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Abstract

Background: PTEN is the most frequently lost tumor suppressor in primary prostate cancer (PCa) and its loss is
associated with aggressive disease. However, the transcriptional changes associated with PTEN loss in PCa have not
been described in detail. In this study, we highlight the transcriptional changes associated with PTEN loss in PCa.

Methods: Using a meta-analysis approach, we leveraged two large PCa cohorts with experimentally validated PTEN
and ERG status by Immunohistochemistry (IHC), to derive a transcriptomic signature of PTEN loss, while also
accounting for potential confounders due to ERG rearrangements. This signature was expanded to lncRNAs using
the TCGA quantifications from the FC-R2 expression atlas.

Results: The signatures indicate a strong activation of both innate and adaptive immune systems upon PTEN loss,
as well as an expected activation of cell-cycle genes. Moreover, we made use of our recently developed FC-R2
expression atlas to expand this signature to include many non-coding RNAs recently annotated by the FANTOM
consortium. Highlighting potential novel lncRNAs associated with PTEN loss and PCa progression.

Conclusion: We created a PCa specific signature of the transcriptional landscape of PTEN loss that comprises both
the coding and an extensive non-coding counterpart, highlighting potential new players in PCa progression. We
also show that contrary to what is observed in other cancers, PTEN loss in PCa leads to increased activation of the
immune system. These findings can help the development of new biomarkers and help guide therapy choices.
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Background
Previous molecular studies have explored the gen-
omic heterogeneity of prostate cancer (PCa) reveal-
ing distinct molecular subsets characterized by
common genome alterations [1–3]. Among these
molecular alterations, loss of the tumor suppressor
gene phosphatase and tensin homolog (PTEN) –
which is implicated in the negative-regulation of the
PI3K-AKT-mTOR pathway – has been identified as

one of the most common genomic drivers of primary
PCa [4, 5]. Since alterations in the PI3K pathway are
present in more than 30% of human cancers, the
identification of an expression signature associated
with PTEN loss has been investigated in different
tumor contexts, including breast, bladder, lung, and
PCa [6, 7].
Assessment of PTEN status by fluorescence in situ

hybridization and immunohistochemistry (IHC) in
large clinical PCa cohorts have shown a consistent as-
sociation with adverse pathological features such as
high Gleason score, extra-prostatic extension, as well
as prognostic value for biochemical recurrence and
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cancer-related death [4, 8]. IHC-based assessment of
PTEN status has been shown to correlate tightly with
genomic alterations of the PTEN locus and captures
not only loss of the gene, but also mutation and epi-
genetic changes that lead to PTEN functional inacti-
vation [4, 9, 10] and the potential clinical utility of
PTEN IHC as a valuable prognostic marker has been
demonstrated previously [11–14].
Though PTEN is involved in a myriad of cellular

processes spanning cellular proliferation to tumor
microenvironment interactions [5], the transcriptional
landscape related to PTEN expression has not yet been
explored in-depth, and the role of long non-coding
RNAs (lncRNAs) remains elusive [15]. These
observations, added to the evidence that subtle PTEN
downregulation can lead to cancer susceptibility [16],
demonstrate the important role of PTEN in cancer biol-
ogy but also highlight the need for additional studies.
Similarly, gene rearrangements of the ETS transcrip-

tion factor, ERG, with the androgen-regulated gene
Transmembrane Serine Protease 2 (TMPRSS2) are
present in ~ 50% of PCa from patients of European des-
cent. TMPRSS2-ERG fusion (herein denoted as ERG+ for
fusion present and ERG− for the absence of fusion) has
been shown to activate the PI3K-kinase pathway simi-
larly to PTEN loss [17], leading to increased proliferation
and invasion. Importantly, tumors harboring TMPRSS2-
ERG rearrangements show enrichment for PTEN loss
[17, 18]. The co-occurrence of these two genomic alter-
ations makes it challenging to dissect the contributions
of each to the transcriptomic landscape.
The goal of this study was to elucidate the transcrip-

tional landscape of PTEN loss in PCa through the analysis
of two large and very well clinically curated cohorts, for
which PTEN and ERG status was assessed by clinical-
grade IHC: The Natural History (NH) cohort, in which
patients that underwent radical prostatectomy for clinic-
ally localized PCa did not receive neoadjuvant therapy or
adjuvant hormonal therapy prior to documented distant
metastases [19]; and the Health Professionals Follow-up
Study (HPFS) cohort in which the patients were followed
for over 25 years [20]. Based on IHC-assessed PTEN status
for these cohorts, we built a PTEN-loss signature highly
concordant across the independent datasets, in both pres-
ence and absence of TMPRSS2-ERG fusion. Overall, this
PTEN-loss signature was associated with cellular processes
associated with aggressive tumor behavior (e.g., in-
creased motility and proliferation) and, surprisingly,
with increases in gene sets related to the immune re-
sponse. In addition, through our recently developed
FANTOM-CAT/recount2 (FC-R2) resource [21] and
copy-number-variation data, we expanded this signa-
ture beyond coding genes and report the non-coding
RNA repertory resulting from PTEN loss.

Methods
Data collection and immunostaining
All expression data used in this work were gathered
from public domain databases. In this work, we made
use of three cohorts: FC-R2 TCGA, Natural History
(NH), and Health Professionals Follow-up Study (HPFS).
Information about each cohort is summarized in Table 1.
Information about PTEN status by immunohistochemis-
try for the HPFS cohort was readily available and there-
fore obtained from the public domain. For NH cohort
samples, IHC staining for PTEN and ERG was per-
formed using a previously validated protocol [22]. Last,
for TCGA we used the Copy Number Variation (CNV)
called by the GISTIC algorithm to define PTEN status
and the expectation-maximization algorithm to define
ERG status.

Meta-analysis of NH and HPFS cohorts
Normalized microarray expression sets for the Natural
History and HPFS cohorts were obtained from the Gene
Expression Omnibus (GEO) [23]. We performed a meta-
analysis approach using a Bayesian hierarchical multi-
level model (BHM) for cross-study detection of differen-
tial gene expression implemented in the Bioconductor
package XDE [24] on microarray-based cohorts to ob-
tain a PTEN-null signature from PTEN IHC validated
samples. The model was fitted using the Δgp model with
empirical starting values and 1000 bootstraps were per-
formed. All remaining parameters were set to default
values. This analysis was also performed stratifying the
samples by ERG status to evaluate the impact of the
ERG rearrangement in the signature.

Differential expression analysis in the TCGA cohort
Raw coverage was obtained from the FC-R2 expression
atlas [21] and divided by the average read length to ob-
tain read counts. Only primary tumor samples with a
PTEN GISTIC score of − 2 and 0 were used in this ana-
lysis. Low count genes (< 5 CPM) were filtered and the
remaining genes were normalized with the trimmed

Table 1 Cohorts summary by PTEN-status for the 3 cohorts
used in this study. TCGA cohort included only primary tumor
samples with Gistic scores − 2 (PTEN-null) and 0 (PTEN-intact);
Health Professional Follow-up Study (all); and Natural History
cohort (samples with IHC call available). PTEN-null represents
samples with PTEN deletion and PTEN-intact regular primary
tumors

Cohort PTEN-null PTEN-intact N

TCGA 95 321 416

HPFS 91 299 390

Natural History 56 151 207

Total 242 771 1013
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mean of M-Values method [25]. A generalized linear
model approach coupled with empirical Bayes moder-
ation of standard errors and voom precision weights [26,
27] was used to detect differentially expressed genes in
the TCGA cohort. Adjusted p-values controlling for
multiple hypothesis testing were performed using the
Benjamini-Hochberg method [28] and genes with false
discovery rate (FDR) equal or less than 0.01 were
reported.

Gene set enrichment analysis (GSEA)
The results from the meta-analysis performed in the NH
and HPFS cohort were ranked by the weighted size ef-
fect (average of the posterior probability of concordant
differential expression multiplied by the Bayesian effect
size of each cohort). The results from the TCGA cohort
were ranked by t-statistics. Ranked lists were tested for
gene set enrichment. Gene set enrichment analysis
(GSEA) was performed using a Monte Carlo adaptive
multilevel splitting approach, implemented in the fgsea
[29] package. A collection of gene sets (Hallmarks,
REACTOME, and GO Biological Processes) were ob-
tained from the Broad Institute MSigDB database. The
androgen response gene set was obtained from Scheaffer
et al. [30]. Gene sets with less than 15 and more than
1500 genes were removed from the analysis, except for
the GO biological processes whose max size was set to
300 to avoid overly generic gene sets. The enriched
pathways were collapsed to maintain only independent
ones using the function collapsePathways from fgsea.

Results
Meta-analysis of natural history and health professionals
follow-up study cohorts
We sought to obtain a consensus signature of PTEN loss
that could be reproduced across independent cohorts.

We utilized a meta-analysis approach leveraging a multi-
level model for cross-study detection of differential gene
expression (DGE). We fitted a Bayesian hierarchical
model (BHM) for analysis of differential expression
across multiple studies that allowed us to aggregate data
from two previously described tissue microarray-based
cohorts where PTEN and ERG status was determined by
IHC (Table 1 and Fig. 1) and we derived a PTEN-loss
signature (Fig. 2). In this analysis, we observed 813 genes
for which the differential expression was highly concord-
ant (Bayesian Effect Size (BES) ≥ 1, posterior probability
of concordant differential expression (PPCDE) ≥ 0.95)
(Table S1).
The consequences of PTEN loss on cell cycle regulation

and tumor cell invasion have been extensively reported
previously [4, 31, 32]. Accordingly, beyond PTEN itself,
the top DEG genes in our signature reflected this profile
(Fig. 2 and Table S1). Dermatopontin (DPT) (BES = −
2.59, PPCDE = 1) and Alanyl membrane aminopeptidase
(ANPEP) (BES = − 2.53, PPCDE = 1) were found downreg-
ulated upon PTEN loss. Leucine-Rich Repeat Neuronal 1
(LRRN1) was among the genes up-regulated upon PTEN
loss (BES = 3.36, PPCDE = 1). These and other genes
found differentially expressed upon PTEN loss have all
been shown to be associated with a more aggressive
phenotype in several cancer types [5].
Notably, we found ERG among the top upregulated

genes in the signature (Fig. 2). As expected [18, 33, 34],
ERG rearrangement was more common among cases
with PTEN loss compared to intact PTEN in all cohorts
(Fisher exact test, p ≤ 0.001). Given this enrichment, it
was not surprising that ERG was among the most up-
regulated genes in the BHM signature, as well as
PLA2G7, which is among the most highly overexpressed
genes in ERG-rearranged PCa compared to those lacking
ERG rearrangements [35]. The presence of ERG and

Fig. 1 PTEN immunostaining in tissue microarray (TMA) spots from the Natural History Cohort. Left panel: intact PTEN protein is present in all
sampled tumor glands (brown chromogen). Right panel: PTEN loss in all sampled tumor glands. Images reduced from 40X
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ERG-regulated transcripts in the PTEN-loss signature
suggested that this signature might be confounded by
enrichment of ERG rearranged tumors among the tu-
mors with PTEN loss.
Since ERG rearrangements represent a major driver

event in PCa and PTEN loss is enriched in ERG-rear-
ranged tumors, we next investigated the role of ERG in

our PTEN-loss signature. To this end, we repeated the
Bayesian hierarchical model for the analysis of differential
expression by stratifying the samples by ERG status. In the
background with ERG rearrangement, we observed a simi-
lar signature to the previous overall PTEN-loss signature,
but without the aforementioned ERG-associated genes
(Supplementary figure S1 and Supplementary Table S2).

Fig. 2 Cross-study meta-analysis of differential gene expression. Genes in the same loci as PTEN such as RLN1 and ATAD1 were found
downregulated. PTEN-null vs PTEN-intact meta-analysis of HPFS/PHS and NH cohorts with Bayesian Hierarchical Model for DGE using XDE
showing the top 25 most concordant differentially up- and down-regulated genes. PTEN status was based on IHC assays
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Extending the PTEN-loss signature
To validate our PTEN loss signatures in an independent
cohort, we next examined the TCGA PRAD cohort [36],
where PTEN status was estimated by genomic copy num-
ber (CN) assessment, which was closely aligned with
PTEN gene expression (Figure S2). We recently developed
a comprehensive expression atlas based on the
FANTOM-CAT annotations. This meta-assembly is cur-
rently the broadest collection of the human transcriptome
[21, 37]. These gene models include many novel lncRNAs,
such as enhancers and promoters, that were annotated by
the FANTOM consortium based on transcriptomic and
epigenomic data, allowing the signature to be further ex-
panded beyond the coding repertoire. We used TCGA ex-
pression data from the FC-R2 expression atlas [21] to
perform DGE analysis stratified by the PTEN status as de-
rived from CN analysis. We also performed the same ana-
lysis in a stratified manner as in the HPFS and NH
cohorts, using the ERG expression with expectation
maximization (EM) algorithm to define ERG status given
the bimodal nature of ERG expression in PCa.
We observed 521 differentially expressed genes (DEG)

when comparing PTEN-null and PTEN-wild-type sam-
ples (FDR ≤ 0.01, LogFC ≥1), of which 257 were coding
genes and 264 were non-coding genes (Supplementary
Table S3). When stratifying the samples by ERG status,
we obtained 435 and 364 DEG in the background with
and without ERG rearrangement (Supplementary Tables
S4 and S5), respectively, with similar proportions of cod-
ing and non-coding genes. Using hypergeometric confi-
dence intervals, we evaluated the concordance between
the TCGA and the meta-analysis signatures. The results
were found to be significantly concordant (Figure S3),
confirming that CN is a reasonable proxy to IHC-
staining in TCGA. Despite differences in technology,
PTEN-status call, and statistical analysis, the high con-
cordance between the signatures suggests that they are
robust and reproducible, which allowed us to expand
this signature to genes that are not encompassed in
microarray, especially long non-coding RNAs.
Therefore, in this analysis, we were able to identify a

variety of differentially expressed lncRNAs that have
been already reported to be involved in PCa develop-
ment and progression such as PCA3, PCGEM1, SCHL
AP1, KRTAP5-AS1, Mir-596 [38–47] (Supplementary
Tables S3, S4 and S5). PCA3 is a prostate-specific
lncRNA overexpressed in PCa tissue. Similarly, lncRNA
PCGEM1 expression is increased and highly specific in
PCa where it promotes cell growth and it has been asso-
ciated with high-risk PCa patients [42, 43]. On the other
hand, to the best of our knowledge, KRTAP5-AS1 ex-
pression has not been previously associated with PCa.
In addition, among highly ranked differentially

expressed lncRNAs were the lncRNAs SChLAP1 and its

uncharacterized antisense neighbor AC009478.1.
SchLAP1 is overexpressed in a subset of PCa where it
antagonizes the tumor-suppressive function of the SWI/
SNF complex and can independently predict poor out-
comes [46, 47]. Besides, we observed a strong correlation
between SchLAP1 and AC009478.1 expression in TCGA
data only for PCa and bladder cancer (R = 0.94 and 0.85,
respectively, with p < 2.2e-26, Figure S4), suggesting a
possible, still unknown role also for this latter lncRNA
in such tumor types.
A substantial proportion of the 264 lncRNAs differen-

tially expressed upon PTEN-loss have not been previ-
ously reported in PCa, and 134 were only annotated in
the FANTOM-CAT meta-assembly (Table 2). The FAN-
TOM consortium has recently characterized hundreds
of lncRNAs via molecular phenotyping [48], however,
none of those associated with PTEN-loss was included
in their study, and therefore they still lack an assigned
function. Interestingly, it was shown that the expression
levels of genes in the same topological domain are highly
correlated only in tissue types in which these genes play
a functional role [48]. For this reason, we characterized
our novel PTEN-loss lncRNAs by analyzing the expres-
sion correlation with nearby genes across all cancer
types in TCGA.
Among the FANTOM-CAT exclusive genes with the

highest fold change in close proximity with coding genes,
CATG00000038715 and CATG00000079217 were down-
regulated, while CATG00000117664 was up-regulated (Fig-
ure S5). Notably, such genes were mostly expressed in PCa
as opposed to other cancer types in TCGA (Fig. 3).
CATG00000038715 is near CYP4F2 and CYP4F11, encod-
ing members of the cytochrome P450 enzyme superfamily,
and the expression levels of CATG00000038715 and
CYP4F2 are most highly correlated in PCa (R = 0.91, p <
2.2e-16) suggesting specificity for this cancer type (Figure
S6). CATG00000079217 is close to the coding gene FBXL7,
an F-box gene that is a component of the E3 ubiquitin lig-
ase complex. These genes showed only a weak correlation
(R = 0.14, p < 7.4e-4), however, CATG00000079217 expres-
sion was notably higher in PCa and breast cancer than in
other tumors, and it was moderately correlated with several
PCa biomarkers (e.g. KLK2, KLK3, STEAP2, PCGEM1,
SLC45A3) [42, 43, 49–53] (R = 0.37–0.57, p < 2.2e-16) in
TCGA. Finally, CATG00000117664 is located near
GPR158, a G protein-coupled receptor highly expressed in
the brain. The expression between GPR158 and
CATG00000117664 was significantly correlated (R = 0.54,
p < 2.2e-16), and highly specific to PCa [54] (Figure S6).

PTEN loss induces the innate and adaptive immune
system
We performed Gene Set Enrichment Analysis (GSEA)
using fgsea [29] and tested both the BHM- and TCGA-
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generated molecular signatures for enrichment in three
collections of the Molecular Signature Database
(MSigDB) [55, 56]: HALLMARKS, REACTOME, and
GO Biological Processes. Results were similar in both
signatures, with positive enrichment of proliferation and
cell cycle-related gene sets (e.g. MYC1 targets, MTORC1
signaling, cell cycle checkpoints, and DNA repair) and
both innate and adaptive immune system associated
gene sets (e.g. Neutrophil degranulation, MHC anti-
gen presentation, interferon-alpha, and gamma) (Figs. 4
and 5 and Supplementary Tables S6, S7, S8, S9, S10,
S11, S12, S13, S14, S15, S16, S17, S18, S19 and S20).
The positive enrichment of MHC antigen presenta-
tion, interferon-alpha, and -gamma in PTEN-null tu-
mors is consistent with our previous study showing
that the absolute density of T-cells is increased in
PCa with PTEN loss [57].

Since PTEN-null tumors are known to have decreased
androgen output, which is a strong suppressor of inflam-
matory immune cells [30, 58, 59], we hypothesized that
this decrease in androgen levels could activate an im-
mune response. We, therefore, performed a GSEA ana-
lysis using a collection of androgen-regulated genes from
Schaeffer et al. [30] to test if the PTEN-null signature
was enriched in this gene set. Both the TCGA- and
BHM-signature were shown to be positively enriched
in genes that were shown to be repressed upon di-
hydrotestosterone treatment (NES =1.39–155, FDR ≤
0.05) (Figure S7).

Discussion
With an estimated prevalence of up to 50%, PTEN loss
is recognized as one of the major driving events in PCa
[60]. PTEN antagonizes PI3K-AKT/PKB and is a key

Table 2 Summary of differentially expressed genes between PTEN-null and PTEN-intact in the TCGA cohort. Number of differentially
expressed genes with logFC greater than 1 and FDR lesser than 0.01 across different ERG backgrounds. The number in parenthesis
shows the number of genes exclusive to the FANTOM-CAT annotations

PTEN-null vs PTEN-intact overall PTEN-null vs PTEN-intact in ERG-fusion PTEN-null vs PTEN-intact in ERG-intact

Coding genes 257 (13) 226 (7) 185 (10)

Non-coding genes 264 (134) 209 (117) 179 (82)

Total 521 (137) 435 (124) 364 (92)

Fig. 3 Expression profiles of novel FANTOM-CAT genes CATG00000038715, CATG00000079217, and CATG00000117664 across 33 cancer types.
Violin-plots shows expression (log2 CPM + 1) distribution
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modulator of the AKT-mTOR signaling pathways which
are important in regulating cell growth and proliferation.
Accordingly, PTEN loss is consistently associated with
more aggressive disease features and poor outcomes. Saal
and collaborators previously generated a transcriptomic
signature of PTEN loss in breast cancer [6]. While this sig-
nature was correlated with worse patient outcomes in
breast and other independent cancer datasets, including
PCa, the signature unsurprisingly fails to capture key char-
acteristics of PCa such as ERG-rearrangement [6, 11]. Sig-
nificantly, a comprehensive transcriptomic signature
reflecting the landscape of PTEN loss in PCa has not been
described to date.

Immunohistochemistry assay is a clinically utilized
technique to determine the status of the PTEN gene,
with high sensitivity and specificity for protein levels,
which are reduced when genomic deletions occur [22]
(Fig. 1). Therefore, we analyzed transcriptome data from
two large PCa cohorts – the Health Professional Follow-
up Study and the Natural History study – for which
IHC-based PTEN and ERG status was available (n = 390
and 207, respectively), deriving a PTEN-loss gene ex-
pression signature specific to PCa (Fig. 2 and Supple-
mentary Table S1). Genes that are associated with
increased proliferation and invasion in several cancer
types, such as DPT, ANPEP, and LRRN1, were among

Fig. 4 Top enriched gene sets enriched in the TCGA and BHM cohorts. The cohorts stratified by ERG status and overall shows a predominance of
enriched cell cycle/proliferation and immune-response gene sets upon PTEN loss. Heatmap of mean-centered log2 signed p-values (normalized
enrichment score multiplied by -log10 of p-value) showing the top 10 enriched gene sets of each collection (ranked by signed p-value)
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the most concordant DEG in this signature. DPT has
been shown to inhibit cell proliferation through MYC
repression and to be down-regulated in both oral and
thyroid cancer [61, 62]. It has also been shown to con-
trol cell adhesion and invasiveness, with low expression
leading to the worst prognosis [62, 63]. ANPEP is known
to play an important role in cell motility, invasion, and
metastasis progression [63, 64], and lower expression of
this gene has been associated with the worst prognosis
[65]. LRRN1 is a direct transcriptional target of MYCN
and an enhancer of the EGFR and IGRF signaling

pathway [66]. Higher levels of LRRN1 expression pro-
mote tumor cell proliferation, inhibiting cell apoptosis,
and play an important role in preserving pluripotency-
related proteins through AKT phosphorylation [66–68],
leading to a poor clinical outcome in gastric and brain
cancer.
Notably, ERG was shown to be upregulated in our sig-

nature, which led us to perform a stratified analysis to
avoid capturing signals driven mostly by ERG overex-
pression. In this latter analysis, we were not able to de-
tect significant differences by PTEN status in the

Fig. 5 Expression of immune-related genes stratified by PTEN status. The top 20 genes were selected based on the leading edge of the GSEA of
the adaptive and innate immune system gene sets from REACTOME. Significances based on t-test between PTEN-null and PTEN-intact using log2
CPM + 1 value. Significance cutoffs: * = ≤ 0.05; **≤ 0.01; ***≤ 0.001; ****≤ 0.0001
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ERG−samples for the HPFS and NH cohorts, which were
quantified by gene expression microarrays. Conversely,
when analyzing the TCGA cohort, we were able to
detect significant changes by PTEN status in the ERG−

samples (Supplementary Tables S3, S4 and S5). How-
ever, given the known limitations of gene expression
microarrays performed on formalin-fixed material, such
as the limited dynamic range of expression values [69],
observations in the HPFS and NH datasets could have
been limited by the technology employed. Nevertheless,
concordance between the BHM- and TCGA- cohorts
were similar in both the overall and the ERG+ back-
ground comparisons (Supplementary Figure S3).
When we expanded our analyses to the non-coding

transcriptome using the TCGA cohort, we identified
several lncRNAs that have been already associated with
PCa progression. For instance, among these lncRNAs,
were PCA3 and KRTAP5-AS1. PCA3 acts by a variety of
mechanisms such as down-regulation of the oncogene
PRUNE2 and by acting as a miRNA sponge for mir-
1261, which down-regulate the PRKD3 gene, leading to
increase proliferation and migration [38, 39]. Conversely,
knockdown of PCA3 can lead to partial reversion of
epithelial-mesenchymal transition (EMT) [40] which can
lead to increased cell invasion, motility, and survival
[41]. Although KRTAP5-AS1 has not been associated
with PCa, it has recently shown that it can act as a
miRNA sponge for miRNAs such as mir-596, which tar-
gets CLDN4, an oncogene enhancing the invasion cap-
acity of cancer cells promoting EMT [41, 44]. Thereby
overexpression of KRTAP5-AS1 can potentially lead to
increased levels of CLDN4 [45]. Mir-596 has also been
shown to be overexpressed in response to androgen sig-
naling and associated with anti-androgen therapy resist-
ance [45].
Moreover, many lncRNAs exclusively annotated in the

FANTOM-CAT [37] were associated with PTEN-loss
and were shown to be expressed mostly in PCa (Fig. 3).
Since these genes are novel without an elucidated func-
tion, we analyzed their potential roles by investigating
coding genes located in the same genomic loci, under
the premise of “guilty-by-association”. The genes encod-
ing for CYP4F2, FBXL7, and GPR158, respectively, are
positioned in the same loci as 3 of the top DE lncRNAs
only known in the FANTOM-CAT (CATG00000038715,
CATG00000079217, and CATG00000117664, Figure
S5). CYP4F2 is involved in the process of inactivating
and degrading leukotriene B4 (LTB4). LTB4 is a key
gene in the inflammatory response that is produced in
leukocytes in response to inflammatory mediators and
can induce the adhesion and activation of leukocytes on
the endothelium [70]. FBXL7 regulates mitotic arrest by
degradation of AURKA, which is known to promote in-
flammatory response and activation of NF-κB [71, 72].

Likewise, increase expression of GPR158 is reported to
stimulate cell proliferation in PCa cell lines, and it is
linked to neuroendocrine differentiation [73].
We consistently observed a strong enrichment in im-

mune response genes and gene sets upon PTEN loss
(Fig. 4 and Supplementary Tables S6, S7, S8, S9, S10,
S11, S12, S13, S14, S15, S16, S17, S18, S19 and S20).
Immune-associated genes (i.e. GP2 and PLA2G2A) were
found amongst the top up-regulated genes in our
signature (Fig. 2). Positive enrichment of Interferon-
alpha- and gamma-response genes (FDR ≤ 0.01) further
suggests that a strong immuno-responsive environment,
with both innate and adaptive systems activated, is de-
veloped in PTEN-null tumors (Fig. 5). The positive en-
richment of MHC class II antigen presentation,
neutrophil degranulation, vesicle-mediated transport,
and FC receptor pathway-related genes suggests that
PTEN-null tumors may be immunogenic (Fig. 4). This
finding was particularly surprising given that PTEN is it-
self a key positive regulator of the innate immune re-
sponse, controlling the import of IRF3, which is
responsible for IFN production. Accordingly, disruption
of PTEN expression has previously been reported to lead
to decreased innate immune response [74]. Conversely,
it has also been hypothesized that the increased genomic
instability caused by, or associated with, PTEN loss can
increase immunogenicity in the tumor microenviron-
ment (TME) [75]. This finding is of particular interest
given that immune-responsive tumors can be good can-
didates for immunotherapy-based approaches.
Remarkably, despite the loss of PTEN being associated

with higher expression of the immune checkpoint gene
programmed death ligand-1 (PD-L1) in several cancer
types [76, 77], this is not true in PCa [78]. It has been
shown that PCa employ different combinations of im-
mune evasion mechanisms such as immunological ig-
norance, upregulated cytotoxic T lymphocyte-associated
protein 4, and upregulated decoy receptor 3 [79]. So far,
current immunotherapeutic interventions, such as PD-1
blockade, in PCa have not been successful. One of the
possible reasons is the lack of PD-L1 expression [78].
Therefore, alternative targets must be considered for im-
munotherapy in PCa. One alternative target is the
checkpoint molecule B7-H3 (CD276), whose expression
has already been associated with PCa progression and
worse prognosis [80] and has been suggested as a target
for immunotherapy [81, 82]. CD276 was one of the most
concordant up-regulated genes in our signature (Fig. 2)
suggesting that its expression is associated with PTEN
loss. Interestingly, B7-H3 expression may be down-
regulated by androgens [83].
The effects of androgen on the immune system have

already been extensively studied and reviewed [58]. An-
drogens are known to suppress inflammatory immune
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cells and impair the development and function of B- and
T-cells [59]. We, therefore, hypothesized that the de-
creased levels of androgen in PTEN-null TME could lead
to an unsuppressed immune system. By testing our sig-
nature for enrichment in androgen-related genes (AR)
derived from Schaeffer et al. [30], we observed that upon
PTEN-loss, androgen-sensitive genes that are typically
suppressed by DHT are positively enriched, indicating
that androgen levels or androgen response in PTEN-null
tumors may be lower than in their PTEN-intact counter-
parts (Figure S7). This decrease in AR-signaling has been
described in PTEN-null tumors, in which activation of
the PI3K pathway inhibits AR activity [84]. Furthermore,
AR inhibition activates AKT signaling by inhibiting AKT
phosphatase levels further boosting cell proliferation
[84], which has also been noted in this study (Fig. 3). Fi-
nally, in the non-coding repertoire, both PCA3 and
PCGEM1 are modulated by androgen [85, 86] and were
down-regulated upon PTEN loss which tracks with the
observed decreased androgen response in PTEN-null tu-
mors (Figure S5 and S7).
Altogether, we have generated a highly concordant

gene signature for PTEN loss in PCa across three inde-
pendent datasets. We show that this signature was
highly enriched in proliferation and cell cycle genes,
leading to a more aggressive phenotype upon PTEN loss,
which is concordant with the literature. We have also
highlighted some lncRNAs whose expression shows high
specificity in PCa. Unfortunately, the roles of these
lncRNAs are currently unknown and further functional
studies are warranted, we have noted that they are in
proximity to genes involved in immune response. We
have shown that PTEN loss is associated with an in-
crease in both innate and adaptive immune responses.
Although the literature shows that PTEN loss usually
leads to immuno-suppression, we find evidence that this
finding may be reversed in PCa. This observation has
potential implications in the context of precision medi-
cine since immune responsive tumors are more likely to
respond to immunotherapies. Therefore, PTEN-null tu-
mors might benefit more from this approach than
PTEN-intact tumors. Potentially, PTEN status can guide
immunotherapy combination with other approaches
such as androgen ablation.

Conclusion
Using the FC-R2 resource, we were able to highlight
many lncRNAs that may be associated with PCa
progression. Although functional characterization of
these lncRNAs is beyond the scope of this study, we
have shown that these novel lncRNAs are highly specific
to PCa and track with several coding mRNAs and
lncRNAs already reported to be involved in PCa devel-
opment and progression, most notably, genes involved

in the immune response. By providing a PCa-specific
signature for PTEN loss and highlighting potential
new players, we hope to empower further studies on
the mechanisms leading to the development and pro-
gression of PCa that can aid in the development of
potential biomarkers, drug targets, and guide therapies
choice.
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