMR estimates the 
“direct” causal effects of each exposure included in the 
estimation on the outcome, conditional on the other 
exposures included in the model [26]. MVMR is particu-
larly useful when examining the causal effects of several 
exposures that are correlated with each other. We also 
incorporated BMI into the MVMR to examine the poten-
tial mediation of obesity on association between lipids 
and BtC risk. The summary genetic data of BMI from 
East Asians were retrieved from IEU OpenGAWS pro-
ject (https:// gwas. mrcieu. ac. uk/ datas ets/ bbj-a- 1/). All 
statistical analyses were implemented using TwoSam-
pleMR and MRPRESSO packages in R program (v 3.6.3). 
P value < 0.05 was considered statistically significant.

Results
After the quality control processes, we included 26, 19, 
23, 10 variants in MR analysis for HDL, LDL, CHL, and 
TRG, respectively (Supplementary Tables S1-4). The 
mean F statistics for every instrument-exposure asso-
ciation were greater than 10 in our study (F = 21.2, 13.4, 
18.4, and 10.5 for HDL, LDL, CHL, and TRG, respec-
tively), demonstrating the small possibility of weak 

instrumental variable bias. No significant horizontal plei-
otropy was detected for all circulating lipids according 
to the MR-PRESSO global test (P = 0.458, 0.368, 0.522, 
and 0.587 for HDL, LDL, CHL, and TRG, respectively). 
The results of assessment of heterogeneity and direc-
tional pleiotropy are shown in Table  1. No significant 
evidence of heterogeneity and pleiotropy was detected by 
the Cochran’s Q test and MR-Egger regression, suggest-
ing the variants that included in MR analysis are valid 
instruments.

The estimated effect sizes of the SNPs on both the 
exposures (HDL, LDL, CHL, and TRG) and outcome 
(BtC) are displayed in scatter plots (Fig.  2). The fitted 
lines denoting association between SNP effects on expo-
sure and on outcome, based on different methods, were 
in the same direction, albeit the nuances of slopes. This 
concordance connotes the robustness of our MR esti-
mates. MR estimates from IVW method suggested that 
one standard deviation (1-SD) increase of inverse-normal 
transformed HDL (OR = 1.38, 95% CI 0.98–1.94), LDL 
(OR = 1.46, 95% CI 0.96–2.23), and CHL (OR = 1.34, 95% 
CI 0.83–2.16) were not significantly associated with BtC 
risk (Table 1; Fig. 3). Whereas 1-SD increase of inverse-
normal transformed TRG showed a significantly negative 
association with BtC risk (OR = 0.48, 95% CI 0.31–0.74). 
We have calculated 80% power in our MR studies to show 
an OR of 1.56 for HDL, 1.75 for LDL, 1.59 for CHL, and 
0.74 for TRG respectively. As such, we are underpow-
ered to study effects smaller than these ORs. The IVW-
based MR estimates were further validated in other three 
methods. An exception was found for weighted median 
methods, in which 1-SD increase of inverse-normal 
transformed LDL and CHL levels were significantly 
associated with an increased risk of BtC. We observed 
a non-significant association between 1-SD increase 
of inverse-normal transformed TRG level and BtC risk 

Table 1 Association of circulating lipids with biliary tract cancer risk according to different methods

HDL high density lipoprotein, LDL low density lipoprotein, CHL cholesterol, TRG  triglyceride

HDL LDL CHL TRG 

Inverse variance weighted
  OR (95%CI) 1.38 (0.98, 1.94) 1.46 (0.96, 2.23) 1.34 (0.83, 2.16) 0.48 (0.31, 0.74)

  Q statistics (P value) 24.6 (0.431) 20.6 (0.298) 25.5 (0.274) 5.9 (0.662)

MR-egger
  OR (95%CI) 2.10 (0.99, 4.46) 1.36 (0.70, 2.63) 1.50 (0.50, 4.50) 0.46 (0.19, 1.12)

  Q statistics (P value) 23.3 (0.444) 20.5 (0.247) 25.5 (0.228) 5.9 (0.556)

  Intercept (P value) -0.048 (0.274) 0.009 (0.804) -0.009 (0.842) 0.004 (0.946)

Weighted median
  OR (95%CI) 1.55 (0.94, 2.58) 1.74 (1.02, 2.97) 2.16 (1.15, 4.07) 0.46 (0.27, 0.76)

Weighted mode
  OR (95%CI) 1.73 (0.99, 3.02) 1.75 (0.97, 3.14) 2.51 (0.98, 6.40) 0.48 (0.27, 0.83)

https://gwas.mrcieu.ac.uk/datasets/bbj-a-1/
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according to MR-Egger method, although this associa-
tion was significant according to other three methods 
(Table 1; Fig. 3). The forest plots of “leave-one-out” analy-
ses were shown in Supplementary Figs.  1–4. No poten-
tially influential SNP was found for HDL, CHL, and TRG. 
In contrast, we found that the association between 1-SD 
increase of inverse-normal transformed LDL level and 
BtC risk was statistically significant if removing a variant 
(rs10119). No significant association was detected in MR 
analysis when examining the BtC effect on levels of circu-
lating lipids (F = 4.1, 5.2, 3.8, and 3.5 for HDL, LDL, CHL, 

and TRG, respectively; Supplementary Table S5). How-
ever, the results might be subject to weak instrument bias 
in this analysis due to the low F-statistics.

The overlap among genetic instruments of circulating 
lipids was shown in Fig. 4A. We observed that a total of 
11 variants were shared between LDL and CHL, whereas 
for other pairs of lipids, the shared variants were less 
than 5. We conducted a MVMR analysis to further vali-
date the association between genetically predicted levels 
of circulating lipids and BtC risk. MVMR analysis esti-
mated that 1-SD increase of inverse-normal transformed 

Fig. 2 Scatter plots for Mendelian randomization analyses of the causal effect of circulating lipids on biliary tract cancer in initial practice. A, HDL; B, 
LDL; C, cholesterol; D, triglyceride. The slope of each line corresponding to the estimated MR effect per method
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LDL was significantly associated with elevated risk of BtC 
(OR = 1.32, 95% CI 1.04–2.01). On the contrary, 1-SD 
increase of inverse-normal transformed TRG was signifi-
cantly associated with decreased risk of BtC (OR = 0.54, 
95% CI 0.42–0.68) (Fig. 4B). We also performed pairwise 
MVMR analysis between TRG and other three lipids. In 

all of the three models, we found that TRG were con-
sistently associated with a decreased BtC risk (Supple-
mentary Figure S5). Likewise, we observed an inverse 
relationship between TRG level and BtC risk in MVMR 
analysis in which we further incorporated BMI (Supple-
mentary Figure S6).

Fig. 3 The causal effects of circulating lipids on biliary tract cancer from Mendelian randomization analyses based on four methods. Error bars 
denote 95% confidence interval of the odds ratio estimates

Fig. 4 The causal effects of circulating lipids on biliary tract cancer from multivariate Mendelian randomization analyses. A, overlap of genetic 
instruments among the four lipids; B, causal estimates from multivariate Mendelian randomization analysis. Error bars denote 95% confidence 
interval of the odds ratio (OR) estimates
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Discussion
In this study, using several MR methods, we tested for 
a causal relationship between circulating lipid traits and 
BtC risk. Our results suggested that genetically elevated 
TRG concentration was associated with a decreased risk 
of BtC. Multivariable MR analysis revealed that geneti-
cally elevated LDL level was associated with an increased 
risk of BtC, although this result did not detect in con-
ventional MR analysis. Our findings were deemed to 
be robust due to no pleiotropy and heterogeneity was 
detected and were highly consistent with that of sensitiv-
ity analyses.

Biliary tract system plays important roles in many met-
abolic processes that are critical for the maintenance of 
body homeostasis [27, 28]. For example, lipid metabo-
lism was reported to closely associate with biliary tract 
(including gallbladder) [29]. Therefore, it is reasonable to 
assume that damage in this organ may have a reflection 
in blood lipids. In other word, alterations of circulating 
lipid levels may suggest an injury in biliary tract. Indeed, 
a set of epidemiological studies have reported associa-
tion of circulating lipid levels with biliary diseases [9, 30, 
31]. However, the reported associations were not con-
sistent between studies. For instance, results from pre-
vious studies of total CHL and LDL with gallstones are 
conflicting, with some studies reporting inverse, positive, 
and null associations [31–35]. Andreotti et  al. reported 
that participants with the highest quintile of triglycerides 
(≥ 160  mg/dl) had a 40%, 90%, and 4.8-fold increase in 
the risk of biliary stones, gallbladder cancer, and bile duct 
cancer, respectively, compared to the reference group 
(third quintile: 90–124  mg/dl) [9]. By contrast, Borena 
et  al. found that there was no significant association 
between serum triglyceride level and gallbladder can-
cer [36]. The inconsistences might be ascribed to several 
reasons: (i) different study design and study participants; 
(ii) lipid measurement methods; (iii) lipid levels varied 
with times even in the same person; and (iv) inadequate 
adjustment for confounders. Given the inherent limita-
tions of observational study, results from studies using 
genetic information might be an optimal complement 
for observational studies. For instance, Andreotti et  al. 
reported that genetic variants in the lipid metabolism 
pathway (e.g., T allele of LDLR rs1003723) contribute to 
the risk of biliary tract stones and cancers, particularly 
of the bile duct [37]. Xu et al. reported that variants in a 
lipid metabolism-related gene (ABCG8 rs11887534) was 
also associated with an increased risk of BtC [8]. How-
ever, these studies conventionally investigated effect of 
a single genetic variant on BtC risk alone. The additive 
effect of other variants was not taken into account.

In our study, we retrieved the GWAS summary statis-
tics regarding blood lipid traits and BtC from East Asian 

populations owing to BtC were more commonly diag-
nosed in populations in East Asian countries and there 
was lack of large scale GWAS of BtC in other popula-
tions [2]. Herein, we tested associations between a total 
of four lipids and BtC risk leveraging MR analyses with a 
set of genetic variants as instruments. Paradoxical to the 
observational studies that reported high levels of serum 
triglycerides and low level of HDL were associated with 
risk of BtC [9, 38], we observed an inverse association 
between genetically determined level of triglyceride and 
BtC risk, whereas no significant association between 
HDL level and BtC risk was detected. Moreover, multi-
variable MR results suggested that genetically high LDL 
level was associated with an increased risk of BtC. This 
association, to our knowledge, was rarely reported in 
previous studies. In a cross-sectional study, the authors 
reported a putatively “U-shaped” association between 
LDL level and BtC risk [9].

Although some of our results are seemed to be con-
tradictory with the generally accepted association, these 
findings were further validated in sensitivity analyses that 
with different assumptions. The genetic instruments that 
we used in the current study were free of weak instru-
mental variable bias and therefore could serve as strong 
indicators for circulating lipid levels. Furthermore, to 
ensure the robustness of results, we constructed a frame 
work of MR analysis to avoid the influences of heteroge-
neity and pleiotropy. The detected links between lipids 
and BtC risk are clues for future studies, although our 
study lacks ability to provide more explanations regard-
ing the main findings.

The limitations of our study should be noted here. First, 
our results were based on genetic data from East Asian 
populations, which limited the possibility of extrapo-
lation to other populations. Second, the exposure and 
outcome studies in two-sample MR analysis should not 
involve overlapping participants. The participants in BBJ 
and AGEN might to some extent overlapped. However, 
Japanese participants only accounted for approximate 
7% of AGEN population. Third, the genetic data of BtC 
were derived from GWAS with limited number of cancer 
cases, which might introduce bias into GWAS results due 
to unbalanced case–control ratios. Larger GWAS will 
allow for more precision in the estimates of SNPs used 
as instruments in future MR. Fourth, our estimates might 
also subject to the inherent pitfalls of MR analysis such 
as selection bias [39]. Genetic variants which are related 
to specific phenotypes might also related to participation. 
For example, participants with high polygenic risk score 
for the circulating lipids might be more likely to drop-
out in the cohort because they might be more susceptible 
to diseases such as chronic cardiovascular disease than 
those have low genetic risk of lipid traits. Moreover, the 
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MR estimates might be confounded by other unobserved 
environmental factors [40]. For example, in our study, we 
cannot correct the effect of lipid-lowering medicine, and 
the circulating levels of lipids are susceptible to transi-
tory fluctuations due to many reasons. These potential 
factors might bias the GWAS results of circulating lipids. 
Finally, all the results from IVW method were underpow-
ered (< 80%), although we conducted a rigorous quality-
control process. Further investigations with larger sample 
size on associations between circulating lipids and BtC 
risk are needed.

In conclusion, according to both univariate and multi-
variate MR estimates, genetically determined higher tri-
glyceride level is associated with lower risk of BtC. On 
the contrary, genetically elevated LDL concentration is 
associated with higher risk of BtC according to multivari-
ate MR estimate. Our findings suggest that circulating 
lipids may have roles in the development of BtC and have 
potentials to be prediagnostic biomarkers for BtC.
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