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Abstract 

Objective:  N6-methyladenosine (m6A) mRNA modification triggers malignant behaviors of tumor cells and thereby 
drives malignant progression in gastric cancer (GC). However, data regarding the prognostic values of m6A RNA 
methylation-related long non-coding RNAs (lncRNAs) in GC are very limited in the literature. We aimed to investigate 
the prognostic potential of m6A-related lncRNAs in predicting prognosis and monitoring immunotherapy efficacy in 
GC patients.

Methods:  Transcriptome and clinical data were obtained from GC biopsies from Cancer Genome Atlas (TCGA). 
M6A-related lncRNAs associated with GC were identified by constructing a co-expression network, and the gene pairs 
differentially expressed in GC were selected using univariate analysis. We constructed a risk model based on progno-
sis-related lncRNA pairs selected using the LASSO algorithm and quantified the best cutoff by comparing the area 
under the curve (AUC) for risk stratification. A risk model with the optimal discrimination between high- and low-risk 
GC patients was established. Its feasibility for overall survival prediction and discrimination of clinicopathological fea-
tures, tumor-infiltrating immune cells, and biomarkers of immune checkpoint inhibitors between high- and low-risk 
groups were assessed.

Results:  Finally, we identified 11 m6A-related lncRNA pairs associated with GC prognosis based on transcriptome 
analysis of 375 GC specimens and 32 normal tissues. A risk model was constructed with an AUC of 0.8790. We 
stratified GC patients into high- and low-risk groups at a cutoff of 1.442. As expected, patients in the low-risk group 
had longer overall survival versus the high-risk group. Infiltration of cancer-associated fibroblasts, endothelial cells, 
macrophages, particularly M2 macrophages, and monocytes was more severe in high-risk patients than low-risk 
individuals, who exhibited high CD4+ Th1 cell infiltration in GC. Altered expressions of immune-related genes were 
observed in both groups. PD-1 and LAG3 expressions were found higher in low-risk patients than high-risk patients. 
Immunotherapy, either single or combined use of PD-1 or CTLA4 inhibitors, had better efficacy in low-risk patients 
than high-risk patients.
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Introduction
GC is the fifth most common malignancy worldwide, 
with a high incidence of new cases of 1 million each year, 
according to the 2018 statistics [1]. In China, GC is the 
second-largest malignancy regarding both morbidity and 
mortality, just following lung cancer [2]. Despite advances 
in diagnostics and treatment, a substantial number of 
patients with new lesions failing to be detected are often 
confirmed until a late stage, facing higher risks of metas-
tasis and failure of anti-cancer therapy. For all the efforts 
that have been made for a better prognosis, the average 
5-year survival rate of GC is still around 30%, while that 
of early-to-middle stage patients surprisingly reaches 
60% [3, 4]. Even the promising immune checkpoint inhib-
itors (ICIs), which are expected to offer greater clinical 
benefits to patients with various cancers, including GC, 
reveal limited efficacy in advanced patients. Identifica-
tion of sensitive biomarkers for early diagnosis and prog-
nosis prediction is urgently needed.

Immune checkpoints may impede T cell activation by 
triggering several inhibitory signaling pathways, which 
is a key mechanism responsible for tumor cell escape 
from host immune recognition and T cell-mediated kill-
ing. ICIs, which block immunosuppressive signals and 
boost the activity of immune cells, seem to become a 
“game changer” for cancer treatment in the twenty-first 
century. PD-1/PD-L1 inhibitors are the most effective 
drugs to boost clinical response to immunotherapy [5, 6]. 
However, the global, multicenter, phase 2 KEYNOTE-059 
study ascertained a fair response of advanced GC to 
pembrolizumab, which was only approved for use as a 
third-line treatment [7]. In the phase 3 ATT​RAC​TION-2 
study, nivolumab significantly increased the survival rate 
of progressive GC patients after ineffective chemother-
apy [8]. The 2021 Chinese Society of Clinical Oncology 
(CSCO) included immunotherapy for the first-line/sec-
ond-line treatment of GC [9]. These shreds of evidence 
support the efficacy of ICIs in GC treatment, but more 
new drugs are needed to offer more options for advanced 
patients.

N6-methyladenosine (m6A) refers to methylation in 
the N6 position of adenosine. It frequently occurs in the 
RRACH sequence near the 3′ non-coding region, stop 
codon, and long internal exon [10]. This modification 
affects RNA fate in mammalian cells by dynamically and 
reversibly regulating the charge of RNA base, the second-
ary structure of RNA, and protein-RNA interaction to 

alter RNA transport, localization, translation, and degra-
dation [11, 12]. Therefore, m6A-associated cancer devel-
opment in various cancer types, including GC, has been 
intensively studied [13, 14]. Current GC studies primarily 
focus on m6A modification in protein-coding genes pro-
moting prognosis [15]. But the effect of m6A-associated 
non-coding RNAs on GC and their prognostic value, yet 
little explored, is important for immune monitoring and 
long-term remission in these patients. LncRNAs rep-
resent a type of transcript exceeding 200 nucleotides of 
length, accounting for about 90% of the human transcrip-
tome [16]. They generally do not encode proteins yet reg-
ulate RNA expression at the epigenetic, transcriptional, 
or post-transcriptional level [17]. M6A lncRNA modi-
fication is associated with a shift towards an immune-
inflamed phenotype in cancers, characterized by immune 
cell infiltration into the tumor microenvironment (TME) 
[18, 19], suggesting that it may effectively determine 
tumor cell survival and efficacy of anti-cancer therapies. 
M6A-related lncRNAs signatures have been shown to 
have pronounced correlations with the TME and expres-
sions of critical immune checkpoints in hepatocellular 
carcinoma [20] and lung adenocarcinoma [21]. However, 
these models for prognosis prediction or assessment 
of immune cell infiltration and expressions of immune 
checkpoints in GC have not been reported elsewhere.

In this study, we aimed to develop a new risk model 
for various predictions for GC patients and constructed 
a new iteration algorithm for optimal gene-pairing strat-
egies. Predictive performances of the risk model in low- 
and high-risk patients stratified by the optimal cutoff 
calculated based on AUCs were assessed. For the feasibil-
ity of this model, we evaluated whether it could discrimi-
nate differences in immune cell subpopulations between 
low- and high-risk groups. Correlation analyses were 
performed to determine whether there were relation-
ships between the new risk model we constructed and 
known biomarkers for predicting the efficacy of immuno-
suppressive therapy. Overall, this study will provide fresh 
insights into the roles of m6A-related lncRNAs in the 
prediction of GC prognosis and immunotherapy efficacy.

Methods
Transcriptome analysis for m6A‑related lncRNAs in GC
We integrated clinical and transcriptome (or RNA-seq) 
data from TCGA (https://​gdc.​cancer.​gov/) in March 
2021 for identifying m6A-related lncRNAs differentially 

Conclusion:  The new risk model based on a 11-m6A-related lncRNA signature can serve as an independent predictor 
for GC prognosis prediction and may aid in the development of personalized immunotherapy strategies for patients.
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expressed between GC and healthy controls. Patients 
were included if they fulfilled the following criteria: (1) 
they were histopathologically diagnosed; (2) tissue sam-
ples were obtained by surgery or tissue biopsy prior to 
other clinical treatments; and (3) clinical information as 
tissue ID, age, sex, grade, stage, and follow-up time was 
complete. Patients younger than 18 years or with incom-
plete clinical information were excluded, and patients 
not participating in any follow-up visits were also ruled 
out. Ensembl IDs from the pooled transcriptome data 
were converted to gene symbols. Survival time and sta-
tus, age, gender, clinical stage of GC, and other clinical 
information were extracted and documented. We com-
piled a list of aberrantly expressed lncRNAs from the GC 
transcriptomes downloaded from Ensembl (http://​asia.​
ensem​bl.​org). M6A-related lncRNAs associated with GC 
were identified using co-expression network analysis in 
R software, and genes with a correlation coefficient > 0.4 
and a P-value < 0.001 were selected. Interactions between 
m6A modifications and GC-associated lncRNAs were 
visualized. M6A-related lncRNAs differentially expressed 
between GC patients and healthy controls were screened 
with limma in R and genes at a false discovery rate 
(FDR) < 0.05 and log2 fold change (FC) filter =1 were 
included.

Construction of m6A‑related lncRNA pairs in GC
Differentially expressed m6A-related lncRNAs were 
paired by expression pattern ranks. Each lncRNA’s 
expression level was converted to its rank within the 
same sample. Expressions of paired lncRNAs were 
ranked using a 0-or-1 matrix equation: C = lncRNA-
A + lncRNA-B. C is defined as 1 if the expression level of 
lncRNA A was higher than that of lncRNA B, otherwise 
C is defined as 0. After two cycles of expression ranking, 
lncRNA pairs with a stable expression order, whether 
C = 0 or 1, in 20-80% of all patient samples, were selected 
as stable m6A-related lncRNA pairs.

Identification of m6A‑related prognostic lncRNA pairs 
and construction of a prognostic risk model
We integrated m6A-related lncRNA pairs with overall 
survival data from the TCGA cohort with limma. The 
combined gene expression and survival data were sub-
jected to univariate Cox regression analysis to identify 
prognostic lncRNA pairs, and those with a P < 0.001 were 
regarded as gene candidates. These genes were tested in 
the 1000-times-repeated LASSO-Cox regression model, 
of which those with a frequency of over 100 times were 
included for Cox proportional hazard regression analysis 
to construct a multigene signature. ROC curves analy-
sis was performed to obtain the highest (area under the 
curve) AUC value, which determined the optimal risk 

model for prediction. The average risk score of each 
patient was calculated using the optimal model (the 
highest AUC) established, and the best predictive cutoff 
for risk stratification was the point at which the sum of 
sensitivity and specificity was maximal in ROC curves. 
Patients were assigned to low- and high-risk groups 
according to the optimal risk score cutoff, and 1-, 2-, and 
3-year AUC values of the risk model were calculated to 
validated prediction accuracy.

Validation of the prognostic risk model
We performed the Kaplan-Meier survival analysis to 
validate the accuracy of this prognostic model in dis-
criminating the survival difference between low- and 
high-risk groups. Cox regression analysis for potential 
associations between clinicopathological features and the 
riskScore (the coefficient multiplied by the expression of 
each lncRNA pair) was carried out to evaluate the inde-
pendence of the model. The Chi-square test was used to 
compare the AUCs for the difference in survival predic-
tion between the model versus other clinicopathological 
biomarkers, and results were visualized in heatmaps. The 
Wilcoxon symbolic rank-sum test was used to examine 
the association between the riskScore and clinicopatho-
logical features.

Tumor mutational burden (TMB) and somatic mutation 
analyses
We assessed tumor mutations in the high- and low-risk 
groups with ggpubr in R. Kaplan-Meier survival analysis 
was performed for survival differences between high- 
and low-TMB GC specimens stratified by a surv-cutpoint 
determined by the suivminer package in R. Somatic 
mutations in the high- versus low-risk groups were 
explored with maftools in R and visualized on oncoplots.

Comparison of tumor‑infiltrating immune cell 
subpopulations between risk groups
We employed TIMER, XCELL, QUANTISEQ, MCP-
COUNTER, EPIC, CIBERSORT-ABS, CIBERSORT 
algorithms for immune infiltration estimations to assess 
differences in immune cell subpopulations between 
low- and high-risk patients. The difference in immune 
cell landscape between the two risk groups was assessed 
using the Wilcoxon symbolic rank-sum test.

Relationship between biomarkers for ICIs and the lncRNA 
pairs in the risk model
We explored the relationship between the lncRNA pairs 
used in the prognostic model and the expression levels 
of known biomarkers for ICI treatment monitoring with 
ggpubr in R. We also assessed the performance of this 
model in predicting the efficacy of single or combined 
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use of PD1 and CTLA4 inhibitors in high- and low-risk 
groups, and the results were summarized in violin plots. 
The analyses were based on the cased in the TCGA 
cohort with clinical information as tissue ID, age, sex, 
grade, stage, and follow-up time, etc. Other information 
as clinical treatments (chemotherapy and/or immuno-
therapy, before or after surgery) were unavailable.

Statistical analysis
R software version 4.0.2 was utilized for all statistical 
analyses. Kaplan-Meier survival curves were plotted with 
the log-rank test. We employed the Chi-square test to 
compare differences in clinicopathological characteris-
tics between the low- and high-risk groups. The Spear-
man rank correlation test was performed for correlation 
analysis. The significance level was set at P < 0.05.

Results
Identification of differentially expressed m6A‑related 
lncRNAs in GC
Initially, 489 m6A-related lncRNAs were identified using 
co-expression network analysis, and a complete net-
work of relationships between m6A modifications and 
GC-associated lncRNAs was plotted (Fig.  1A). Next, 
288 m6A-related lncRNAs were found differentially 
expressed in GC, including 49 downregulated genes and 
239 upregulated ones (Fig. 1B and C, and Supplementary 
Additional file 1).

Construction of the risk model based on m6A‑related 
prognostic lncRNA pairs
Based on 288 m6A-related lncRNAs, 20,602 m6A-related 
differential lncRNA pairs were primarily identified, and 
11 pairs associated with patient survival were identified 

using the LASSO algorithm (Fig.  2A and B) and incor-
porated into a Cox proportional hazard model to con-
struct a prognostic gene signature (Fig.  2C). The ROC 
curve analysis showed that the AUC of the new model for 
risk stratification was 0.804, with the best cutoff of 0.911 
(Fig.  2D). Patients were divided into low- and high-risk 
groups according to the best cutoff. The 1-, 2-, and 3-year 
AUCs for overall survival prediction in GC were 0.804, 
0.778, and 0.791 (Fig. 2E), compared to the AUCs for the 
performances of age, gender, cancer grading, and clinical 
staging in survival prediction of 0.587, 0.524, 0.557, and 
0.597, respectively, suggesting a superior prediction of 
this model (Fig. 2F).

The risk model serves as an independent prognostic 
indicator for GC
In the TCGA cohort, 438 GC cases who had complete 
prognostic information were included in our analysis 
(Supplementary Additional  file  2). All tissue samples 
were collected during surgical resections or biopsy 
procedures. Except for 27 cases with missing informa-
tion, we had 56, 130, 181, and 44 patients with stage 
I-IV GC, respectively, according to the 7th edition of 
the AJCC. The median follow-up was 595 days (range, 
7-2197 days). Based on the best cutoff, 178 patients 
were classified into the high-risk group and 172 into 
the low-risk group. The average riskScore and survival 
outcome of each group were summarized in Fig. 3A and 
B. The Kaplan-Meier survival analysis showed that the 
overall survival of low-risk patients was significantly 
extended versus high-risk patients (P < 0.001) (Fig. 3C). 
Univariate and multivariate Cox regression of risk ratio 
revealed that the riskScore could act as an independent 
risk indicator for overall survival prediction (univariate 

Fig. 1  Identification of m6A-related lncRNAs between GC and healthy samples. A Co-expression network analysis shows interactions between 
m6A modifications (red node) and differential lncRNAs (blue node). B The volcano plot and C the heatmap demonstrate upregulated and 
downregulated m6A-related lncRNAs in GC



Page 5 of 11Lei et al. BMC Cancer          (2022) 22:365 	

Cox regression: HR 1.434, 95%CI 1.332-1.542, P < 0.001; 
multivariate Cox regression: HR1.472, 95%CI 1.360-
1.594, P < 0.001) (Fig. 3D and E).

TMB and somatic mutation analyses in the high‑ 
versus low‑risk groups
The TMB analysis showed more frequent muta-
tions in the low-risk group versus the high-risk group 
(P  = 0.0095) (Fig.  4A). Better survival was observed in 
high-TMB patients (n  = 303) versus low-TMB patients 
(n = 39), classified upon their TMB estimates, which was 
consistent with better overall survival in low-risk patients 
(Fig. 4B). In somatic mutation analysis, a higher somatic 
mutation rate of 91.01% was found in the low risk group 
compared to 84.31% in the high risk group, which were 
most common in TTN (51% vs. 42%), TP53 (42% vs. 
39%), and MUC16 genes (34% vs. 24%) (Fig. 4C and D).

The M6A‑related lncRNAs‑based risk model predicts 
immune cell landscape associated with GC risk
We assessed the potential relationships of immune cell 
subpopulations with GC risk to explore whether the 
m6A-related prognostic lncRNA pairs used in the risk 

model were involved in activities in the tumor immune 
microenvironment (TIME). A significant correlation was 
observed between alterations in the immune cell landscape 
and increased GC risk (Fig.  5). The differential analysis 
revealed markedly increased infiltration of cancer-associ-
ated fibroblasts, endothelial cells, macrophages, particularly 
M2 macrophages, and monocytes in high-risk patients, and 
high CD4+ Th1 cell infiltration, for anti-tumor immune 
response, in low-risk patients (Fig. 6A to F).

Differences in immune‑related genes between low‑ 
versus high‑risk GC patients
As immunotherapy is the common treatment for GC, 
whether the m6A-related lncRNAs used in the model 
were associated with biomarkers for ICI treatment moni-
toring was examined. We found higher expressions of 
immune-related genes as VEGFC, VCAN, and APOLD1 
in the high-risk group and increased PDXY expression 
in low-risk patients (Fig. 7A to D). We also analyzed the 
differential expressions of frequently detected immune 
checkpoint genes as PD-1(PDCD1), PD-L1(CD274), 
CTLA4, TIM3(HAVCR2), LAG3, and TIGIT between the 
two risk groups, of which PD-1 and LAG3 expressions 
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were significantly upregulated in the low- versus high-
risk groups (Fig.  7E to J). The analysis of immunother-
apy efficacy showed that either single use of anti-PD1 or 
CTLA therapy or their combination had better efficacy 
in low-risk patients than those achieved in high-risk 
patients (Fig. 7K to N).

Discussion
Although the roles of m6A lncRNA modification in 
facilitating tumor occurrence and development have 
been reported in several studies, the current knowledge 
concerning its role in GC development and progres-
sion remains limited. Alterations in malignant behaviors 
of tumor cells by m6A regulators have been reported 
to be an important mechanism responsible for tumor 
progression [22]. However, whether the mechanism to 
maintain tumor cell growth and survival is lncRNA-
dependent remains unknown because of limited data 
on m6A lncRNA modification in particular cancer 
types, including GC. In the current study, a prognos-
tic risk model was constructed based on m6A-related 
lncRNA pairs selected using the LASSO algorithm. 
The risk scoring model (the median riskScore) for risk 
stratification was confirmed based on ROC curves. We 
found m6A-related prognostic lncRNA pairs used in 
the risk model were associated with not only patient 
survival but immune cell infiltration and alterations 
in immune-related genes, contributing to a better 

knowledge of lncRNA biomarkers for GC prognosis and 
immunotherapies.

In this work, we integrated transcriptome and clinical 
data of GC patients from TCGA, identified m6A-related 
prognostic lncRNAs associated with GC prognosis, 
and constructed lncRNA pairs using a 0-or-1 matrix. 
Finally, a risk model for GC risk was developed based 
on these prognostic lncRNA pairs using a 1000-times-
repeated LASSO regression model proposed by Sveen 
et  al. [23]. Prognostic gene pairs were selected upon 
their frequency rather than intersections in the 1000 
times of random stimulation for a more accurate pre-
diction. Here are the improvements in modeling we 
made: the best cutoff for risk prediction and an optimal 
risk model selected using the highest AUC for more 
accurate prognostic prediction. All these added to 
the credibility of our results. Our risk model has been 
shown to effectively discriminate high-risk patients 
who may develop GC, as well as specific clinicopatho-
logical features and tumor-infiltrating immune cell 
landscape. Besides, we utilized a 0-or-1 matrix upon 
expression order instead of expression level to iden-
tify differentially expressed lncRNAs more efficiently, 
either upregulated or downregulated. Moreover, high 
TMB has been shown to have associations with good 
prognosis and enable GC efficacy prediction, thus can 
be used as a biomarker [24]. The somatic mutation 
analysis highlighted the great majority of mutations in 

Fig. 3  The median riskScores and survival outcome of the low- and high-risk groups. A The median riskScores of low- and high-risk groups. B 
The survival outcome of low- and high-risk groups. C High-risk GC patients reveal worse survival compared to low-risk patients. D Univariate Cox 
regression shows that the risk model has a significant association with overall survival. E Multivariate Cox regression demonstrates the risk model as 
an independent prognostic indicator of poor outcome in GC
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TTN and MUC16 genes in both the high- and low-risk 
groups, which have been proven to show significant 
associations with GC prognosis and offer TMB predic-
tion or efficacy prediction in immunotherapy [25]. In 
this study, we also found higher TMB in the low-risk 
group, suggesting a relationship of high TMB with 
favorable survival.

In the TIME, m6A modification may change the 
patterns of tumor-infiltrating immune cells being 
recruited remotely, suppressing response to immuno-
therapy and ultimately driving tumor cell prolifera-
tion and survival and tumor progression in patients. 
The effect of m6A modification on immune cells in 
the TIME is critical for immune escape and patient 

outcome [26]. The efficacy of immunotherapy, par-
ticularly PD-1/PD-L1 inhibitors, in various cancers 
has been widely explored and discussed. A robust anti-
cancer immune response can be restored via block-
ing immune checkpoint receptors and their ligands, 
thus increasing immune-mediated tumor clearance in 
the TIME [19, 26, 27]. For far too long, little has been 
written on m6A modification and tumor-infiltrating 
immune cell landscape in cancers, even though it is 
known that the efficacy of immunotherapy and patient 
outcome are closely related to immune cell infiltra-
tion [28]. The latest study ascertained that reduced 
m6A modification by knocking out methyltransferase 
genes, Mettl3 and Mettl14, enhanced response to 

Fig. 4  TMB and somatic mutations between the low- and high-risk groups. A The TMB analysis reveals high TMB in the low-risk group versus the 
high-risk group. B The Kaplan-Meier survival analysis shows longer overall survival of high-TMB patients compared to low-TMB patients. C Somatic 
mutations in the high versus low-risk groups. D List of somatic mutations in the low-risk group
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PD-1 inhibitors in murine colorectal carcinoma cell 
line CT26 [29]. This finding provides a clue that an 
m6A-related signature may be important to shape the 
immune cell landscape in high-risk populations and 
predict response to immunotherapy, which are cru-
cial for enhancing the success rate of immunotherapy. 
We compared the difference in immune cell subpopu-
lations between low- and high-risk patients stratified 
by the risk score cutoff and assessed the association 
of m6A-related lncRNA pairs selected for the risk 
model with immune cell infiltration using TIMER [30], 
XCELL [31], QUANTISEQ [32], MCPCOUNTER, 
EPIC, CIBERSORT [33], CIBERSORT-ABS algorithms 
[34]. These gene pairs showed tight associations with 
high CD4+ T cell, macrophage, monocyte, and myeloid 
dendritic cell infiltration. Cancer-associated fibro-
blasts, endothelial cells, hematopoietic cells, resting 
memory CD4+ T cells in patients at high risk of GC 
were significantly abundant versus low-risk cases. 
There were more macrophages, macrophage-monocyte 
lineage cells, monocytes, neutrophils, and CD4+ Th1 
cells infiltrated in tumor tissues of low-risk patients. 
These findings suggest that m6A lncRNA modification 
may be involved in the inhibition of the anti-cancer 
immune response in high-risk patients. Our findings 

were in line with the studies of m6A-related lncRNA 
signature in bladder cancer [35], which based on 9 
lncRNAs. Compared with that study, our risk model 
was constructed based on 11 lncRNA pairs, which may 
reduce the batch corrections and increase the accuracy 
of the analyses.

Recent reports have shown that only a small group 
of cancer patients can benefit from ICIs [36], which 
calls for new biomarkers for ICI response prediction 
or even related adverse event prediction. In this study, 
we identified three immune-related genes, VEGFC, 
VCAN, and TNFSF, overexpressed in tumor tissues of 
high-risk patients and PDXY and APOLD1 upregulated 
in the low-risk group. This model is apt at discriminat-
ing aberrant immune checkpoint genes in different risk 
groups. Among the immune checkpoint genes, PD-1, 
PD-L1, CTLA4, TIM3, LAG3, and TIGIT frequently 
detected in most ICI research [36, 37], we found PD-1 
and LAG3 expressions were upregulated in the high-
risk group versus the low-risk group. We also found 
that either single use of anti-PD1 or CTLA therapy 
or their combination had better efficacy in low-risk 
patients than those achieved in high-risk patients. That 
means low-risk patients can also benefit from ICIs, 
whatever the specific agents or combination regimens. 
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The findings above suggest that this risk model is an 
excellent option for monitoring immunotherapeutic 
efficacy.

Conclusion
In summary, we developed a risk model based on 
m6A-related prognostic lncRNA pairs for GC risk using 
the optimal modeling algorithms. It effectively shapes 
the tumor-infiltrating immune cell landscape and pre-
dicts the efficacy of immunotherapy in low- and high-risk 
patients, which can be used as an accurate and independ-
ent predictor for GC risk. The 11-m6A-related lncRNA 
signature used in the model is worthy of further explora-
tion to offer therapeutic targets for better immunother-
apy. However, more information of the TCGA cohort, 
such as medication schedules, surgical records, and path-
ological reports, are unavailable but essential for insight-
ful analysis, which is expected in our future publication 
in a timely manner. Large-sample, multicentre studies of 
assessment of m6A-related lncRNA-based risk model in 
GC prognosis prediction are needed.
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