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Abstract 

Background: Advanced gastric cancer (AGC) is a disease with poor prognosis due to the current lack of effective 
therapeutic strategies. Immune checkpoint blockade treatments have shown effective responses in patient sub-
groups but biomarkers remain challenging. Traditional classification of gastric cancer (GC) is based on genomic profil-
ing and molecular features. Therefore, it is critical to identify the immune-related subtypes and predictive markers by 
immuno-genomic profiling.

Methods: Single-sample gene-set enrichment analysis (ssGSEA) and ESTIMATE algorithm were used to identify the 
immue-related subtypes of AGC in two independent GEO datasets. Weighted gene co-expression network analysis 
(WGCNA) and Molecular Complex Detection (MCODE) algorithm were applied to identify hub-network of immune-
related subtypes. Hub genes were confirmed by prognostic data of KMplotter and GEO datasets. The value of hub-
gene in predicting immunotherapeutic response was analyzed by IMvigor210 datasets. MTT assay, Transwell migra-
tion assay and Western blotting were performed to confirm the cellular function of hub gene in vitro.

Results: Three immune-related subtypes (Immunity_H, Immunity_M and Immunity_L) of AGC were identified in 
two independent GEO datasets. Compared to Immunity_L, the Immuntiy_H subtype showed higher immune cell 
infiltration and immune activities with favorable prognosis. A weighted gene co-expression network was constructed 
based on GSE62254 dataset and identified one gene module which was significantly correlated with the Immunity_H 
subtype. A Hub-network which represented high immune activities was extracted based on topological features and 
Molecular Complex Detection (MCODE) algorithm. Furthermore, ADAM like decysin 1 (ADAMDEC1) was identified as 
a seed gene among hub-network genes which is highly associated with favorable prognosis in both GSE62254 and 
external validation datasets. In addition, high expression of ADAMDEC1 correlated with immunotherapeutic response 
in IMvigor210 datasets. In vitro, ADAMDEC1 was confirmed as a potential protein in regulating proliferation and 
migration of gastric cancer cell. Deficiency of ADAMDEC1 of gastric cancer cell also associated with high expression of 
PD-L1 and Jurkat T cell apoptosis.

Conclusions: We identified immune-related subtypes and key tumor microenvironment marker in AGC which might 
facilitate the development of novel immune therapeutic targets.
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Background
Gastric cancer (GC) is the third leading cause of can-
cer death and the fifth most common malignancy 
worldwide [1]. Due to the lack of effective screening 
to detect early-stage GC, most patients are diagnosed 
with AGC which has poor prognosis [2]. Although 
improved therapeutic strategies have been developed, 
clinical outcomes remain unsatisfactory. Recently, 
immune checkpoint blockades such as anti-pro-
grammed cell-death protein 1(PD1) or programmed 
cell-death 1 ligand 1 (PD-L1) drugs have been widely 
used and achieved efficacy in different cancer types [3, 
4]. Anti-PD-1/PD-L1 therapy has also been shown to 
be effective and is approved for third-line treatment in 
metastatic GC [5]. However, only some subsets of GC 
patients benefit from immunotherapy. PD-L1 expres-
sion, Epstein–Barr infection and microsatellite status 
have been reported to be associated with immunother-
apeutic responsiveness [6, 7]. However, the dominant 
population and prognostic marker of immunotherapies 
are currently unknown.

The tumor immune microenvironment (TME) 
consisting of immune and stromal cells has been 
proven to be associated with clinical outcomes to 
immunotherapy [8, 9]. In GC, the immune micro-
environment has a complex relationship with cancer 
occurrence and progression, which could be regu-
lated by Tumor-infiltrating immune cells (TIICs) 
[10, 11]. An increasing number of studies have indi-
cated that TIICs play important roles as prognostic 
markers and are potential therapeutic targets [12, 
13]. The Estimation of Stromal and Immune Cells 
in Malignant Tumors using Expression data (ESTI-
MATE) algorithm which is based on single sample 
gene set enrichment analysis, evaluated the immune 
and stromal infiltration level in tumors by calculat-
ing immune, tumor purity and stromal scores [14]. 
Recently, the ESTIMATE algorithm has been wildly 
used to investigate the TME in acute myeloid leu-
kemia, colorectal cancer and breast cancer [15–17]. 
However, the roles of TIICs in AGC and hub-genes 
correlations with the TME remain to be fully 
understood.

In this study, AGC was classified into three distinct 
subtypes by immuno-genomic profiling and confirmed 
the reliability of classification model in two independ-
ent Gene Expression Omnibus (GEO) datasets. We 
further identified the hub genes and critical pathways 
in different immune subtypes of AGC. The results may 
offer novel evidence in predicting prognosis and immu-
notherapeutic targets of AGC.

Methods
Data collection
Microarray data of GSE62254 and GSE29272 were 
obtained from the Gene Expression Omnibus (www. ncbi. 
nlm. nih. gov/ geo/). The data of GSE62254 was based on 
GPL570 platforms (Affymetrix Human Genome U133 
Plus 2.0 Array, 300 GC patients). The GSE29272 data 
was based on GPL96 platforms which included 268 GC 
patients. Two hundred ninety-five samples of GSE62254 
and 126 samples of GSE29272 with both gene expression 
data and clinical parameters of advanced gastric cancer 
were included. Kaplan Meier-plotter (KMplotter) (http:// 
www. kmplot. com/) was used for external validation.

Data clustering and evaluation of immune and stromal 
scores
Single-sample gene-set enrichment analysis (ssGSEA) 
was used to evaluate the enrichment levels of the 29 
immune signatures and hierarchical clustering was 
performed according to the ssGSEA score [18, 19]. 
ESTIMATE algorithm which integrated in “estimate” 
R package in R version 3.6.2. was applied to measure 
immune microenvironment infiltration based on gene 
expression data [14].

Proportions of immune cell subsets between GC immune 
subtypes
CIBERSORT [20] was used to estimate the proportions 
of 22 immune cell subsets and the relative expression of 
22 immune cell subsets in each sample was determined. 
P < 0.05 was set as criteria for subsequent analysis.

Gene‑set enrichment analysis
Gene-set enrichment analysis of each GEO datasets was 
applied to identify the Gene Ontology (GO) terms and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways participating in high immunity subgroup of 
advanced gastric cancer. FDR < 0.05 was set as criteria to 
select significance pathways.

Identification of immune subtype‑specific genes 
in advanced gastric cancer
Weighted Gene Co-expression Network Analysis 
(WGCNA) was used to construct gene co-expression 
network and extract the gene information in each mod-
ule [21]. The correlation between module eigengenes and 
immune subtypes was evaluated by Pearson’s correlation 
tests. To explore the potential biological process of genes 
within the immune-related modules, GO and KEGG 
enrichment analysis were performed and visualized by 
clusterprofiler package in R project [22].

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.kmplot.com/
http://www.kmplot.com/


Page 3 of 13Zhang et al. BMC Cancer         (2021) 21:1324  

Protein‑protein interaction network construction
Protein-protein interaction network (PPI) was con-
structed by Cytoscape software (v3.6.1) [23]. The hub 
network was selected by topological features. MCODE 
(Molecular Complex Detection) algorithm was used to 
further identify the hub genes in the PPI network [24].

Genomic and clinical data with immunotherapy
The value of ADAMDEC1 in predicting immunothera-
peutic response was analyzed by IMvigor210 data-
sets. The expression profile and clinical parameter of 
IMvigor210 dataset that is available under the Creative 
Commons 3.0 license was downloaded from http:// resea 
rch- pub. gene. com/ IMvig or210 CoreB iolog ies. A total of 
298 urothelial cancer samples with both gene expression 
and immune response parameter were selected to further 
analysis.

Survival analysis
Survival curves were plotted by the Kaplan-Meier (KM) 
method and compared with the log-rank test. The expres-
sion level of hub-genes was separated to high and low 
expression according to the median value. P < 0.05 con-
sidered as a threshold to identify the significance genes 
associated with prognosis of advanced gastric cancer.

Experimental validation
Cell culture
MGC803 gastric cancer cell line was obtained from the 
Type Culture Collection of the Chinese Academy of Sci-
ences (Shanghai, China). Jurkat T cells were obtained 
from the American Type Culture Collection (ATCC, 
Rockville, MD, USA). All cells were grown in RPMI-1640 

Table 1 Characteristics of GSE62254 and GSE29272 cohort

GSE62254 GSE29272

Characteristic Number of 
Patients (%)

Characteristic Number of 
Patients (%)

Age (years) Age (years)
Median (Range) 63 (24–86) Median (Range) 59 (23–71)

Gender Gender
Male 195 (66.1%) Male 99 (78.6%)

Female 100 (33.9%) Female 27 (21.4%)

T stage TNMstage
T2 184 (62.4%) I 5 (4.0%)

T3 90 (30.5%) II 5 (4.0%)

T4 21 (7.1%) III 108 (85.7%)

N stage IV 8 (6.3%)

N0 38 (12.9%)

N1 128 (43.4%)

N2 79 (26.8%)

N3 50 (16.9%)

M stage
M0 268 (90.8%)

M1 27 (9.2%)

TNMstage
I 30 (10.2%)

II 94 (31.9%)

III 95 (32.2%)

IV 76 (25.8%)

Lauren
Intestinal 144 (48.8%)

Diffuse 134 (45.4%)

Mixed 17 (5.8%)

Table 2 Clinical Characteristics of Immune Subtypes

GSE62254 GSE29272

Immunity L Immunity M Immunity H Immunity L Immunity M Immunity H

No. % No. % No. % No. % No. % No. %

Age Age
< 60 10 9.4% 79 74.5% 17 16.0% < 60 11 16.4% 41 61.2% 15 22.4%

≥60 22 11.6% 140 74.1% 27 14.3% ≥60 7 11.9% 48 81.4% 4 6.8%

Gender Gender
Male 24 12.3% 143 73.3% 28 14.4% Male 14 14.1% 70 70.7% 15 15.2%

Female 8 8.0% 76 76.0% 16 16.0% Female 4 14.8% 19 70.4% 4 14.8%

pStage pStage
I/II 14 11.3% 93 75.0% 17 13.7% I/II 2 20.0% 8 80.0% 0 0.0%

III/IV 18 10.5% 126 73.7% 27 15.8% III/IV 16 13.8% 81 69.8% 19 16.4%

Metastasis
 Yes 16 11.3% 110 77.5% 16 11.3%

 No 16 10.5% 109 71.2% 28 18.3%

http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
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(GibcoBRL, USA) supplemented with 10% fetal bovine 
serum (FBS), penicillin (100 U/mL) and streptomycin 
(100 mg/ mL), in a humid atmosphere containing 5% CO 
2 at 37 °C.

Reagents and antibodies
Anti-ADAMDEC1 antibodies were obtain form Novus 
Biologicals (USA). Antibodies specific to PD-L1 (13684S) 
was from Cell Signaling Technology (Danvers, MA, 
USA). All the other antibodies were purchased from 
Santa Cruz Biotechnology (USA).

Small interfering RNA (siRNA) transfections
The ADAMDEC1 siRNA sequences from Beijing GeneX 
Health technology Co., Ltd. (Beijing, China), were used: 
5′-GCC TGT ACT TTG GCT CAT TGT TCT T-3′. The siR-
NAs were transfected with Lipofectamine 2000 (Invitro-
gen, Carlsbad, CA) per the manufacturer’s instructions.

MTT assay, Transwell migration assay and Western blotting
MTT assay, migration assay and Western blot and were 
performed as described previously [25].

Real‑time PCR analysis
The real-time PCR conditions included initial activation 
at 95 °C for 5 min, followed by 15 s of 45 cycles at 95 °C 
and 60 °C for 1 min (Applied Biosystems® 7500 Real-Time 
PCR Systems, Thermo fisher, IL, USA). Primer sequences 
for PD-L1: Forward (5′-TTT CAA TGT GAC CAG CAC 
-3′), Reverse (5′- GGC ATA ATA AGA TGG CTC -3′); 18S: 
Forward (5′-CCC GGG GAG GTA GTG  ACG AAA AAT-
3′), Reverse (5′-CGC CCG CCC GCT CCC AAG AT-3′).

Cell apoptosis assay
Jurkat T cells (3 ×  105/well) were co-cultured with 
MGC803 cells for 48 h. After that, Jurkat T cells were 
harvested and stained using an Annexin V-fluorescein 
isothiocyanate/propidium iodide apoptosis detection kit 
(BMS500FI-100; Invitrogen; Thermo Fisher Scientific, 
Inc.) and the number of apoptotic T cells was determined 
by FACSCalibur flow cytometry (BD Biosciences, San 
Jose, CA, USA) according to the protocol. The samples 
were selected and analyzed by BD Accuri C6.

Statistical analysis
Data are reported as means ± SD. Student’s t-test or 
one-way ANOVA were applied to evaluate differences 
between or among groups. P < 0.05 was determined sta-
tistically significant. Each experiment was repeated at 
least three times.

Results
Identification of immune subtypes in AGC 
by immuno‑genomic profiling
AGC data were obtained from GSE62254 and GSE29272 
datasets. Samples with both gene expression data and 
clinical parameters were selected for further analy-
sis (Table  1). To quantify the enrichment of immune 
cells and pathways in each GC sample, we analyzed 
29 immune-related gene sets (Table  S1) and calcu-
lated ssGSEA scores. The results of hierarchical clus-
ter showed three clusters that were separated in the 
GSE62254 and GSE29272 datasets (Fig.  1). According 
to the ssGSEA score, clusters were defined as Immunity 
Low (Immunity_L), Immunity Medium (Immunity_M) 

Fig. 1 Clustering of immune-related subtypes of AGC. Three immune-related subtypes of advanced gastric cancer in two independent datasets 
were generated by Hierarchical clustering. Immunity_L, Immunity_M and Immunity_H refers to Immuunity Low, Immunity Medium and Immunity 
High respectively. ImmuneScore, StromalScore and TumorPurity were calculated by ESTIMATE algorithm
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and immunity High (Immunity_H) (Table  2). Using the 
ESTIMATE algorithm, we calculated immune scores and 
tumor purity for all samples. Compared to Immunity_L 
subtype, the immune scores were higher in the 
Immunity_H (Fig. 2A) subgroup and similar trends were 
obtained in stromal score in GSE62254 (Additional file 1: 
Fig. S1A). In contrast, tumor purity scores were lower in 
the Immunity_H subgroup. These results indicated that 
immune cells were highly infiltrative in the Immunity_H 
subgroup and tumor cells were more detected in the 
Immunity_L subgroup.

Association between the HLA genes and immune 
subtypes was further investigated. Interestingly, the 

expression level of HLA genes was notably higher in the 
Immunity_H compared to the Immunity_L (ANOVA 
test, P < 0.05) (Fig.  2B). Furthermore, we evaluated pro-
portions of the 22 TIICs in each sample using CIBER-
SORT plug-in in R package [20]. The fractions of M1 
Macrophages, activated memory CD4 T cells, CD8 
T cells and γδT cells were significantly higher in the 
Immunity_H subtype in both GEO datasets as shown in 
Fig. S1B.

The prognostic values of immune subtype were ana-
lyzed by survival analysis. Compared to the Immunity_L, 
the Immunity_H subtype had a significantly higher 
survival in GSE29272 (log-rank P < 0.001). Although 

Fig. 2 Characteristics of different immune-related subtypes. A The level of immune cell infiltration in different immune subtypes (MannWhitney U 
test). B Comparison of HLA genes expression between different immune subtypes (ANOVA test)
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Fig. 3 Gene set enrichment analysis of immune-related subtypes. A Overall survival of different immune subtypes by Kaplan-Meier analysis 
(log-rank test P = 0.13 in GSE62254; P < 0.001 in GSE29272). B GSEA GO analysis of Immunity_H subtypes in GSE62254. C KEGG enrichment analysis 
of Immunity_H and Immunity_L subtypes in GSE62254. D GSEA GO analysis of Immunity_H subtypes in GSE29272. E KEGG enrichment analysis of 
Immunity_H and Immunity_L subtypes in GSE29272
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there has no statistical significance in GSE62254 (log-
rank P = 0.13), the Immunity_H still showed improved 
survival outcome compared to the Immunity_M and 
Immunity_L subtypes (Fig.  3A). To further confirm the 
prognostic value of Immuntiy_H subtype, we analyzed 
the prognostic difference between Immunity_H and 
Immunity_L subtypes in two independent datasets. As 
show in Fig. S1C, the Immunity_H presents significantly 
better OS compare to Immunity_L both in GSE62254 
(log-rank P = 0.047) and GSE29272(log-rank P < 0.001). 
These findings showed that high immune activity could 
be associated with better clinical outcomes in AGC.

Gene Set Enrichment Analysis (GSEA) of immune subtypes
To explore the potential mechanism participating in high 
immune activity subtype in AGC, a number of GO terms 
and KEGG pathways were identified in Immuntiy_H by 
GSEA. In GSE62254, the MHC class II protein complex, 
the MHC protein complex binding, positive regulation of 
immune response to tumor cells and positive regulation 
of response to tumor cells were the most significantly 
enriched cellular functions (Fig.  3B). CXCR chemokine 
receptor binding, the immunoglobulin complex, the 
immunoglobulin receptor binding, the MHC class II pro-
tein complex and the MHC protein complex were signifi-
cantly enriched in GSE29272 (Fig.  3D). KEGG pathway 
enrichment analysis indicated that immune-associated 
pathways were highly enriched in the Immunity_H sub-
group in both GSE62254 and GSE29272, which included 
primary immunodeficiency, antigen processing and 
presentation, the B cell receptor signaling pathway, 
chemokine signaling, natural killer cell-mediated cyto-
toxicity, the Toll-like receptor signaling pathway, PD-L1 
expression and the PD-1 checkpoint pathway in cancer 
(Fig. 3C, E). These results confirmed that immune activity 
was up-regulate in the Immuntiy_H subtype. In contrast, 
citrate cycle, fat digestion and absorption and steroid 
biosynthesis were enriched in the Immunity_L subgroup 
suggesting that these pathways could be negatively 
correlated with immune activity in AGC.

Association between immune subtypes and traditional 
classification
We compared the immune subtypes and traditional clas-
sification of GC in GSE62254. The results showed that 

Immunity_H was highly correlated with MSI (Fisher’s 
exact test, p = 0.022) and Lauren diffuse subtype (Fish-
er’s exact test, p < 0.001) (Fig.  4A). In the Immunity_L 
subgroup, MSS and the Lauren intestinal subtypes were 
mostly detected. Recent studies have indicated that MSI 
was associated with immunotherapeutic response in 
GC [6]. In addition, non-intestinal histology by Lauren 
classification was associated with higher degree of host 
immune response [26].

Identification of vital candidate markers of immune 
subtypes
To further investigate candidate markers associated with 
immune activity in AGC, we constructed a gene co-expres-
sion network of the GSE62254 dataset by WCGNA. In 
the process of constructing the network, the power value 
is a vital parameter that can affect the independence and 
average connectivity degree of the co-expression modules. 
In order to make the co-expression network approximate 
to scale-free topology distribution, the soft-thresholding 
power equals 3 was selected (Fig. 4B, Fig. S1D). Among of 
16 modules, four pairs of gene modules were merged with 
high adjacency degree base on the threshold 0.2(Fig. S1E) 
and a total of 12 modules were identified to further analy-
sis. Correlation between immune subtypes and module 
eigengene was analyzed, which shows the brown, midnight 
blue, tan and purple modules were positively associated 
with immune status. In contrast, the black, magenta, yel-
low and greenyellow modules were negatively associated 
with immune traits (Fig. 4C). To identify the critical genes 
for immune subtypes in AGC, the brown module that was 
the most strongly correlated module to the Immunity_H 
was selected (Fig. 4D, E). A protein-protein network (PPI) 
of the brown module was constructed consisting of 955 
nodes and 248,141 edges. Parameters of degree, between-
ness and closeness were used to describe the topological 
features of the PPI network. Genes with degree > 750 (2 
folds of median value 375), betweenness > 5.7e-6 (Median 
value) and closeness > 0.622 (Median value) were selected 
to construct the hub-network including 275 nodes and 
37,675 edges (Fig. 5A) (Table S2). The Molecular Complex 
Detection (MCODE) was applied to screen the hub-clus-
ter. Interestingly, the top significant cluster was consist-
ent with the hub-network, indicating that these 275 genes 
were highly correlated with the Immunity_H subtype. 

Fig. 4 Construction of co-expression network of immune-related subtypes. A Comparison of the immune-related classification and traditional 
classification of gastric cancer in GSE62254 and Immunity_H was highly correlated with MSI (Fisher’s exact test, p = 0.022) and lauren diffuse 
subtype (Fisher’s exact test, p < 0.001). B The correlation of different soft threshold power values of co-expression network. C Module-trait 
associations were evaluated by correlations between module eigengene and clinical traits. D The correlation of genes in brown module with 
immune subtypes trait. E The correlation of genes in magenta module with immune subtypes trait

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Furthermore, ssGSEA score was recalculated base on 
275-gene signature and the cluster heatmap showed high 
expression of 275 hub-genes are strongly correlated with 
Imunity_H subtype and high immune cell infiltration 
(Fig. S2). The enrichment analysis of biological processes of 
275 genes showed that immune-associated processes were 
significantly enriched (Fig. 5B). Among hub-gene network, 
the gene which have the highest Neighborhood Connec-
tivity, Degree and MCODE score was confirmed to be the 
seed gene. ADAMDEC1 was selected to further analysis as 
the seed gene in 275 hub-genes (Table S3). Kaplan-Meier 
analysis of overall survival (OS) demonstrated that high 
levels of ADAMDEC1 were significantly associated with 
better prognosis in both GSE62254 (log-rank P = 0.008) 
and external validation of GSE29272 (log-rank P = 0.023) 
and KMplotter (log-rank P = 0.031) (Fig. 5C).

The role of ADAMDEC1 in the prediction 
of immunotherapeutic response
In order to investigate the value of ADAMDEC1 in specu-
lating the therapeutic response, the samples who received 
immunotherapy in the IMvigor210 cohort were selected to 
further analysis. In a total of 298 urothelial cancer samples, 
high level of ADAMDEC1 expression showed significant 
better OS compared to low expression group (log-rank 
P = 0.01). We also found that high expression of ADAM-
DEC1 was correlated with objective response to anti-PD-
L1 therapy (Fisher’s exact test, p = 0.031) (Fig. 5D-E). These 
findings suggested the predictive value of ADAMDEC1.

Experimental validation by gastric cancer cells
To further confirm the potential function of ADAMDEC1 
in MGC803 gastric cancer cell line, silencing of ADAM-
DEC1 expression by siRNA was conducted (Fig. 6A). The 
results demonstrated that deficiency of ADAMDEC1 pro-
moted gastric cancer cell proliferation and migration as 
presented in Fig.  6B, C. Interestingly, PD-L1 mRNA and 
expression levels were both upregulated following with 
depletion of ADAMDEC1 in MGC803 cell line (Fig.  6D, 
E). Besides, apoptosis in Jurkat T cells was enhanced sig-
nificantly after co-incubated with ADAMDEC1 silenc-
ing MGC803 cell (Fig.  6F). These findings suggested that 
ADAMDEC1 was a critical marker in predicting prolifera-
tion and immune response in gastric cancer cells.

Discussion
AGC remains a major clinical problem with poor progno-
sis due to the limited effectiveness of therapies. Although 
immune checkpoint blockades provide a treatment para-
digm, only a small number of patients may benefit from 
treatment. Current classifications of GC are mostly based 
on genomic analysis or molecular features. Recently, stud-
ies have focused on GC classification based on immune 
profiling [27–29]. In the present study, GC was classi-
fied into three immune-related subtypes, which included 
Immunity_H, Immunity_M and Immunity_L. The immu-
nity high subtype was positively correlated with immune 
score and negatively correlated with tumor purity, which 
showed that Immunity_H cancers were strongly infil-
trated by immune cells and had high immune activities. 
Immunity_H also indicated higher immunogenicity com-
pared to the other subtypes because of high expression of 
HLA genes. In addition, the proportions of 22 immune 
gene signatures were calculated by CIBRTSORT. Mac-
rophages M1, CD4 T cells, CD8 T cells and γδT cells 
were both highly presented in the Immunity_H subtype 
of the two independent datasets which further suggested 
increased anti-tumor immune activity in the immunity_H 
subgroup. Survival analysis confirmed favorable progno-
sis of the Immunity_H subtype in GSE29272. Whilst there 
was no significant difference in overall survival between 
the subtypes in GSE62254, the survival curve showed 
the same trend in GSE29272. These results are consistent 
with numerous previous studies which have showed bet-
ter prognosis in the high immune cell infiltration group 
[13, 30].

Gene ontology analysis showed that the MHC terms 
were enriched in Immunity_H subtype of both GSE data-
sets. Furthermore, we found that the immunity high sub-
type was highly enriched in immune signatures such as 
primary immunodeficiency, antigen processing and pres-
entation, B cell receptor signaling pathway, PD-L1 expres-
sion and PD-1 checkpoint pathway in cancer. In addition, 
cancer-associated pathways including PI3K-AKT and 
RAS signaling were also enriched in the immunity high 
subtype. Previous studies showed that PI3K-AKT and 
RAS signaling pathways have participated in multiple 
immunity processes in the tumor [31–33], suggesting the 
potential roles of these pathways in regulating immune 

(See figure on next page.)
Fig. 5 Identification of the hub-network and hub-genes in Immunity_H subtype. A PPI network of genes in brown module which including 955 
nodes and 248,141 edges. Hub-network was extracted from PPI network according to topological features and MCODE algorithm which consist of 
275 nodes and 37,675 edges. B Significantly enriched KEGG pathways of hub-network genes. C Overall Survival (OS) of ADAMDEC1 in GSE62254 
cohort by Kaplan-Meier (KM) analysis (log-rank P < 0.008) and external validation by GSE29272 and KMplotter cohort (log-rank P = 0.023, P = 0.031, 
respectively). D Overall survival of high and low ADAMDEC1 expression by Kaplan-Meier analysis in IMvigor210 cohort (Log rank test, p = 0.01). E 
Rate of clinical response to anti-PD-L1 immunotherapy in high and low ADAMDEC1 expression groups in IMvigor210 cohort
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Fig. 5 (See legend on previous page.)



Page 11 of 13Zhang et al. BMC Cancer         (2021) 21:1324  

activity in AGC. In contrast, immune-related pathways 
were not frequently enriched in the Immunity_L subtype.

Comparison of immune subtypes and traditional clas-
sification in GC indicated that the Immunity_H subtype 
was associated with MSI and the lauren diffuse type. MSI 
has been confirmed to be part of the sensitive index to 
anti-PD-1/PD-L1 treatment. Thus, these findings suggest 
that the Immunity_H subtype of AGC might benefit from 
immunotherapy.

To further identify the critical markers of the Immunity_H 
subtype, we constructed a co-expression network of the 
GSE62254 dataset by WGCNA. The Brown module was 
mostly correlated with the Immunity_H subtype. The 
hub-network was constructed by calculating the topologi-
cal features of the PPI network of the brown module. GO 
analysis of the hub-network genes indicated that immune-
associated biological processes were highly enriched which 
are represented by T cell activation and immune response. 
Based on the MCODE algorithm, 275 genes within the hub-
network contributed equally to the network and accurately 

represented the Immunity_H subtype. Among the 275 
genes, ADAMDEC1 was marked as seed gene.

ADAM like decysin 1 (ADAMDEC1) is a member of 
the ADAM family of metalloproteinases. Unlike the other 
ADAM family member, ADAMDEC1 lack of a transmem-
brane domain and altered catalytic domain [34, 35]. In the 
current study, ADAMDEC1 was confirmed to be associ-
ated with favorable prognosis in gastric cancer. Several 
studies have shown that ADAMDEC1 as a prognostic fac-
tor in gastric adenocarcinoma and the mRNA expression of 
ADAMDEC1 is decreased during both tumorigenesis and 
tumor progression in colorectal cancer [36, 37]. In  vitro, 
ADAMDEC1 could negatively regulate GC cells prolifera-
tion and migration. In addition, we found that depletion of 
ADAMDEC1 increased PD-L1 expression in gastric can-
cer cell. A systematic review and meta-analysis confirmed 
that PD-L1 overexpression is a significant adverse prog-
nostic factor in gastric cancer [38]. Besides, ADAMDEC1 
has been reported to function in regulating the immune 
response and might play an important role in dendritic cell 

Fig. 6 Experimental validation by gastric cancer cells. A MGC803 cell was knockdown of ADAMDEC1 gene and western blot was applied to detect 
the expression level of ADAMDEC1. B MTT assay was used to detect the cell proliferation rates in 0 h, 24 h, 48 h and 72 h. Data are means ± SD in 
three independent experiment (*P < 0.05). C Transwell assay was performed to detect the migration of MGC803 cell after silencing ADAMDEC1 
for 48 h. Data are means ± SD in three independent experiment (*P < 0.05). D mRNA expression level change of PD-L1 in silencing ADAMDEC1 of 
MGC803 cell. E Western blot was used to detect the change of PD-L1 expression level in MGC803 cell with ADAMDEC1 knockdown. F Jurkat T cells 
were co-incubated with ADAMDEC1-NC and ADAMDEC1-KD MGC803 cell for 48 h, respectively. The apoptosis in Jurkat T cells was measured by 
flow cytometry analysis
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function [35]. The patients who receiving immunotherapy 
were evaluated by IMvigor210 datasets as the independ-
ent validation [39], we notice that the expression level of 
ADAMDEC1 was significantly upregulated in patients 
responding to immunotherapy and survival benefit also 
detected in high ADAMDEC1 group. Furthermore, silenc-
ing ADAMDEC1 of gastric cancer cells promoted apoptosis 
of Jurkat T cells. Collectively, ADAMDEC might serve as 
biomarker of prognosis and immune response in AGC.

Conclusions
In summary, classification based on immune signatures 
reflected immune activity in different subtypes in AGC. 
ADAMDEC1 served as hub-gene was identified and vali-
dated to confirm predictive values in immune activity and 
prognostic values in AGC patients. The mechanism regulat-
ing the TME and clinical application value of ADAMDEC1 
require further investigation. This study can potentially pro-
vide novel biomarker and therapeutic targets in AGC.
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