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Abstract

Background: Pralatrexate (PDX) is a novel antifolate approved for the treatment of patients with relapsed/refractory
peripheral T-cell lymphoma, but some patients exhibit intrinsic resistance or develop acquired resistance. Here, we
evaluated the mechanisms underlying acquired resistance to PDX and explored potential therapeutic strategies to
overcome PDX resistance.

Methods: To investigate PDX resistance, we established two PDX-resistant T-lymphoblastic leukemia cell lines (CEM
and MOLT4) through continuous exposure to increasing doses of PDX. The resistance mechanisms were evaluated
by measuring PDX uptake, apoptosis induction and folate metabolism-related protein expression. We also applied
gene expression analysis and methylation profiling to identify the mechanisms of resistance. We then explored
rational drug combinations using a spheroid (3D)-culture assay.

Results: Compared with their parental cells, PDX-resistant cells exhibited a 30-fold increase in half-maximal
inhibitory concentration values. Induction of apoptosis by PDX was significantly decreased in both PDX-resistant cell
lines. Intracellular uptake of ['*C]-PDX decreased in PDX-resistant CEM cells but not in PDX-resistant MOLT4 cells.
There was no significant change in expression of dihydrofolate reductase (DHFR) or folylpolyglutamate synthetase
(FPGS). Gene expression array analysis revealed that DNA-methyltransferase 33 (DNMT3B) expression was
significantly elevated in both cell lines. Gene set enrichment analysis revealed that adipogenesis and mTORC1
signaling pathways were commonly upregulated in both resistant cell lines. Moreover, CpG island hypermethylation
was observed in both PDX resistant cells lines. In the 3D-culture assay, decitabine (DAC) plus PDX showed
synergistic effects in PDX-resistant cell lines compared with parental lines.

Conclusions: The resistance mechanisms of PDX were associated with reduced cellular uptake of PDX and/or
overexpression of DNMT3B. Epigenetic alterations were also considered to play a role in the resistance mechanism.
The combination of DAC and PDX exhibited synergistic activity, and thus, this approach might improve the clinical
efficacy of PDX.
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Background

Peripheral T-cell lymphomas (PTCLs) are a heterogeneous
group of mature T-cell and natural killer-cell neoplasms
accounting for approximately 5-15% of non-Hodgkin’s
lymphomas [1]. Owing to intrinsic chemotherapy resist-
ance, the prognosis of patients with PTCL is extremely
poor. The median time of overall survival of patients after
first relapse is estimated to be only 5.5 months [2, 3]. Con-
ventional chemotherapy regimens have shown limited
activity in the second-line setting and beyond, thereby
creating a need for new drugs that are selectively active
against T-cell malignancies.

Recently, pralatrexate (10-propargyl 10-deazaminopterin,
PDX) has been approved for the treatment of PTCL in the
USA, Japan, and other countries. PDX is a folate analog
designed to have a high affinity for reduced folate carrier
(RFC1), dihydrofolate reductase (DHFR), and folylpolyglu-
tamate synthetase (FPGS), resulting in increased cytotoxic
activity compared with methotrexate (MTX) [4, 5]. PDX is
transported into cancer cells via RFC1 and undergoes poly-
glutamylation by FPGS, leading to subsequent inhibition of
DHFR and termination of DNA synthesis. Although this
mechanism of DHFR inhibition is common for antifolates,
PDX may also have other effects in PTCLs.

MTX is a well-established antifolate that blocks the
action of DHFR, and has been used to treat various types
of non-Hodgkin’s lymphomas, including primary central
nervous system lymphoma and Burkitt’s lymphoma.
However, its clinical efficacy in PTCL is limited. PDX
has been studied across a variety of non-Hodgkin’s
lymphomas [6-8] and is most efficacious in patients
with PTCL, leading to its accelerated approval by the US
Food and Drug Administration for patients with re-
lapsed/refractory PTCL. A recent case match control
analysis confirmed that there was a survival advantage
for patients enrolled in the Pralatrexate in Patients with
Relapsed or Refractory Peripheral T-Cell Lymphoma
(PROPEL) study who received PDX compared with a
well-matched population of patients receiving the stand-
ard of care. These data suggested an overall survival
advantage in the PDX-treated population (14.5 months)
versus the control population (4 months) [7]. Because of
the apparent T-cell selective activity of PDX, this drug
has been studied in combination with a host of agents,
including romidepsin and 5-azacytidine.

Despite this promising activity, some patients can
acquire resistance to PDX over time. Identifying the
underlying mechanisms of drug resistance could lead to
rational strategies to prevent or overcome these mecha-
nisms of resistance, thereby improving clinical efficacy.
Accordingly, in this study, we newly established two
PDX-resistant T-lymphoblastic leukemia cell lines desig-
nated CCRF-CEM (CEM) and MOLT-4 (MOLT4) to
explore these mechanisms of drug resistance. These cell
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lines were then used to develop and evaluate comple-
mentary drug combinations as a means to overcome
acquired resistance to PDX.

Methods
Cell lines and culture
The human acute T-lymphoblastic leukemia cell lines
CCRF-CEM (CEM) and MOLT4 were purchased from
JCRB Cell Bank (Osaka, Japan, CEM:JCRB0033, MOLT-4:
JCRB9031) in 2015. The cells were cultured in RPMI-1640
medium supplemented with 10% fetal bovine serum at
37 °C under 5% CO, in a humidified atmosphere.
Spheroid (3D) cell culture was performed with Col-
Tgel (101 Bio, CA) following manufacture protocol. In
brief, 2 x 10° cells/100 uL were seeded in soft medium
into 48-well plates. The cells were placed in a standard
CO, cell culture incubator (37 °C, 5% CO,).

Reagents

PDX and forodesine (FDS) were kindly provided by
Mundipharma K.XK. (Tokyo, Japan). FDS is a novel
inhibitor of purine nucleoside phosphorylase and was
approved for the treatment of relapsed/refractory PTCL
in Japan [9]. MTX, cytarabine (AraC), bortezomib (BOR),
decitabine (DAC), deoxyguanosine (dGuo), and panobino-
stat (LBH589) were purchased from Sigma-Aldrich Japan
(Tokyo, Japan). PDX, DAC, and dGuo were dissolved in
dimethyl sulfoxide; MTX and BOR were dissolved in
phosphate-buffered saline; and FDS and AraC were
dissolved in pure water.

Establishment of resistant cell lines

CEM and MOLT4 cells were initially incubated with
0.01 nM PDX, and the concentration of PDX was then
gradually increased by 0.01-0.02 nM over a period of 10
months. The initial concentration was 1/100 the concen-
tration required to inhibit 50% growth of the cells (ICs).
After acquisition of PDX-resistant cells, single-cell clon-
ing was performed by a limiting dilution method accord-
ing to previous reports [10-13]. In brief, the culture
medium containing PDX-resistant cells (1.0 x 10° cells/
mL) was diluted 10,000-fold, and cells were dispensed
into 96-well plates at a density below one cell per well.
After culturing the cells for approximately 3 weeks, a
single clone was obtained from each well. Eleven PDX-
resistant CEM (CEM/P) single-cell clones and 19 PDX-
resistant MOLT4 (MOLT4/P) single-cell clones were
obtained, and clones that showed the most vigorous
proliferation were utilized for further experiments.

Growth inhibition assay

The ICso value of each drug was calculated from an
analysis of growth inhibition. To evaluate the prolifer-
ative activity of each cell line, 2,3-bis-(2-methoxy-4-nitro-5-
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sulfophenyl)-2 h-tetrazolium-5-carboxanilide (XTT) assays
were performed according to the manufacturer’s instruc-
tions (Roche, Indianapolis, IN, USA) [10, 14—18]. Spheroid
(3D) cell viability of Col-Tgel encapsulated cells was also
assessed using XTT assays. The combination index (CI) of
PDX and DAC was calculated using COMPUSYN software
(http://www.combosyn.com).

Quantification of apoptotic cell death

The percentage of apoptotic cells was assessed by flow
cytometry using an Annexin V-FLUOS Staining kit
(Roche). The cells were treated with PDX or FDS for 48
h, washed, and stained with propidium iodide, annexin
V-FITC, or both, according to the manufacturer’s
instructions. The cells were then analyzed using a FACS
Cantll flow cytometer (BD Bioscience, Franklin Lakes,
NJ, USA). Annexin V-positive cells were considered to
be apoptotic.

Gene expression analysis by reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) and microarray
RT-qPCR was performed by a two-step reaction. RNA
from each cell line was prepared using RNeasy Mini Kit
(Qiagen, Hilden, Germany). cDNA was then synthesized
using a PrimeScript RT reagent kit (Takara, Shiga,
Japan), and qPCR was conducted using a TaqgMan Fast
Advanced Master Mix kit (Applied Biosystems, Waltham,
MA, USA). Primers for RFC1 (Hs01099126), DNA meth-
yltransferase 33 (DNMT3B; Hs00171876), and glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH; Hs2786624)
were purchased from Applied Biosystems. The microarray
analysis was performed by Clariom S Arrays (Thermo
Fisher Scientific K. K, Tokyo, Japan) using 10ng total
RNA extracted from parental and PDX-resistant cells.

DNA methylation analysis

Genomic DNA extracted from parental and PDX-
resistant cell lines. DNA was was treated with sodium
bisulphite using the EZ DNA methylation Gold Kit
(Zymo Reserch,CA, USA) according to manufacturer’s
instructions. DNA methylation was quantified using the
lumina Infinium HumanMethylation450 (HM450) and
HumanMethylationEPIC (EPIC) BeadChip (Illumina, CA,
USA) run on an Illumina iScan System (Illumina, CA,
USA) using the manufacturer’s standard protocol.

Western blot analysis

Western blotting analysis was performed using standard
protocols as published elsewhere [10, 14]. Briefly, protein
lysates were extracted from the cells (1 x 107 cells) using
a Qproteome Mammalian Protein Prep Kit (Qiagen),
and the lysates were applied to 7.5% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis gels for separ-
ation. Proteins were then transferred onto Immobilon-P
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membranes (Millipore, Billerica, MA, USA). The
membranes were probed with primary and secondary
antibodies using standard techniques. Anti-FPGS (cat.
no. ab184564; Abcam, Cambridge, UK), anti-DHFR (cat.
no. 872442; R&D Systems, Minneapolis, MN, USA),
anti-caspase 3 (cat. no. 9665; Cell Signaling Technology,
Massachusetts, USA), anti-PARP (cat. no. 9542; Cell
Signaling Technology), anti-cleaved PARP (cat. no. 9541;
Cell Signaling Technology), and anti-p-actin (cat. no.
A2066] Sigma-Aldrich Japan) antibodies were used as
primary antibodies, and anti-rabbit polyclonal antibodies
(cat. no. 7074; Cell Signaling Technology, Tokyo, Japan)
were used as secondary antibodies. Protein detection
and quantification were performed using Amersham
ECL Prime Western Blotting Detection Reagent and an
ImageQuant LAS4000mini system (GE Healthcare Life
Sciences, Little Chalfont, UK).

Cellular uptake of ['*C]-PDX

Cellular uptake of PDX was calculated by a radioisotope
assay. The cells (5x 10° were incubated with 1nM
[**C]-PDX for 0, 5, 10, 20, or 30 min, and cell pellets
were dissolved using SOLUENE-350 and Clear-sol |
(Nacalai Tesque, Kyoto, Japan). Radioactivity was mea-
sured using a liquid scintillation counter.

Statistical analyses

Statistical analyses and graph generation were performed
using GraphPad Prism (version 6.0. GraphPad Software,
San Diego, CA, USA).

Results

Establishment of two PDX-resistant cell lines

To generate PDX-resistant cell lines, the human acute
T-lymphoblastic leukemia cell lines CEM and MOLT4
were exposed to gradually increasing PDX concentra-
tions for 10 months. The half-maximal inhibitory con-
centration ICs, values for the PDX-resistant cell lines
(CEM/P and MOLT4/P) were 20nM and 80nM,
respectively. In comparison with the ICs, values of
the parental cells (CEM: 0.6 nM, MOLT4: 2.4nM),
those of the PDX-resistant cell lines were increased
by approximately 33-fold (Fig. 1la). The doubling
times of PDX-resistant cells were similar to those of
their parental counterparts (Supplementary Data 1),
and the degree of resistance in these cells did not
change for 6 months despite culturing the cells in
medium without PDX.

To assess PDX-induced cytotoxicity, we evaluated
the induction of apoptosis using flow cytometry. After
48 h of treatment with PDX at the IC,5 (5nM for
CEM cells, 10nM for MOLT4 cells), induction of
apoptosis was observed in 78.7% of CEM cells and
77.7% of MOLT4 cells, whereas only 4.4% of CEM/P
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(See figure on previous page.)

Fig. 1 Establishment of PDX resistance. a) Dose response growth inhibition curves for PDX. Growth inhibition curve relative to untreated control
of T-ALL cell lines CEM and MOLT4. Cells were treated with various concentration of PDX for 72 h and cell viability was measured using the XTT
assay. Individual ICs values were determined from curve fitting. b) Induction of apoptosis by PDX. After 72 h of PDX treatment at the indicated
concentration (CEM and CEM/P cells: 5 nM, MOLT4 and MOLT4/P cells: 10 nM), cells were stained with Annexin V-FITC and Pl and analyzed by
flow cytometry. The percentage of cells in each group within the gated areas is indicated; the upper right panel represents cells undergoing late
apoptosis, and the lower right panel represents cells undergoing early apoptosis. €) PDX induced caspase activation. CEM and MOLT4 cells were
treated with PDX (CEM and CEM/P cells: 5 nM, MOLT4 and MOLT4/P cells: 10 nM) for 48 h. Western blots analysis of caspase-3 and PARP cleavage

CEM cell. MOLT4/P, PDX-resistance MOLT4 cell

were performed to characterize the apoptotic response. Beta-actin was used to normalized proteins contents and band intensity values are
shown below the corresponding band. Results are representative of three independent experiments. PDX, pralatrexate. CEM/P, PDX-resistance

cells and 5.9% of MOLT4/P cells were apoptotic at
the same concentrations (Fig. 1b). To confirm that
PARP1 cleavage occurred by PDX treatment, total
and cleaved PARP1 and caspase 3 were assessed in
both parental and PDX-resistant cell lines (Fig. 1c).
Cleaved PARP1 and caspase 3 were observed in both
parental cell lines but not in the PDX-resistant cell
lines, suggesting that no effective induction of apop-
tosis occurred in PDX-resistant cells.

Intracellular uptake of PDX

We next focused on the intracellular uptake of PDX be-
cause acquired mechanisms of resistance to MTX have
been attributed to decreased expression or inactivating
mutations of RFCI, resulting in decreased MTX intern-
alization [19-22]. RT-qPCR analysis showed that the
mRNA expression level of RFCI in CEM/P cells was sig-
nificantly decreased compared with that in parental
CEM cells (Fig. 2a). Accordingly, intracellular uptake of
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[**C]-PDX was significantly decreased in CEM/P cells.
The area under the curve values were 21,646.7 dpm-min
in CEM cells and 14,337.7 dpm-min in CEM/P cells (p =
0.0097; Fig. 2c). There were no significant differences in
RFCI expression or intracellular uptake of [**C]-PDX
between MOLT4 and MOLT4/P cells (Fig. 2b and d).
Sequencing analysis of exons 2 and 3 in RFCI, which
contain the MTX efflux site involved in antifolate resist-
ance [21, 22], showed no acquired somatic mutations in
PDX-resistant cells (Supplementary Data 2).

Expression levels of FPGS and DHFR

The resistance mechanisms associated with intracellular
folate metabolism are thought to be related to deficien-
cies in FPGS activity [17, 18, 23] and/or increased DHFR
expression [24-27]. FPGS catalyzes the formation of
polyglutamate chains, yielding active PDX polygluta-
mates. Therefore, we examined the expression levels of
FPGS protein in PDX-resistant cells and parental cells
and observed no significant differences in either pair of
cell lines (Fig. 3a, b). Furthermore, the protein expres-
sion level of DHEFR, a key enzyme involved in intracellu-
lar folate metabolism and the induction of intrinsic
resistance to MTX, was not significantly different in ei-
ther pair of cell lines (Fig. 3¢, d).

Patterns of cross-resistance to other anticancer agents

To assess acquired drug resistance in PDX-resistant
cells, the growth inhibitory effects of other anticancer
drugs were compared between parental cells and PDX-
resistant cells, and the ICsq values and relative degree of
resistance were determined (Table 1). As expected,
CEM/P and MOLT4/P cells were 2.1- and 3.0-times
more resistant to MTX, respectively. The sensitivity of
the cells to nucleoside analogs was more prominent in
PDX-resistant cells; the relative degree of resistance to
forodesine (FDS) was 0.4 in CEM/P cells and that to
cytarabine (AraC) was 0.1 in MOLT4/P cells. On the
other hand, CEM/P cells showed moderate resistance to
bortezomib (BOR), and the relative degree of resistance
was 1.8. No cross-resistance to LBH589 was observed in
PDX-resistant cell lines.

Gene expression and methylation analysis

To identify the potential mechanisms underlying PDX
resistance, we performed mRNA expression profiling of
PDX-resistant and parental cells using microarray analysis.
We identified 4227 and 4034 significantly deregulated tran-
scripts (more than 2-fold or less than 0.5-fold) in CEM/P
and MOLT4/P cells, respectively. Most of the differentially
expressed genes were unique to each cell line, and only 72
genes were commonly up- or downregulated between the
PDX-resistance cell lines (Fig. 4a). Among them, the DNA-
methyltransferase 3 (DNMT3B) expression level was
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significantly elevated in both CEM/P and MOLT4/P cells
versus their parental cells. There were no significant differ-
ences in the expression levels of folate metabolism pathway
components such as FPGS, DHFR, and thymidylate
synthase (7S) in either PDX-resistant cell line (Supplemen-
tary Data. 3). Gene set enrichment analysis (GSEA) was
performed for the PDX-resistant cell line comparison using
hallmark gene sets collections in the Molecular Signatures
Database (MSigDB). Four gene sets, namely the adipogene-
sis, mechanistic target of rapamycin complexl (mTORC1)
signaling, IL2/STATS5 signaling and inflammatory response
gene sets, were commonly correlated with the PDX-
resistance (Fig. 4b). The GSEA results of individual cell
lines are shown in Supplementary Data 4.

Next, we focused on epigenetic changes in PDX-
resistant cells because the DNMT3B expression level
was significantly elevated in both resistant cell lines.
DNA methylation arrays were applied, and the heatmap
of DNA methylation levels of the top 5% of the data (2
standard deviations) is shown in Fig. 4c. As expected,
the methylation status of CpG islands were increased in
both PDX-resistant cell lines versus their parental cell
lines (Fig. 4d). Furthermore, methylation sites from TSS
200 and 1st exon regions were also enriched in methyla-
tion signature of PDX resistance. There were no signifi-
cant changes in the methylation status of other regions,
such as the shore, shelf or open sea. We explored DNA
promoter methylation as a potential mechanism of
expression change. For genes with reduced expression in
both PDX-resistant cells, KDELC2 gene, a glucosyltrans-
ferase protein, had increased methylation in CpG
islands. The CUL1 and EGLNI genes had also increased
methylation in the shore. On the other hand, for genes
with increased expression in both PDX-resistant cells,
CBFA2T3, a transcription corepressor, had decreased
methylation in CpG island. There were no significant
changes in methylation for specific genes involved in
folic acid metabolism, such as RFCI, FPGS, DHFR and
TYMS, or genes involved in DNA methyltransferase
(DNMT1, DNMT3a and DNMT3b). We also examined
PDX sensitivity in DNMT3B knockdown cells, and the
IC5¢ values were 30 and 18 nM in CEM/P-mock and
CEM/P-shDNMTS3B cells, respectively, suggesting lim-
ited recovery of PDX sensitivity (Supplemental Data. 5).

Enhancement of the cytotoxicity of PDX with decitabine
(DACQ) in PDX-resistant cells

Finally, we evaluated the advantage of combining PDX with
DAC, an inhibitor of DNMT, which could pharmacologic-
ally counterbalance the high expression of DNMT3B, using
a 3D culture system. Treatment with DAC significantly
inhibited the cell growth in combination with PDX. Syner-
gistic effects (CI =0.33-0.39) were observed at the ICs in
both PDX-resistant cell lines (Fig. 5). This synergism was
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hypermethylation of CpG islands; and (iv) synergism
with the hypomethylating agent DAC.

The potential mechanisms of acquired PDX resistance
have gradually been uncovered in recent years [24, 28, 29],
and appear to be similar to the resistance mechanism of
MTX which have been extensively studied [30, 31]. The
most frequent mechanism mediating antifolate resistance
is related to the impairment of antifolate uptake, typically
due to reduced expression of RFC1 and/or inactivating
mutations in RFC1 [21, 22, 28, 32]. Increased antifolate
efflux owing to overexpression of multidrug resistance
efflux transporters has also been reported [30, 31]. Mecha-
nisms related to defective polyglutamylation have been
shown to be attributed to decreased FPGS expression, in-
activating mutations in FPGS, and increased expression of
gamma glutamyl hydrolase (GGH) [30, 31]. In addition,
amplification of DHFR and/or TS caused by overexpres-
sion has been reported, and mutations in these genes can
decrease their affinity for antifolates, resulting in antifolate
resistance [26, 30, 31]. Our results indicated that impaired

internalization of PDX owing to decreased expression of
RFC1 may be one of the mechanisms of PDX resistance in
CEM/P cells. In contrast, there were no obvious changes
in PDX uptake or folate metabolism-related proteins in
MOLT4/P cells, suggesting that other mechanisms were
involved.

As shown in Fig. 4, the expression level of DNMT3B
was increased in both PDX-resistant cell lines. Further-
more, gene set enrichment analysis revealed that PDX
resistance was related to adipogenesis, mTORC], the
inflammatory response and IL-2/STAT5 signaling
pathway. Overexpression of DNMT3B is related to drug
resistance [33, 34] and the mTORC1 pathway is known
to play an important role in the pathogenesis of lymph-
oma and various type of cancer [35], suggesting that
these mechanisms may contribute to PDX resistance. In
addition, DNMT3B plays an important role in the
methylation of CpG islands, and as expected, PDX-
resistant cells also had increased methylation of the CpG
locus. Knockdown of DNMT3B in CEM/P cells resulted
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in only partial restoration of PDX resistance, and no
specific hypermethylation gene that correlates with PDX
resistance was detected, but it is speculated that hyper-
methylation might be associated with PDX resistance.

The combination with DAC resulted in high suscepti-
bility to PDX in our resistant cells (Fig. 5), but did not
show a synergistic effect in parental cells. Recently,
several studies have explored potentially synergistic
combinations with PDX [15, 16, 29, 36-39]. For ex-
ample, T-cell lymphomas are driven by some epigenetic
defects [39], and sensitivity to epigenetic therapies such
as histone deacetylase (HDAC) inhibitors (e.g., romidep-
sin) or DNMT inhibitors [38] has been noted. The com-
bination of romidepsin and DAC increased the number
of modulated genes involved in apoptosis and cell cycle
arrest. Moreover, combinations of HDAC inhibitors and
DNMT inhibitors such as romidepsin and azacytidine or
DAC are also effective in the clinical setting [38, 39]. A
clinical trial evaluating the combination of DAC, PDX,
and pembrolizumab in PTCL is now underway
(NCT03240211). We expect that the combination of
PDX with DAC may be effective in relapsed/refractory
PTCLs in the clinical setting.

Conclusion

We established PDX-resistant T-cell acute lymphoblastic
leukemia cell lines, and the combination of DAC and
PDX exhibited a potent synergistic effect in these cells.
Reduced cellular uptake of PDX and epigenetic alter-
ations may contribute to the development PDX resist-
ance. These findings will support clinical trials for
patients with refractory/relapsed PTCL using PDX in
combination with other agents.
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