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Abstract

Background: RNA editing leads to post-transcriptional variation in protein sequences and has important biological
implications. We sought to elucidate the landscape of RNA editing events across pediatric cancers.

Methods: Using RNA-Seq data mapped by a pipeline designed to minimize mapping ambiguity, we investigated
RNA editing in 711 pediatric cancers from the St. Jude/Washington University Pediatric Cancer Genome Project
focusing on coding variants which can potentially increase protein sequence diversity. We combined de novo
detection using paired tumor DNA-RNA data with analysis of known RNA editing sites.

Results: We identified 722 unique RNA editing sites in coding regions across pediatric cancers, 70% of which were
nonsynonymous recoding variants. Nearly all editing sites represented the canonical A-to-I (n = 706) or C-to-U sites
(n = 14). RNA editing was enriched in brain tumors compared to other cancers, including editing of glutamate
receptors and ion channels involved in neurotransmitter signaling. RNA editing profiles of each pediatric cancer
subtype resembled those of the corresponding normal tissue profiled by the Genotype-Tissue Expression (GTEx)
project.

Conclusions: In this first comprehensive analysis of RNA editing events in pediatric cancer, we found that the RNA
editing profile of each cancer subtype is similar to its normal tissue of origin. Tumor-specific RNA editing events
were not identified indicating that successful immunotherapeutic targeting of RNA-edited peptides in pediatric
cancer should rely on increased antigen presentation on tumor cells compared to normal but not on tumor-
specific RNA editing per se.
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Background
Post-transcriptional modification of RNA sequences,
termed RNA editing, occurs in many species [1]. In
humans, two canonical editing types have been identi-
fied: adenosine to inosine (A-to-I) editing mediated by
the adenosine deaminase acting on RNA (ADAR)

enzyme family [2] and cytosine to uracil (C-to-U) editing
induced by apolipoprotein B mRNA editing (APOBEC)
enzymes [3]. While most editing occurs in Alu repeats
[4, 5], RNA editing can also affect protein coding regions
[5, 6]. RNA-Seq analysis can identify these editing events
through comparison with DNA sequencing, including
whole genome (WGS) or whole exome (WES) sequen-
cing, by identifying variants present in RNA but not in
DNA [7]. Multiple studies have used RNA-Seq data from
The Cancer Genome Atlas (TCGA) to analyze RNA
editing events in adult solid tumors and their effects on
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cancer viability, invasiveness, drug sensitivity, and pa-
tient survival [8, 9]. However, RNA editing has not been
investigated in pediatric malignancies.
Despite clearly established mechanisms for canonical

RNA editing, there is a lack of consensus regarding its
prevalence. Some consider RNA editing to be a rare
event across the transcriptome [10–13], while others
consider it widespread [14, 15] perhaps confounded by
mistaken inclusion of technical artifacts [11–13]. For ex-
ample, one study comparing RNA and DNA sequencing
of B cell lines, primary skin fibroblasts and cerebral cor-
tex reported abundant exonic RNA editing, including
many noncanonical events [14]. However, reanalysis of
the same data showed that RNA editing was less fre-
quent [10, 16], and most of the previously reported [14]
editing sites were likely the result of faithful transcrip-
tion of pseudogenes that share high homology with the
canonical genes. There is also disagreement regarding
the prevalence of non-canonical (non-A-to-I, non-C-to-
U) RNA editing [10, 17–19].
These controversies highlight the importance of accur-

ate RNA-Seq mapping to the human transcriptome [20],
which can reduce false-positive RNA editing events and
increase the sensitivity for detection of true events.
RNA-Seq mapping algorithms were initially designed to
ascertain gene expression levels but were not optimized
for detecting RNA editing events. For example, when se-
quencing reads end near splice junctions or true RNA
editing events, soft-clipped mappings may be produced,
hampering detection of editing events. It is also difficult
to ensure accurate mapping to paralogs or expressed
pseudogenes. To reduce mapping artifacts in RNA-Seq
and thus improve the detection of RNA editing, we have
developed an alignment pipeline, StrongArm, which per-
forms competitive mapping with multiple aligners to
multiple reference databases to resolve ambiguity by ap-
plying knowledge-guided rules. These rules were de-
signed to reduce the error rate and bias from a single
aligner, especially near error-prone splice junctions and
in paralogous regions. This competitive mapping ap-
proach, initially designed for detecting complex gene fu-
sion events in ependymoma [21], has the potential for
systematically removing false-positive RNA editing calls
caused by a variety of sources of error.
We applied StrongArm along with a post-processing

pipeline to identify novel and known single nucleotide
variant (SNV) RNA editing events in protein-coding re-
gions that show differences in matched RNA-Seq and
DNA sequencing (WGS or WES) from 711 pediatric
cancer samples from the St. Jude/Washington University
Pediatric Cancer Genome Project (PCGP) [22]. As low-
quantity RNA editing events may be difficult to detect
de novo, we also analyzed known RNA editing sites re-
ported in the RADAR [5] database, a well-curated RNA

editing resource, as done by others [8]. In all, we identi-
fied 722 RNA editing sites in coding regions across
pediatric cancers, including 584 known and 138 novel
editing sites. We observed an enrichment of RNA edit-
ing in pediatric brain tumors, including in genes in-
volved in neurotransmitter signaling. We compared
pediatric cancer RNA editing profiles to normal tissues
from the GTEx project and found that the coding RNA
editing profile of each pediatric cancer type largely re-
sembles that of its corresponding normal tissue. This
suggests that RNA editing is rarely tumor-specific in
pediatric cancer but is largely related to the tissue of ori-
gin. Together, these results present a comprehensive
analysis of RNA editing in pediatric cancer, yielding
novel RNA editing events whose biological function
should be investigated in future studies.

Methods
Sample collection
Details regarding RNA and DNA isolation from PCGP
samples have been reported in a series of PCGP-related
papers [22–31]. All samples have also been published pre-
viously and the raw data of the entire PCGP cohort can be
accessed via the St. Jude Cloud Genomics Platform
(https://pecan.stjude.cloud/permalink/rnaediting) [32].

RNA-Seq
PolyA-enriched mRNA-seq of PCGP samples was per-
formed using the Illumina TruSeq V2 RNA library prep-
aration kit, with a starting input of 1μg of total RNA
according to manufacturer’s protocol. The number of
cycles of library amplification was reduced to 10 cycles
to reduce PCR duplicates. The resulting data files were
converted to FASTQ files using CASAVA 1.8.2. All
reads were 101 bp in length. For discovery of RNA edit-
ing events, we initially used 717 pediatric cancer sam-
ples’ RNA-Seq from the PCGP, including only samples
for which tumor-normal DNA-Seq (WGS or WES) was
also available (Supplementary Fig. 1). The novel editing
sites thus identified, along with known RNA editing
events from RADAR, were then analyzed in 954 PCGP
samples with RNA-Seq, whether or not DNA-Seq was
available. Finally, these 954 samples were filtered to re-
move samples for which RNA was isolated outside of St.
Jude Children’s Research Hospital, due to batch effects
in RNA variant allele fractions (VAFs), and relapsed
samples and other samples were also filtered out such
that only one diagnosis sample per patient was included
in the final 711 samples (Supplementary Fig. 1).

Whole exome and whole genome sequencing
WES was performed using the Illumina TruSeq Exome
Library Prep Kit with 1μg of genomic DNA input using
the manufacturer’s protocol. The WGS was performed
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for paired tumor and normal genomes to > 30-fold
coverage as described previously [33]. WES and WGS
were performed on the Illumina HiSeq 2000 using a
paired sequencing (2 × 100 cycles).

RNA editing validation
Validation of RNA editing was performed by deep
amplicon sequencing on the MiSeq platform. Flanking
Primers were designed using Batch Primer3 [34] with
local batch automation and parameter modification. Op-
timal amplicon sizes ranged from approximately 120 bp–
200 bp for use in downstream library construction. Total
RNA was reverse transcript to cDNA using BioRad
iScript cDNA Synthesis Kit. PCR was performed using
AmpliTaq Gold 360 master mix (Applied BioSystems),
10 μM of each primer, and 10 ng of genomic DNA and
cDNA using the following parameters: 95 °C for 10 min,
95 °C for 30 s, 58 °C for 30 s, 72 °C for 30 s for 35 cycles,
72 °C for 5 min, and storage at 4 °C. All amplicons were
quality-checked on a 2% agarose E-gel (Invitrogen).
Amplicons were pooled and purified using Agencourt
Ampure XP Beads. DNA libraries were created from
pooled amplicons using the Nextflex DNA kit (Bioo Sci-
entific), following the manufacturer’s instructions. Li-
braries were normalized for sequencing on Illumina
MiSeq platform by using a 2 × 150 paired-end version 2
sequencing kit.

StrongArm mapping pipeline
StrongArm accepts reads stored in unaligned BAM for-
mat [35], which may be generated from FASTQ using
the FastqToSam function of Picard (http://picard.
sourceforge.net). We used several input BAMs for each
sample, each with two million reads. The whole work-
flow of StrongArm is illustrated in Fig. 1A. All mapping
of PCGP RNA-Seq data was done using the GRCh37 ref-
erence genome.
In the first phase, reads were aligned using five combi-

nations of mapper and database. The aligners we used
include BWA [36] and STAR [37]. We used the refer-
ence genome database and three custom databases. Each
sequence in the custom databases is built by selecting a
set of exons from a particular annotation source
(Table 1). The sequences corresponding to these exons
from the forward strand of the reference genome are
concatenated to make the custom sequence. Information
about the set of exons used is stored in the sequence
name. After mapping to the custom databases, each
mapping is translated into genomic coordinates using
the information from the sequence name, and the refer-
ence annotation. The combinations of mapper and data-
base used are listed in Table 1.
After initial mapping, the pipeline chooses a record for

each read from among the five available. The best record

is chosen according to the following algorithm: (1)
mapped records are always better than unmapped; (2)
among mapped records, those with more matches are al-
ways better than those with fewer; and (3) among mapped
records with the same number of matches, records with
fewer indels are always better than those with more.
At this stage, there may still be several records tied for

the best. If there are multiple candidates, and the reads
are paired, then the best pair is chosen based on the fol-
lowing rules: (1) pairs on the same chromosome are al-
ways better than pairs on different chromosomes; (2)
pairs that are closer (on a log10 scale, with integer
granularity) are then preferred; (3) pairs in forward-
reverse orientation are then preferred; (4) pairs from the
same mapper and database combination are finally pre-
ferred; and (5) if ties remain, then the choice is made
based on the priority of the mapper and database com-
bination used (Table 1).
Next, the individual aligned BAM files are sorted and

merged, duplicates are marked, and the files are indexed
using Picard tools SortSam, MergeSamFiles, and Mark-
Duplicates. The resulting unrefined BAM file is usable,
and may be sufficient for some analyses. This completes
the alignment phase of the mapping.
The second phase of the mapping is for refinement.

First, records of interest are extracted using SAMExtrac-
tUnmapped in Bambino [39]. The records extracted in-
clude unmapped reads and reads with soft-clipping,
indels, or high quality mismatches. The resulting files
are converted to FASTA, large files are split, and small
files are batched as an optimization.
These reads are then aligned to the reference genome

using sim4 [40]. If the mate read is aligned, then the
sim4 search is restricted to the 100 kb region on the side
of the mate read that would be expected to achieve
forward-reverse orientation. If the mate read is not
aligned, then the sim4 search is restricted to 100 kb on
either side of the original mapping position.
If the sim4 mapping is better than the original, then it is

used in place of the original. The algorithm determines if
the sim4 alignment is an improvement as follows: (1) if
the read was originally unmapped, then it is an improve-
ment; (2) the alignments are scored using + 1 for align-
ment, − 1 for gap open, − 1 for gap extend, and + 5 for any
splice of length < 100 kb, and if the scores are unequal,
then improvement is determined based on the scoring; (3)
if the reads were previously on different chromosomes,
but sim4 places them on the same chromosome, then it is
an improvement; (4) if the reads were previously not in
forward-reverse orientation, but sim4 places them in
forward-reverse, then it is an improvement; and (5) other-
wise, it is not an improvement.
At this point, the pipeline also soft-clips the alignment

of poly-A tails, which may contain one or more spurious
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Fig. 1 The StrongArm RNA-Seq mapping and RNA editing detection pipelines. A Schematic workflow of StrongArm RNA-seq mapping pipeline. The pipeline
starts with competitive mapping of 5 different combinations of mapper and database, followed by further local refinement. B RNA editing identification
pipeline. RNA-Seq BAM files are aligned with StrongArm as shown in (A), and germline and somatic DNA variants are also called from the same patient using
WGS or WES of matched tumor and germline DNA. The pipeline searches for RNA-specific (RNA editing) variants in coding (CDS) regions by comparing RNA-
Seq reads to DNA-Seq. A series of false editing filters is then employed to remove RNA editing artifacts, followed by manual review of the BAM alignment. The
RNA editing candidates are then used to evaluate the editing levels cross the whole cohort

Table 1 The five mapper and database combinations used by StrongArm

Priority Mapper Database

1 BWA RefSeq: Every RefSeq transcript found in UCSC’s refFlat table [38]; useful for finding canonical splicing.

2 BWA RefSeq alternate exons: Fragments of RefSeq transcripts formed by choosing an ordered subset of exons from each gene that
contains a single pair of adjacent exons which are not adjacent in any annotation, and with 100 bp of sequence on either side of
the event; useful for finding alternate splicing.

3 BWA AceView: Every AceView transcript found in UCSC’s assembly table; useful for various other known splice forms.

4 BWA Whole genome: the genome reference sequence (no translation is performed); useful for unspliced reads and some structural
variation events.

5 STAR Whole genome (STAR): the genome reference sequence (no translation is performed); useful for some novel exons and
structural variation events.
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splices to poly-A runs in the reference genome. The new
individual aligned BAM files are sorted and merged, du-
plicates are marked, and the files are indexed, as for the
unrefined BAM, to create the final BAM file.

TopHat and STAR
StrongArm alignment was compared to TopHat and
STAR alignment for 15 PCGP samples’ RNA-seq data.
TopHat version 2.1.1 using Bowtie version 2.1.0 was run
in both default mode with parameter “-m 2″, and
annotation-based mode with parameter “-m 2 --tran-
scriptome-index GENCODE.v19.index”. STAR mapping
was performed with STAR version 2.7.1a in two-pass
mode. The GRCh37 reference genome was used. The
RNA editing VAF of the 722 sites analyzed in the study
were determined using the Ace2.ReadReport utility
within Bambino [39] for the samples aligned with Stron-
gArm, TopHat, and STAR.

Post-processing for detecting RNA editing events
After mapping is performed with StrongArm, the RNA
editing detection pipeline starts with variant calling
using Bambino [39] followed by filters to limit analysis
to SNVs within gene coding regions and to remove false
editing events due to germline variants, paralogous map-
ping, and homopolymer regions. The resultant RNA
editing candidates were further curated by manual re-
view. To rescue low-confidence editing events for which
editing was not detected de novo, we reviewed the evi-
dence of coding editing sites that were included in the
RADAR database with ≥3 mutant reads in ≥2 PCGP
samples (a total of 384 RNA editing events were res-
cued). The RADAR [5] version 2 database (hg19) was
used to compare our identified editing events with
RADAR. We also determined whether RNA editing
events we discovered de novo were already present in
DARNED or REDIportal, in addition to RADAR. For
this, DARNED [6] hg19 editing sites were downloaded
in February 2021 from https://darned.ucc.ie/download/.
REDIportal [41] hg19 editing sites were downloaded
February 2021 from http://srv00.recas.ba.infn.it/atlas/
download.html. The RNA editing VAF of the 722 sites
were calculated using the Ace2.ReadReport utility within
Bambino [39].

Normal sample analysis using GTEx
GTEx RNA-Seq files were previously downloaded from
dbGaP accession phs000424 and reads were previously
mapped using STAR version 2.7.1a in two-pass mode to
hg38 for another study. To avoid remapping these 5454
BAM files to hg19 using StrongArm for this study (due
to the storage resources and computational throughput
this would require) we instead used the existing hg38-
aligned files and analyzed the RNA editing levels for

each of 722 RNA editing sites identified in pediatric can-
cer (converted to hg38 coordinates), using the Ace2.Rea-
dReport utility in Bambino [39]. To verify that RNA
editing results would have been similar had we re-
mapped all GTEx samples to StrongArm with hg19, we
correlated RNA editing in 18 GTEx samples re-mapped
with StrongArm (hg19) vs. the existing STAR (hg38)
alignments. In each of these 18 samples, the Pearson r
correlations for total read coverage across the 722 sites
when comparing the two approaches were r > 0.97 and
the mutant read correlations were r > 0.99, indicating
similar results between the two approaches. Sample tis-
sue type annotations were obtained from https://github.
com/ucscGenomeBrowser/kent/blob/master/src/hg/
makeDb/outside/gtexHub/metadata/sraToSample.tab.

High-confidence RNA editing events
In Fig. 2B boxplots, only high-confidence RNA editing
events were shown, and high confidence was defined as
follows. If an editing site had read coverage of greater
than 100, at least 3 mutant reads were required to con-
sider the site edited with high confidence. For sites with
20–99 reads of coverage, at least 2 mutant reads were
required. Finally, for sites with less than 20 reads of
coverage, only 1 mutant read was required to consider
the site high confidence. These thresholds were based
on analysis of adjacent control sites that were within 2
base pairs upstream or downstream of the 722 RNA
editing sites in 15 PCGP samples’ RNA-Seq data, to
quantify the background error mutation rate and thus
determine what number of mutant reads indicated true-
positive editing. Of the 722 RNA editing sites, 569 had a
suitable adjacent control site within 2 base pairs up-
stream or downstream of the editing site that was of the
same reference allele (e.g. A for an A > G variant) as the
actual editing site. We evaluated the mutation error rate
using these 569 adjacent control sites and found that
among RNA editing sites with less than 20 reads of
coverage, 94% of 1-mutant read variants at RNA editing
sites were true-positives. However, below 100 reads of
coverage, only 79% of 1-mutant read variants at RNA
editing sites were true-positives, and thus 2 mutant reads
were required when 20–100 reads of coverage were
available (leading to 90% true-positives). Above 100
reads of coverage, sites with 3 mutant reads gave over
89% true positives, whereas 2 mutant reads gave only
76% true positives, leading to 3 mutant reads required
above 100 reads of coverage.

Neoepitope prediction
Neoepitope prediction was performed using neoepiscope
[42] run on all non-silent RNA editing events identified,
using the chromosome, position, reference allele, and al-
ternate allele of each editing event as input. Predictions
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were made for 15 common HLA haplotypes reported in
the literature [43, 44].

Results
Competitive RNA-Seq mapping using StrongArm
Current RNA-Seq alignment tools have varying proper-
ties that can affect the detection of RNA editing. For ex-
ample, STAR has a high mapping rate because it permits
incomplete alignments which increase the sensitivity for
detecting RNA editing events, but the fraction of fully-
mapped reads is lower than other tools which can lead
to false-negatives. Annotation-based TopHat2 has the
opposite characteristics [45]. As expression of pseudo-
genes and paralogs is common across the human gen-
ome, ambiguity in RNA-Seq mapping can lead to
erroneous RNA editing calls [10, 16], whereas mapping
of DNA sequencing reads can rely on unique intronic
sequences to produce the correct mapping. Moreover,
aligners like STAR will occasionally soft-clip a read
when the read’s end spans a splice junction (Supplemen-
tary Fig. 2A) or contains bona fide nucleotide variants
(e.g. RNA editing or genetic variants). For RNA editing

analysis, this can lead to missing true RNA editing
events (Supplementary Fig. 2B).
To facilitate the detection of RNA editing and other

variants using RNA-Seq data, we designed an exhaustive
mapping pipeline called StrongArm. This pipeline selects
the mapping location of a read-pair based on mapping
to five different reference database/mapper combina-
tions, from which the best mapping is chosen (Fig. 1A).
To analyze the pipeline’s sensitivity, we compared Stron-
gArm results with two popular aligners, STAR and
TopHat2, using RNA-Seq data from 15 pediatric cancer
samples. StrongArm and STAR had higher mapping
rates than TopHat2 or annotation-based TopHat2 (Sup-
plementary Fig. 3A), with the algorithmic trade-off of
more soft-clipped reads with StrongArm and STAR
(Supplementary Fig. 3B). Compared to STAR, Stron-
gArm was able to map more reads at full length without
soft-clipping (Supplementary Fig. 3B, C), largely due to
improved mapping around splice junctions and non-
reference genomic locations (Supplementary Fig. 2).
StrongArm alignment also led to significantly more
RNA editing sites being evaluable (which we defined by
at least 10 reads of coverage at the editing site, as done

Fig. 2 Analysis of RNA editing in pediatric cancers. A Pie chart showing the number and type of pediatric cancer samples analyzed, including 711 samples
from the PCGP (excluding those showing batch-specific effects in RNA editing VAFs). Samples are divided into blood, brain, and solid (extracranial) cancers and
include only diagnosis samples, with one sample per patient. Subtypes of blood, brain, and solid tumors include acute myeloid leukemia (AML), B- and T-acute
lymphoblastic leukemia (B-ALL and T-ALL), choroid plexus carcinoma (CPC), ependymoma (EPD), high-grade and low-grade glioma (HGG and LGG),
medulloblastoma (MB), adrenocortical carcinoma (ACC), melanoma (MEL), osteosarcoma (OS), retinoblastoma (RB), and rhabdomyosarcoma (RHB). B RNA
editing VAFs for each cancer type. The 722 RNA editing sites mentioned in the text were analyzed. Bottom panel y-axis indicates the percentage of the 722
variants in each cancer type that were expressed in at least 3 samples (with 10 reads of coverage), and the numbers at bottom indicate the total number of
samples analyzed in each cancer type. The middle panel shows the number of RNA editing sites in each sample (point) that were edited with high confidence
(Methods). Median values are shown at the top of the plot. Boxplot shows median (thick center line) and interquartile range (box). Whiskers are described in R
boxplot documentation (a 1.5*interquartile range rule is used). In the top panel, the y-axis represents the median RNA VAF, such that each point represents the
median RNA VAF for one specific RNA editing site in one specific cancer type. Only positively edited samples were included in the quantification of the median
VAF (zero-VAF samples excluded) and only high-confidence editing events were included (Methods). Boxplots median, interquartile range, and whiskers are as
in middle panel. Only RNA editing sites for which at least 3 samples in the cancer type had at least 10 reads of RNA-Seq coverage are shown
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by others [8]) than STAR (Supplementary Fig. 4A), al-
though when coverage was evaluable with both tools the
RNA editing VAFs were comparable (Supplementary
Fig. 4B).

Identification of coding RNA editing events in pediatric
cancers
We analyzed RNA editing in 954 pediatric cancer sam-
ples from PCGP (later filtered to 711 as described in
Methods; Fig. 2A, Supplementary Fig. 1) using RNA-Seq
data mapped with StrongArm (Fig. 1A). We first identi-
fied RNA-specific single-nucleotide variants (SNVs)
from the aligned RNA-seq reads using Bambino [39],
followed by applying multiple filters to remove false-
positives (Fig. 1B, Methods). The pipeline eliminates
germline and somatic DNA variants from consideration
using matched tumor-normal WGS or WES (available
for 717 cases) and public single nucleotide polymorph-
ism (SNP) data (Fig. 1B, Methods). We focused on vari-
ants in coding regions for this analysis.
To remove additional false positive hits, we performed

manual curation by visually inspecting the alignment of
each variant [39] (Fig. 1B, final step) to remove the
remaining false positives in the following categories. (1)
Co-occurrence of SNPs with paralogous variants. For ex-
ample, a false-positive RNA editing call in the mono-
exonic GLUD2 gene was in fact a SNP (rs9421572) in its
multi-exonic paralog GLUD1 near an exon-intron
boundary (described in Supplementary Fig. 5A). This
error was due to the gap-open penalty incurred by a
splice junction in GLUD1 resulting in a preference for
an unspliced region in GLUD2 during mapping. (2) Vari-
ants at the 3′ side of homopolymers on the antisense
strand, suggesting an error introduced during reverse
transcription (Supplementary Fig. 5B). (3) Imperfect gen-
ome annotation. For example, some purported RNA
editing events could be accounted for by alternative spli-
cing to exons not included in the transcript model dur-
ing mapping, thus leading to spurious variant calls, as in
the case of PHB2 (Supplementary Fig. 5C). Manual cur-
ation is an important step as automated analysis identi-
fied 334 to 1530 (731 on average, after removing somatic
SNVs) putative RNA editing events per sample based on
de novo variant calling. However, 95 to 99% (99% on
average) of these were recognized to be artifacts during
manual review. A total of 340 unique editing sites were
detected in the PCGP cohort.
Combining these editing sites detected de novo with

those present in the RADAR database (Methods), we
identified 722 unique RNA editing sites in coding re-
gions post manual curation (Supplementary Table 1), in-
cluding 706 canonical A-to-I events and 14 canonical C-
to-U events. Approximately 70% of these were non-
synonymous missense (498), nonsense (1), or stop-loss

(8) variants while the remaining 30% were synonymous.
Further, 584 of 722 (81%) were previously reported in
RNA editing databases (e.g. RADAR [5], DARNED [6],
and/or REDIportal [41]). Of the remaining 138 sites not
found in these databases, 90 represented a new variant
affecting a gene known to have editing events in these
databases (e.g. missense but at a different amino acid),
while 48 sites represent the first reported RNA editing
event affecting protein-coding (e.g. missense, nonsense,
or stop-loss) of the gene. We selected 10 editing sites
and performed experimental validation by deep ampli-
con sequencing using paired DNA/RNA samples in five
leukemias with varying RNA VAFs; all variants were
confirmed to be present exclusively in RNA samples
(Supplementary Table 2).
We then analyzed the prevalence of RNA editing on

these 722 sites across the major subtypes of pediatric
cancer, including blood, brain, and solid (extracranial)
cancers (Fig. 2A). Brain cancers had more editing events
than other cancers (Fig. 2B, middle panel), with a me-
dian of 190 positive RNA editing events per sample in
high-grade glioma (HGG) and 178 in low-grade glioma
(LGG), as compared to blood cancers (from median 85
in T-ALL to 109 in AML) and solid tumors (from me-
dian 71 in rhabdomyosarcoma (RHB) to 105 in retino-
blastoma (RB)). RNA editing VAFs were low overall in
edited transcripts, with similar VAFs across cancer types
(Fig. 2B, top, which shows median VAFs at approxi-
mately 0.05 for each RNA editing site in each cancer).

Comparison of RNA editing between pediatric cancers
and normal tissue
We next asked whether the 722 RNA editing sites iden-
tified in pediatric cancer were also found in normal tis-
sues by analyzing 5454 RNA-Seq samples from GTEx.
Only 7 of the 722 RNA editing events were tumor-
specific, as the remainder could be found in one or more
normal tissues (Fig. 3, Supplementary Table 3); 6 of
these 7 sites were only edited in a few cancer samples,
while the 7th (a MEX3C A74A silent variant) was edited
specifically in blood cancers (Supplementary Tables 3–
4). We observed RNA editing events which were
enriched in both normal and leukemic blood samples
(Fig. 3, top box), and events enriched in both normal
and cancerous brain samples (Fig. 3, bottom box). This
suggests that RNA editing in pediatric cancer is related
to the tissue of origin, rather than tumor-specific effects.
Some tissue specificity of RNA editing was related to
tissue-specific expression of the edited gene, rather than
enrichment of editing per se (blue in Fig. 3 indicates lack
of expression; see also specific variants discussed below).
Figure 4 shows the tissue-specific profiles of example

RNA editing events with patterns of interest, including
ubiquitous editing with ubiquitous expression; tissue-
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specific editing with tissue-specific expression; and
tissue-specific editing with ubiquitous expression. For
example, some RNA editing events were ubiquitous
across tissue types in genes with ubiquitous expression,
such as previously reported NEIL1 K242R [46] editing
(Fig. 4A). Some were enriched in normal blood and
leukemic samples due to tissue-specific expression of the
gene, including IL12RB1 R356G (Fig. 4B), detected previ-
ously in normal immune cells [47]. Glutamate receptors,
including GRIK1, GRM4, and GRIA2, and other receptors
involved in neurotransmission were also enriched in both
normal and malignant brain samples (Fig. 4C), consistent
with studies in normal neural tissue [48]. RNA editing in
various calcium and other ion-binding proteins, which can

also affect neurotransmission, were likewise enriched in
brain samples (Fig. 4D) as expected [5, 6, 49]. The above
tissue-specific effects were related to increased expression
of the edited gene itself, not necessarily increased RNA
editing. By contrast, a few genes including METTL10 and
PDCD7 had widespread expression across most tissue
types, but brain-enriched editing (Fig. 4E), suggesting an
increase in editing itself in brain tissue. While the above
editing sites are previously reported, a few novel sites
showed tissue-specific editing, such as the brain (glioma)-
enriched LRP4 gene (Fig. 4F). Finally, some RNA editing
sites showed depletion in a specific tissue type, such as the
lack of IGFBP7 editing in normal and leukemic blood
samples (Fig. 4G).

Fig. 3 Landscape of RNA editing events in pediatric cancer compared to normal samples. Heatmap showing the level of RNA editing for the 722
editing events reported in the text. Each row represents one of the 722 RNA editing sites. Each column represents one cancer (PCGP, n = 711) or
normal (GTEx, n = 2164 of the 5454 total samples analyzed are shown, as the solid normal tissue samples were thinned to approximately one-
fourth the original number for easier viewing) RNA-Seq sample. In the heatmap, red color indicates higher editing level (as a percentage of the
max RNA VAF for that variant/row), cream color indicates low editing level, and blue color indicates the expression was too low to evaluate
(fewer than 10 reads of coverage at the genomic locus). Samples from the same cancer or normal tissue type are grouped together and color-
coded as indicated in legends at top. The name of each cancer and normal tissue type is abbreviated, and the key for determining the full name
of each cancer and normal tissue type is in Supplementary Table 6
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Fig. 4 Tissue specificity of selected RNA editing events. Plots are shown for selected RNA editing events taken from among the 722 sites identified in
the study. Bottom y-axis for each graph represents the RNA editing VAF for the variant noted. Each point represents one cancer or normal sample, and
horizontal black bars represent the median for each cancer or normal tissue type. The top portion of each graph indicates the percentage of samples
in which the editing site is expressed (“% expr”) with at least 10 reads of sequencing coverage. VAFs are only shown in the bottom panels for samples
meeting this criterion. Samples are divided into cancer (c) or normal (n) tissue types as in Fig. 3 (see Supplementary Table 6 for cancer type
abbreviation definitions). The RNA editing site is shown at the top-right of each graph, expressed as the gene and amino acid change caused by the
editing event. Each panel highlights an editing event with a specific pattern of interest, including (A) a ubiquitously edited site, (B) a site both edited
and expressed primarily in blood cells, (C and D) sites both expressed and edited preferentially in the brain, (E) sites with ubiquitous expression and
editing enrichment in brain, (F) a brain-enriched editing site not reported in RADAR, DARNED, or REDIportal, unlike the others in this figure, and (G) a
site edited preferentially in solid and brain tissue but not edited in most blood tissues
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Previously reported editing events in GRIA2, AZIN1,
and COG3 are thought to promote adult tumor progres-
sion based on functional cell viability assays [8]. We also
detected these events in multiple pediatric cancer types,
suggesting they may promote pediatric cancer progres-
sion as well, although they are also present in multiple
normal tissues (Supplementary Tables 3–4).

Association between RNA editing and splicing
RNA splicing and editing can occur co-transcriptionally
and RNA editing may alter splicing [50, 51]. This could
lead to different editing levels between mRNA and pre-
mRNA, which can be analyzed by comparing editing
levels among spliced mRNA and unspliced (intron-
retaining) pre-mRNA. While we used polyA-enriched
RNA-Seq data to analyze PCGP samples, we nonetheless
observed substantial intronic reads in many genes, indi-
cating the presence of some pre-mRNA with which this
analysis could be performed.
To assess the spliced mRNA editing level (rather than

the overall RNA editing level used in our previous ana-
lyses), we first identified the reads for which the read or
its mate pair were mapped to splice junctions. These
“spliced reads” were considered as a signal of mRNA
which were then used to calculate the (spliced) mRNA
editing level (Fig. 5A). The difference between the over-
all editing level (VAF) and mRNA editing level (VAF)
were compared using a Wilcoxon Rank Sum test for
each editing site.
As shown in Fig. 5B, since polyA-enriched RNA-Seq

filters out many immature RNAs, most RNA editing
sites do not show significant differences between the
overall RNA editing level and the spliced mRNA (junc-
tion-corrected) editing level. However, several editing
sites showed a significant difference. For example, NARF
(Fig. 5C, top-left) had a lower editing level in mRNA,
but higher overall editing level, suggesting a relationship
between editing and splicing. This could be because un-
edited NARF pre-mRNAs are more prone to splicing, or
because edited NARF mRNAs are more prone to degrad-
ation. By contrast, SORBS1 (Fig. 5C, bottom-left) has
more editing in mRNA, possibly because edited SORBS1
pre-mRNA is more prone to splicing.
Because the junction-corrected mRNA level is calcu-

lated from polyA-enriched RNA-Seq in these cases, the
real difference between mRNA and pre-mRNA might be
more apparent if total RNA library preparation was used.
Therefore, we compared a subset of samples sequenced
by both total stranded and polyA-enriched RNA-Seq.
The GRIA2 gene, for example, had moderately (though
significantly) different editing between mRNA and pre-
mRNA using polyA-enriched RNA-Seq (Fig. 5B; Fig. 5C,
top-right). However, in total stranded RNA-Seq the dif-
ferent was much more apparent (Fig. 5C, bottom-right),

indicating that more splicing-editing correlations may
exist than our polyA-focused analysis suggests. Because
RNA editing relies on local RNA secondary structures, it
is possible that editing preferentially targets spliced tran-
scripts in some genes, and unspliced in others, based on
secondary structure. Moreover, editing can create cryptic
GT-AG splicing sites to affect splicing output and effi-
cacy. Thus, the interplay between splicing and RNA edit-
ing is likely to be gene-specific, consistent with our
results (Fig. 5C).

Discussion
We used a competitive mapping approach to improve
paralog mapping and mitigate alignment errors when
reads span splice junctions for discovery of RNA editing.
This study is the first comprehensive analysis of RNA
editing in pediatric cancers, which has been previously
studied in adult cancers [8, 9]. We have noted both
known and novel RNA editing sites whose biological
function could be investigated in future studies.
It has been proposed that RNA editing may lead to

neoepitopes that may be targeted by anti-cancer immuno-
therapies [52]. Indeed, we used neoepiscope [42] to run
neoepitope prediction on peptides resulting from RNA
editing events to identify peptides predicted to be pre-
sented effectively by 15 common HLA class I haplotypes
[43, 44]; many of these peptides were predicted to bind ef-
fectively to these HLA alleles and thus would theoretically
generate epitopes that could be recognized by T cells
(Supplementary Table 5). However, our results indicate
that, in pediatric cancer, RNA editing events are not spe-
cifically enriched in tumors, which would make immuno-
therapeutic targeting difficult. Rather, nearly all RNA
editing events we detected in pediatric cancer were also
present in one or more normal tissues; indeed, the profile
of each pediatric cancer type essentially matched that of
its normal tissue of origin. This suggests that immuno-
therapeutic efforts focused on identifying tumor-specific
RNA editing will be difficult to implement in pediatric
cancer. However, if RNA-edited genes are overexpressed
in a specific cancer type compared to normal, it may be
possible to target these editing events immunotherapeuti-
cally with good therapeutic index. For example, the CD6
gene is overexpressed in a subset of leukemias, with ex-
pression of over 100 transcripts per million (TPM) in 10%
of acute myeloid leukemia (AML), 18% of T-lineage acute
lymphoblastic leukemia (T-ALL), and 2% of B-ALL, but
virtually no expression in other cancerous tissues (Supple-
mentary Fig. 6A). CD6 undergoes RNA editing leading to
an S52G missense variant (Supplementary Tables 1, 3, 4),
and thus targeting this peptide immunotherapeutically
may have therapeutic potential. CD6 is also overexpressed
in some normal blood and small intestinal tissues from
GTEx (Supplementary Fig. 6B) concomitant with S52G
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editing (Supplementary Tables 3, 4), but this may be ac-
ceptable given that transient immunosuppression or
gastrointestinal issues may be an acceptable toxicity of an-
ticancer therapy.
Further, if certain RNA editing events are preferen-

tially presented via HLA molecules on tumor cells in
preference to normal cells, these may represent valid tar-
gets (despite RNA editing in both normal and tumor
cells) as shown for CCNI editing in some adult cancers
[53], an editing event which we also observed in all
pediatric cancer types analyzed (Supplementary Tables
3–4). While beyond the scope of this study, it would be
of interest for future studies to test whether any of the
RNA editing events we identified are preferentially
HLA-loaded on tumor cells compared to normal cells to
identify potential therapeutic targets.

Conclusions
These findings indicate that the RNA editing profile of
each pediatric cancer type is similar to its corresponding
normal tissue of origin. Thus, the somatic mutations
present in pediatric cancers do not appear to promote
tumor-specific RNA editing events which can be
immuno-therapeutically targeted. Rather, RNA editing
profiles in pediatric cancer likely result from the tran-
scriptional state the cancer inherits from the original
normal tissue. However, RNA editing events occurring
in cancers with overexpression of the edited transcript
may provide therapeutic targets, which merits further
study. These results also provide a map of the coding
RNA editing events across pediatric cancers, and identify
novel RNA editing events whose function should be ex-
plored in future studies.

Fig. 5 RNA editing differs between total RNA compared to mRNA. (A) A method to calculate junction-corrected RNA editing level. To strictly
calculate the RNA editing levels using mRNA reads, we only kept reads for which the read or its mated pair were mapped to splice junctions. The
“spliced reads” were then used to calculate the mRNA editing levels. (B) Difference between overall RNA editing level and junction corrected
editing level. Top, the histogram of mean editing level change. Bottom, volcano plot illustrating the difference and p-values for each editing site,
comparing overall to (junction-corrected) mRNA editing levels. (C) Examples of editing sites showing significant editing level change comparing
overall RNA editing level to mRNA editing level. The overall and mRNA editing level from the same sample are connected with black lines to
indicate paired connections
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Additional file 1: Supplementary Fig. 1. RNA editing analysis
workflow and samples included. Workflow showing the discovery process
and the criteria for sample inclusion at each step. To discover de novo
potentially novel RNA editing sites (top), SNV calling was performed on
samples with tumor RNA-Seq, and germline plus tumor DNA-Seq (either
WGS or WES), including 717 samples (including 716 pediatric cancer sam-
ples from the PCGP and one leukemia cell line, Nalm6). After filtering and
discovering RNA editing events in these 717 samples as shown in Fig. 1B,
the presence of each RNA editing event discovered de novo or rescued
from RADAR (n = 722 sites total) was analyzed in 954 pediatric cancer
RNA-Seq samples from the PCGP, whether or not DNA-Seq was available
(middle). Finally, certain samples with batch effects in RNA editing VAFs
and relapsed or duplicate samples were filtered out, resulting in 711
pediatric cancer diagnosis samples with one diagnosis sample per patient
(bottom). This set of 711 samples was the primary sample set shown in
analyses in this study. Supplementary Fig. 2. Examples comparing
alignment between StrongArm vs. STAR mapping. (A) Splice junction-
adjacent reads that failed mapping by STAR (blue) but mapped by Stron-
gArm (red) as viewed in the BAM alignment. This shows a view of one
sample’s BAM files aligned by the two tools, with each row representing
one read, and part of the COPA gene is shown. Soft-clipped read regions
have a darker gray appearance. Gray arrows (>) indicate that part of the
read is aligned elsewhere (to another exon). Non-reference sites are
shown in red, including an RNA editing site (T > C). Only reads containing
the edited allele are shown. (B) Read with RNA editing at the end that
failed mapping (soft-clipped) by STAR but mapped by StrongArm. Color-
ing and other features are as in (A), except that the MRPS27 gene is
shown. This shows a view of one sample’s BAM files aligned by the two
tools. Only reads containing the edited allele (G > A, red) are shown. Sup-
plementary Fig. 3. Mapping rate and soft-clipping comparison between
StrongArm and other tools. (A) Mapping rate comparison between Stron-
gArm, STAR, TopHat2 and annotation-based TopHat2. The mapping rate
of the same sample in different aligners is connected by a dotted line. Y-
axis represents the percent of mapped reads, and 15 selected pediatric
cancer samples from PCGP are analyzed. (B) The percentage of reads
with soft-clipped nucleotides in each aligner. The same sample is con-
nected by a dotted line. TopHat2 does not map soft-clipped reads. (C)
The percentage of reads (y-axis) with different numbers of soft-clipped
bases (x-axis). The unclipped reads (0) are separated due to different axis
scale. This compares STAR (blue points) and StrongArm (red points) and
does not include TopHat2, since TopHat2 does not map soft-clipped
reads. Each point represents one of the 15 PCGP samples shown in (A)
and (B). Boxplot shows median (thick center line) and interquartile range
(box). Whiskers are described in R boxplot documentation (a 1.5*inter-
quartile range rule is used). Supplementary Fig. 4. Comparison of RNA
editing detection between STAR- and StrongArm-mapped RNA-Seq data.
This analysis includes 15 PCGP samples’ RNA-Seq data mapped by both
StrongArm and STAR (the same samples used for Supplementary Fig. 3).
(A) More RNA editing sites are evaluable by StrongArm than by STAR
mapping. Boxplot shows the number of RNA editing sites (among the
722 RNA editing sites evaluated in the study) that are informative (at least

10 reads of coverage) only by STAR or only by StrongArm mapping in
each sample. Boxplot shows median (thick center line) and interquartile
range (box). Whiskers are described in R boxplot documentation (a
1.5*interquartile range rule is used). (B) High concordance of RNA editing
VAFs derived from STAR-mapped and StrongArm-mapped BAM files,
when analyzing RNA editing sites with at least 10 reads of coverage with
both STAR and StrongArm. See table at top-left of each graph to see the
number of variants falling into this category (the “Both (shown)” cat-
egory). Each graph shows one leukemia patient. Each point represents a
single RNA editing event positioned by its RNA editing VAF by Stron-
gArm (x-axis) or by STAR (y-axis). Dotted line represents the identity line
(x = y). r value is by Pearson correlation. Supplementary Fig. 5. False-
positive RNA editing examples requiring manual removal. (A) Example
false RNA editing due to the presence of a germline SNP in one of two
paralogs. GLUD1 and GLUD2 are paralogs; GLUD1 has introns while GLUD2
is mon-exonic. The coding regions (CDS) have 98% identity between the
two genes. Left, in patients with GLUD1 SNP rs9421572 (a SNP which is
near a splice junction in exon 7), DNA (WGS) reads will correctly map the
SNP to GLUD1 instead of GLUD2, as the intronic region of reads contain-
ing the SNP will map uniquely to GLUD1 but not to intron-less GLUD2.
Right, in RNA-Seq, by contrast, neither GLUD1 nor GLUD2 mRNAs contain
introns, and therefore the mapping will prefer GLUD2 since mapping that
does not require the read to span a splice junction is preferred, and
GLUD2 lacks introns making it preferred. The GLUD1 SNP is therefore ab-
errantly considered to be a GLUD2 RNA editing event. Such events must
be removed by manual curation. (B) Example of false RNA editing due to
the presence of a homopolymer genomic region using an example in
the RNF19A gene. False-positive editing events frequently occurred within
one base position of homopolymer sequences on the 3′ side of the ho-
mopolymer along the antisense strand, suggesting the error was intro-
duced during reverse transcription. Such events must be removed by
manual curation. (C) Example of false RNA editing due to mapping to the
wrong splice variant. The PHB2 gene includes a very small (or “nano”)
exon in one of the UCSC transcripts (uc021qug.1). However, none of the
RefSeq transcripts used for mapping includes this exon; therefore, reads
which include the nano exon are instead incorrectly mapped to
NM_001144831 which lacks the nano exon. Thus, RNA-Seq reads for
many samples, including the example adrenocortical cancer sample
SJACT001, incorrectly map to NM_001144831 and appear to have an RNA
editing event in a region that should in fact map to the nano exon. Sup-
plementary Fig. 6. An example of outlier expression of an RNA-edited
gene in a specific tissue type. (A) Boxplot showing CD6 expression in
TPM across PCGP pediatric cancer tissues. Parentheses indicate the num-
ber of samples analyzed. See Fig. 2 legend for cancer type abbreviations.
Each blue point represents one cancer sample. Outlier samples, as deter-
mined by the R “boxplot” function, are also outlined in red. Boxplot
shows median (thick center line) and interquartile range (box). Whiskers
are described in R boxplot documentation (a 1.5*interquartile range rule
is used). (B) As in (A), except that the expression of CD6 is shown in nor-
mal GTEx tissues. Due to different RNA-Seq library preparation and se-
quencing methods, the data in panels (A) and (B) may not be directly
comparable to one another.

Additional file 2: Supplementary Table 1. 722 RNA editing sites
identified in pediatric cancer samples. Supplementary Table 2. Deep
amplicon sequencing of RNA vaildation of 10 RNA editing events.
Supplementary Table 3. Percentages of cancer and normal tissue
samples with RNA editing at each site. Supplementary Table 4. VAFs of
RNA editing events in each sample. Supplementary Table 5.
Neoepitope predictions for 722 RNA editing sites. Supplementary
Table 6. Abbreviations for cancer and normal tissue types.
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