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Abstract

Background: The overwhelming majority of dose-escalation clinical trials use methods that seek a maximum
tolerable dose, including rule-based methods like the 3+3, and model-based methods like CRM and EWOC. These
methods assume that the incidences of efficacy and toxicity always increase as dose is increased. This assumption is
widely accepted with cytotoxic therapies. In recent decades, however, the search for novel cancer treatments has
broadened, increasingly focusing on inhibitors and antibodies. The rationale that higher doses are always associated
with superior efficacy is less clear for these types of therapies.

Methods: We extracted dose-level efficacy and toxicity outcomes from 115 manuscripts reporting dose-finding
clinical trials in cancer between 2008 and 2014. We analysed the outcomes from each manuscript using flexible
non-linear regression models to investigate the evidence supporting the monotonic efficacy and toxicity assumptions.

Results: We found that the monotonic toxicity assumption was well-supported across most treatment classes and
disease areas. In contrast, we found very little evidence supporting the monotonic efficacy assumption.

Conclusions: Our conclusion is that dose-escalation trials routinely use methods whose assumptions are violated by
the outcomes observed. As a consequence, dose-finding trials risk recommending unjustifiably high doses that may
be harmful to patients. We recommend that trialists consider experimental designs that allow toxicity and efficacy
outcomes to jointly determine the doses given to patients and recommended for further study.
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Background
A goal of dose-finding clinical trials is to evaluate out-
comes under a set of investigational doses. A common
general approach starts by giving a relatively low dose to
a small cohort of patients. The outcomes of this cohort
affect the dose given to the next. For instance, if no unac-
ceptable toxic reactions are seen in this initial cohort, the
next cohort is likely to be given a higher dose. However,
if outcomes are adverse, the next cohort might be given
the same dose or a lower dose, or the trial might be halted
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altogether. This sequential and adaptive approach con-
tinues until the experimental design identifies a suitable
dose. This pattern of starting low and seeking to escalate
dose justifies the descriptor dose-escalation trials.
The most common approach [1, 2] in dose-escalation

trials is the family of rule-based A+B designs, the most
famous example of which is the perennial 3+3 design [3].
It evaluates doses in cohorts of three patients, using a set
of rules to escalate dose so long as an unacceptably high
incidence of dose-limiting toxicity (DLT) is not seen.
The main alternative class of dose-escalation methodol-

ogy comprises the so-called model-based designs. These
use statistical models to estimate the dose-event curve.
Whilst model-based methods are used far less frequently
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than rule-based methods, two designs that have seen rel-
atively wide use in recent years [2] are the continual
reassessment method (CRM) [4] and the escalation with
overdose control (EWOC) method [5].
Biostatisticians have encouraged trialists to shift from

rule-based to model-based methods, largely because they
offer better performance [6–8]. The two approaches, how-
ever, share some fundamental assumptions. Firstly, they
each assume that the probability of DLT increases as
dose is increased. This reflects the toxicologists’ adage the
dose makes the poison, a rule that is generally accepted
without challenge. The 3+3, CRM and EWOC designs
all select doses based only on binary DLT outcomes in
pursuit of the maximum tolerable dose (MTD), the high-
est dose with toxicity probability less than some critical
pre-specified value. So long as two doses are deemed tol-
erable, the higher dose is favoured. Efficacy outcomes
like response or survival are not formally used in dose-
selection decisions. There are variants of the CRM design
[9, 10] and other statistical approaches [11–13] for dose-
finding by co-primary toxicity and efficacy outcomes.
However, these have experienced comparatively little use
[2, 14].
In dose-finding trials, investigators seek to identify tol-

erable and efficacious doses. The reliance solely on a toxi-
city outcome in the majority of dose-finding trials dictates
that an assumption is made about the efficacy outcome.
The assumption is that higher doses are always more

efficacious.
We refer to this as the monotonic efficacy assumption.

In MTD-seeking trials, investigators will escalate dose
without formal reference to an efficacy outcome. When
the monotonic efficacy assumption holds, the MTD max-
imises the expectation of efficacy for a specified risk of
toxicity. However, a plausible way in which the monotonic
efficacy assumption can be violated is when the proba-
bility of efficacy plateaus at some critical dose. Escalation
beyond this point exposes patients to a greater risk of
toxicity for no accompanying increase in the probability
of efficacy. As such, the monotonic efficacy assumption
is rather more controversial than the monotonic toxicity
assumption.
Monotonic efficacy has a plausible rationale in the treat-

ments that have formed the backbone of anti-cancer ther-
apies for decades. Cytotoxic treatments like chemother-
apy damage tumours and healthy tissue alike. The pres-
ence of toxicity is a sign that anti-tumour activity is
probably happening as well. In this setting where toxi-
city and efficacy are broadly accepted to be coincident,
the use of dose escalation designs became commonplace.
In recent years, however, numerous targeted therapies,
immunotherapies and cell therapies have been approved
for use against cancer. In a recent systematic review of
dose-finding methodologies used between 2008 and 2014,

Chiuzan et al. [2] found that over half of the trials investi-
gated a targeted therapy or immunotherapy and the over-
whelming majority used an MTD-seeking method. With
these novel treatment classes, the rationale for assuming
that efficacy always increases in dose is less clear.
There are notable instances in the literature where

a monotonic dose-efficacy relationship has not been
observed. For instance, a major recent success in the
development of novel anti-cancer drugs has been the PD-1
blockade antibody, pembrolizumab. A phase I trial inves-
tigated pembrolizumab doses of 1 mg/kg, 3 mg/kg and 10
mg/kg every 2 weeks, and 2 mg/kg and 10 mg/kg every 3
weeks in 30 patients with various malignancies [15]. Large
expansion cohorts in non-small-cell lung cancer (NSCLC)
further evaluated 495 patients at doses 2 mg/kg or 10
mg/kg every 3 weeks or 10 mg/kg every 2 weeks [16]. Sub-
sequently, a phase III trial that contributed to a licensing
application in NSCLC randomised 345 patients to pem-
brolizumab 2 mg/kg, 346 to pembrolizumab 10 mg/kg,
and compared each of these experimental arms to a con-
trol arm comprising 343 patients randomised to docetaxel
[17]. Despite the wide range of doses investigated in large
sample sizes, the phase III trial observed very similar over-
all survival and RECIST response outcomes in the two
pembrolizumab doses, with each producing materially
better outcomes than the control arm. The drug was sub-
sequently licensed at 200 mg (i.e. not adjusted for patient
weight) every 3 weeks, reflecting the absence of extra effi-
cacy at higher doses. Assuming an average adult weight
of 70-80kg, the licensed dose is situated at the lower end
of the doses investigated throughout these three clinical
trials.
We naturally wonder about the suitability of the mono-

tonic efficacy assumption in a wider sense. In this
manuscript, we investigate two related questions. What
evidence is there that the probabilities of a) toxicity, and
b) efficacy increase in dose in modern cancer therapies?

Methods
We sought to identify a broad sample of manuscripts
reporting recent dose-finding clinical trials in oncology.

Identifying manuscripts
Chiuzan et al. [2] conducted a systematic review of the
methods used in cancer dose-finding trials. Their find-
ings mirrored those of Rogatko et al. [1] from the pre-
vious decade that over 90% of dose-finding trials use
a rule-based design like 3+3. The authors found 1,712
manuscripts published between 2008 and the first half of
2014. The authors published in their paper a large table
summarising the trials that used model-based methods,
like CRM or EWOC, of which there were 92 examples.
Whilst extracting data from 1,712 papers would be infea-
sible, extracting data from 92 was possible. However, the
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subset of trials that use model-based methods may not
be representative of the entire sample. For this reason, we
supplemented the list of 92 model-based papers with 30
randomly-selected papers that used rule-based methods,
stratified by year of publication. Combined, this produced
a sample of 122 manuscripts.

Extracting data

Each of the 122 manuscripts [18–139] presented the
results of at least one dose-finding experiment in humans.
Some papers reported the results of more than one
experiment. From each experiment, we extracted descrip-
tive data pertaining to the patient population, the dose-
varying treatment, and any concomitant treatments. Con-
cerning outcomes, we extracted the dose-levels adminis-
tered, the number of patients evaluated at each, and the
number of DLT and objective response events recorded at
each. These outcomes are explained and justified in the
following sections.

Dose-level outcomes vs pooled outcomes

We only recorded outcomes broken down by dose-level
because these would allow us to address the research
question pertaining to the evidence for monotonically
increasing toxicity and efficacy probabilities. We did not
collect outcomes that were reported by pooling all dose-
levels because this would not address our research ques-
tion.

Toxicity outcomes

Dose-limiting toxicity (DLT) is the de-facto standard
safety outcome in dose-finding trials. Manifestation of
DLT involves the occurrence of pre-specified adverse
events (AEs) that are serious enough that they would
motivate the clinicians to rule out higher doses in the
affected patient or consider the temporary suspension
or complete cessation of current therapy. There is no
standard definition of DLT across trials but the outcome
would be defined in each trial protocol and remain con-
sistent across the doses investigated within each trial.
The definition of DLT in a given trial may reflect the
clinical characteristics of the disease and the anticipated
adverse events from the entire treatment ensemble (i.e.
arising from the experimental therapy and concomitant
therapies).
Data on DLT outcomes were sought in every

manuscript. We analyse outcomes for DLT because it was
the most widely-reported toxicity outcome measure.

Efficacy outcomes

The question motivating this research concerns drug effi-
cacy and how this changes as dose is increased. Efficacy
is only loosely defined in cancer. There is no single out-
come that is unambiguously accepted as the variable best

reflecting efficacy. Applications for drug licensing are
generally supported by phase III trials that use survival
outcomes like overall survival (OS) and progression-free
survival (PFS). In contrast, early phase trials, when they
evaluate efficacy, tend to use surrogate outcomes that can
be evaluated over the short-term like disease response.
Assessing disease response generally involves compar-

ing the extent of disease (e.g. tumour size or number of
leukaemic cells) at baseline and after treatment adminis-
tration to characterise the patient’s response to treatment
using one of several categories. RECIST [140] is the most
common response outcome categorisation used in solid
tumour trials. RECIST categorises each disease assess-
ment as one of: complete response (CR); partial response
(PR); stable disease (SD); or progressive disease (PD).
Researchers have defined analogues to RECIST in other

cancers, including blood cancers where diseased cells
reside in the blood rather than a discretemeasurablemass.
An example of this is the Cheson criteria in acute myeloid
leukaemia (AML) [141] and iwCLL criteria in chronic
myeloid leukaemia [142]. These contain response cate-
gories that are similar to those in RECIST, with slight
modifications to reflect the phenomena specific to the
disease.
Under RECIST, an objective response (OR) is said

to occur when a patient experiences CR or PR. Under
the RECIST analogues, further response categories are
included in OR. For instance, in AML, a patient with
complete remission with incomplete blood count recovery
would be considered to have experienced OR.
Data on OR outcomes were sought in every manuscript.

We analyse outcomes for OR because it was the most
widely-reported efficacy outcome measure.

Orderability of doses

Analysing how the probabilities of events change as dose
increases requires that we are working with increas-
ing doses. The general 3+3, CRM and EWOC methods
require that the doses under investigation are fully order-
able. That is, we need to be able to unambiguously say that
di < dj or di > dj for each pair of doses in the set of doses
under investigation.
When we encountered dose-levels that were not fully

orderable, for the purposes of conducting statistical anal-
ysis we broke the doses up to form fully orderable subsets
that we called analysis series.
There are many possible subsets of a set so the way we

formed the analysis series was unavoidably subjective. To
promote objectivity, we followed some simple rules. We
sought to maximise the size of the largest fully orderable
series. Furthermore, we avoided allocating a dose to sev-
eral series unless repetition was the only way to avoid
having an orphan dose (i.e. a series of size 1).



Brock et al. BMC Cancer          (2021) 21:777 Page 4 of 18

Consider, for instance, the three dose scenario: dose 1
= 10mg of drug A + 20mg of drug B; dose 2 = 20mg A +
10mg B; dose 3 = 20mgA+ 20mg B. This set of doses is not
totally orderable because it is impossible to say whether
dose 1 is higher or lower than dose 2. However, each of
these doses is categorically less than dose 3. Thus, in this
hypothetical scenario, we would have analysed outcomes
of the two totally orderable subsets (dose 1, dose 3) and
(dose 2, dose 3). In doing so, the outcomes at dose 3 would
have featured in the analyses twice. The alternative would
have been to arbitrarily throw away the outcomes at dose
1 or dose 2, an option we rejected because it is wasteful.
In summary, the data have been recorded in a way

amenable to answering the research questions.

Database creation

Data were extracted from papers and recorded on prior-
written standardised forms. The data were then recorded
on sheets in an Excel file that was deposited in the Univer-
sity of Birmingham’s data repository [143].
Data were extracted by VH, GS, KB and CP. Data for

52 manuscripts were extracted by two different authors
and differences were resolved by discussion. Data for 70
manuscripts were extracted by one author.

Analysis model

The DLT and OR outcomes we extracted were binary in
nature. Outcomes were analysed within study using Emax
models [144].
Emax is a flexible non-linear approach for fitting sig-

moidal (i.e. S-shaped) dose-response curves to continuous
or binary responses. In our analysis, the binary response
variable was the patient-level presence of DLT or OR.
The explanatory variable was the dose-level administered.
Emax can capture relationships where the mean response
increases in dose, decreases in dose, or is independent of
dose. Separate models were fit to the collection of patient
outcomes in each study. Outcomes from different studies
were not pooled because of the disparate patient popula-
tions and definitions of DLT and OR. Each of these factors
remained consistent within each analysis series. The fit-
ted values from the Emax models represent the event
probabilities at each dose, ranging from 0 to 1.
Binary outcomes might generally suggest analysis via

logit linear regressionmodels.We did not use logit models
because they assume that the event probability invariably
tends to 1 with large enough predictor values. This is
inappropriate in our analysis that seeks to investigate how
event probabilities vary with dose, including the possibil-
ity that event probabilities plateau at values less than 1.
Whilst it may be acceptable to assume that a high enough
dose will guarantee a toxic outcome, empirically it is inap-
propriate to assume that a high enough dose guarantees

an efficacious response. The relative strength of the Emax
model is that it allows the event probability to plateau at a
value less than 1. It contains as a special case the scenario
reflected by logit models where the event probability tends
to 1 as dose is increased.
We used both maximum likelihood and Bayesian

approaches to fit Emax models. Maximum likelihood
models were fit because they do not require the spec-
ification of priors. However, the analysis series in this
research were very small, with some data-sets includ-
ing fewer than 10 patients. In several instances, max-
imum likelihood models failed to converge. In these
circumstances, Bayesian models can be extremely valu-
able because the specification of very small amounts of
information in prior distributions promotes model con-
vergence. Bayesian models succeeded in estimating dose-
event curves in all instances. Our chosen prior distribu-
tions are introduced briefly below and expanded in detail
in the supplementary appendix.
The height of each dose-event curve was calculated

as the model-fitted event probability at the highest dose
under investigation minus that of the lowest dose. This
concept is illustrated graphically in Figure 1 in the supple-
mentary appendix.

Prior distributions

For the Bayesian analyses, we were required to specify
prior distributions on the four parameters in the Emax
model. We selected uniform priors on the parameters that
reflect the minimum and maximum event probabilities,
constrained to take values only in the region from 0 to
1. This meant that all event probabilities at the lowest
and highest doses were equally likely, with no inclination
towards a particular probability.
Prior distributions on the other two parameters, that

control the location and steepness of the S-curve, were
chosen to provide very modest information to constrain
estimation to the region of feasible values. Full details on
prior selection are given in the supplementary appendix,
including in supplementary Figure 2 a plot of candidate
event curves that are generated by the priors.

Appraisingmodel fits

Model-generated dose-event curves were inspected visu-
ally alongside source data to verify the quality of model
fits. Furthermore, we recorded metrics for all Bayesian
models that can diagnose a potentially poor model fit.
Further details are given in the supplementary appendix.

Software

Maximum-likelihood Emax models were fit using the
DoseFinding package [145] and Bayesian models were
fit using the brms package [146] in R [147]. Data
processing was aided using tidyverse [148] packages,
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posterior samples were extracted using tidybayes
[149], and plots were produced using ggplot2 [150].

Results
115 (94%) of the 122 examined manuscripts reported out-
comes by dose-level. After extracting data and creating
fully-orderable dose subsets, these yielded 155 analysis
series for DLT, and 93 analysis series for OR (Fig. 1).
Characteristic information is summarised in Table 1.

Patient groups
Three-quarters of the data analysed came from non-
haematological cancers. In approximately one third of
cases, the patient group comprised different types of solid
tumour. Most commonly, however, trials were conducted
within specific cancer sites, with breast, gastrointestinal,
and lung cancers featuring relatively frequently.
Approximately one quarter of the data came from trials

in haematological malignancies. Once again, trials were
sometimes conducted in fairly heterogeneous patient
groups and sometimes in specific diseases like AML, CLL
and lymphoma.

Experimental treatments
The treatment type most commonly undergoing dose-
escalation was inhibitors, contributing 58 (37%) DLT
series and 43 (46%) OR series. Chemotherapies were
also common targets for dose-escalation, contributing 51
(33%) DLT series and 25 (27%) OR series. Monoclonal

antibodies were fairly infrequent in this data set, con-
tributing only 8 (5%) DLT series and zero OR series.
Trials that escalated dose in two different treatment types
were common, with chemotherapy plus inhibitor themost
common pairing, yielding 11% of the DLT series and 13%
of the OR series. The median of doses in an analysis series
was 4 (IQR = 2, 5).

Monotonicity of DLT and OR in dose
Fitted curves for the dose-DLT series produced by the
Bayesian Emax models are shown in Fig. 2. Each line
reflects the best fit to all of the DLT outcomes observed
in one analysis series. A separate panel is shown for each
type of treatment that underwent dose-escalation. Infor-
mation on patient group and concomitant therapies are
not shown in this plot.
We see that the majority of the fitted DLT series show

a positive relationship with dose, reflecting that DLT
becomes more likely as dose is increased. This is seen in
all types of therapy and matches our expectation that the
dose makes the poison. The fitted series for inhibitors and
chemotherapies appear to increase more steeply than for
other therapies.
Fitted curves for the dose-OR series produced by the

Bayesian Emax models are shown in Fig. 3. Contrast-
ing to Fig. 2, we see that there are materially fewer OR
curves than DLT curves. However, it is clear that the fitted
OR curves are much less likely to show a strong posi-
tive association between dose and response. It is striking

Fig. 1 The data extraction process. The procedure for forming fully orderable subsets of doses is described in the text
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Table 1 Characteristics of manuscripts studied and outcome series extracted

Manuscripts, N = 115 DLT series, N = 155 OR series, N = 93

Year of publication

2008 13 (11%) 17 (11%) 13 (14%)

2009 9 (7.8%) 14 (9.0%) 10 (11%)

2010 9 (7.8%) 10 (6.5%) 8 (8.6%)

2011 20 (17%) 23 (15%) 11 (12%)

2012 26 (23%) 35 (23%) 23 (25%)

2013 16 (14%) 22 (14%) 16 (17%)

2014 22 (19%) 34 (22%) 12 (13%)

Experimental design

Model-based 85 (74%) 116 (75%) 56 (60%)

Rule-based 30 (26%) 39 (25%) 37 (40%)

Disease class

Non-haematological 82 (71%) 117 (75%) 71 (76%)

Haematological 30 (26%) 31 (20%) 18 (19%)

Both 2 (1.7%) 6 (3.9%) 4 (4.3%)

Not disclosed 1 (0.9%) 1 (0.6%) 0 (0%)

Disease

Solid tumours 48 (31%) 29 (31%)

Breast cancer 9 (5.8%) 8 (8.6%)

Gastrointestinal cancer 10 (6.5%) 6 (6.5%)

AML 7 (4.5%) 6 (6.5%)

Lung cancer 9 (5.8%) 3 (3.2%)

Lymphoma 6 (3.9%) 5 (5.4%)

Multiple myeloma 6 (3.9%) 4 (4.3%)

Glioma 5 (3.2%) 4 (4.3%)

Melanoma 4 (2.6%) 4 (4.3%)

Mixed haematological cancers 8 (5.2%) 0 (0%)

CNS tumours 4 (2.6%) 3 (3.2%)

Head and neck cancer 4 (2.6%) 3 (3.2%)

Brain cancer 5 (3.2%) 1 (1.1%)

Lymphoma and advanced solid tumours 4 (2.6%) 2 (2.2%)

Sarcoma 3 (1.9%) 3 (3.2%)

CLL 3 (1.9%) 2 (2.2%)

Hepatocellular carcinoma 2 (1.3%) 2 (2.2%)

Renal cell carcinoma 2 (1.3%) 2 (2.2%)

Biliary tract cancer 3 (1.9%) 0 (0%)

Glioblastoma 2 (1.3%) 1 (1.1%)

NSCLC 2 (1.3%) 1 (1.1%)

SCLC 3 (1.9%) 0 (0%)

Cervical cancer 1 (0.6%) 1 (1.1%)

how few positive gradients there are. Even amongst
chemotherapies, there is scant evidence of greater efficacy
at higher doses. The single OR series for an antibody-drug
conjugate and one of the series for an immunomodulatory

drug show comparatively strong evidence of a positive
dose-response effect.
The heights of the fitted dose-DLT and dose-OR curves

are shown in Fig. 4, with statistics for the two outcomes
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Table 1 Characteristics of manuscripts studied and outcome series extracted (Continued)

Manuscripts, N = 115 DLT series, N = 155 OR series, N = 93

Colorectal cancer 1 (0.6%) 1 (1.1%)

Gynaecological cancer 1 (0.6%) 1 (1.1%)

B-cell malignancies 0 (0%) 1 (1.1%)

Not disclosed 1 (0.6%) 0 (0%)

Pancreatic cancer 1 (0.6%) 0 (0%)

Rectal cancer 1 (0.6%) 0 (0%)

Treatment undergoing dose-escalation

Inhibitor 58 (37%) 43 (46%)

Chemotherapy 51 (33%) 25 (27%)

Chemotherapy + inhibitor 17 (11%) 12 (13%)

Monoclonal antibody 8 (5.2%) 0 (0.0%)

Immunomodulatory 4 (2.6%) 2 (2.2%)

Immunomodulatory + chemotherapy 3 (1.9%) 2 (2.2%)

Radiotherapy 4 (2.6%) 1 (1.1%)

Oncolytic virus 2 (1.3%) 2 (2.2%)

Radiopharmaceutical + inhibitor 2 (1.3%) 2 (2.2%)

Cell therapy 1 (0.6%) 2 (2.2%)

Antibody-drug conjugate 1 (0.6%) 1 (1.1%)

Cytokine 1 (0.6%) 1 (1.1%)

Chemoprevention 1 (0.6%) 0 (0%)

Gene therapy 1 (0.6%) 0 (0%)

Not disclosed 1 (0.6%) 0 (0%)

Treatment ensemble contains chemotherapy 91 (59%) 49 (53%)

Number of dose-levels 4 (2, 5) 4 (2, 5)

plotted side-by-side within treatment type. The dashed
red line at zero reflects the null value where there is
no relationship between dose and event. Positive curve
heights indicate that the event became more likely as dose
is increased, and vice-versa.
We see that the majority of DLT curves show a positive

curve height in all classes of treatment. There are infre-
quent series that suggest no relationship, or a modestly
negative relationship. In stark contrast, the same statistics
for theOR series straddle the null line in themost frequent
treatment categories, demonstrating a lack of evidence in
support of the monotonic efficacy assumption.
Furthermore, the curve heights of the DLT series show

much greater variability than those of the OR series. There
are some instances where the probability of DLT increased
quite rapidly as dose increased.
Curve heights for DLT and OR series are plotted by type

of disease in Figure 3 in the supplementary appendix. We
see that the phenomena we have described are broadly
observed across most disease types.
Similarly, Figure 4 in the supplementary appendix shows

the equivalent inferences split by class of dose-finding

methodology (i.e. rule-based or model-based). The two
OR series with the steepest positive relationship with
dose both use a rule-based design. Generally, however,
the heights of the DLT and OR curves from studies
that used model-based designs were similar to those
yielded by rule-based designs. In both groups, the obser-
vation remained that DLT curves commonly increased
with dose whilst OR curves were mostly invariant in
dose.
The inferences thus far have come from the Bayesian

Emax models, where the statistical model fitting proce-
dure succeeded in all instances. We also sought to analyse
series using maximum likelihood Emax models. The max-
imum likelihood model fitting procedure failed in many
instances. Examples of model-fitting failure were proce-
dures that did not converge, or procedures that yielded
extremely large estimates for the standard errors of model
parameters. For completeness, we show the fitted DLT
and OR series yielded by the maximum likelihood mod-
els in Figures 5 and 6 in the supplementary appendix. The
fitted series produced by the maximum likelihood mod-
els are less smooth. Supplementary Figure 7 shows that
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Fig. 2 Fitted dose-DLT curves yielded by Bayesian Emax models. For presentation, doses are centralised at zero (i.e. the average dose-level for each
series is subtracted) and up to the middle nine doses are shown, to allow the series to be visualised together

the curve heights estimated by maximum likelihood mod-
els are generally more extreme than those produced by
Bayesian models, with more values positive and negative
values far from zero for DLT and OR series. In the most
frequently investigated treatments, once again we see that
the DLT series are overwhelmingly likely to have a posi-
tive curve height, whilst the heights of OR series cluster
around zero.

Discussion
We collected dose-level toxicity and efficacy outcomes
from 115 papers reporting early phase clinical trials of
experimental anti-cancer therapies. These trials all used
experimental methods that assume that higher doses are
associated with greater probabilities of both toxicity and
efficacy. We then analysed those outcomes using flexi-
ble non-linear regression methods. In summary, we found

broad evidence that the probability of toxicity increased
in dose in most treatment classes, in most types of cancer,
in scenarios that use rule-based or model-based dose-
escalation methodologies. In contrast, we found very little
evidence that the probability of response increased as dose
was increased.
On the face of it, the implication of our findings is that

dose-escalation clinical trials commonly advocate doses
that are unjustifiably high. For a treatment where toxicity
incidence is positively associated with dose and response
incidence is invariant to dose, lower doses should be
preferred. However, by conducting dose-escalation exper-
iments that recommend doses only by toxicity outcomes,
explicitly assuming that higher doses are more efficacious
and therefore preferable, many trials miss the opportu-
nity to recommend a lower dose with less toxic effects and
no commensurate cost to efficacy. This could help explain
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Fig. 3 Fitted dose-OR curves yielded by Bayesian Emax models. For presentation, doses are centralised at zero (i.e. the average dose-level for each
series is subtracted) and up to the middle nine doses are shown, to allow the series to be visualised together

why dose-reduction occurs in phase II and III clinical tri-
als. For example, a detailed account of post-phase I dose
optimisation in an inhibitor drug is given by Lee et al.
[151].
The statements above pertain to the ranges of doses

investigated in phase I clinical trials. They do not apply
to the ranges of all possible doses. Naturally, we acknowl-
edge in all active therapies that theremust be a dose so low
that the attendant anti-tumour effect is negligible. That
we found many series with non-trivial response rates at
all doses is perhaps testament to the value of pre-clinical
research and PK/PD modelling in locating dose ranges
that are likely to be tolerable and active for phase I trials.
A logical remedy to the problems we have described

would be to use so-called seamless phase I/II designs
that recommend doses by toxicity and response outcomes,
several examples of which have been published [9–13]

and implemented in clinical trials [14, 152]. These designs
bring their own challenges, the most notable of which are
the extra statistical complexity and the requirement that
the co-primary outcomes can be evaluated over a simi-
lar time horizon to allow dose-escalation decisions to be
made in a timely manner.
A simpler solution would require early phase trialists to

address the assumptions made by their phase I designs
and discuss the appropriateness of their final dose rec-
ommendations in light of toxicity and efficacy outcomes.
By reporting suitable efficacy and toxicity outcomes by
dose, researchers would allow the community to assess the
suitability of the methodological assumptions and iden-
tify doses most appropriate for further study. Arguably,
this already occurs in practice when trialists use dose-
escalation methods like 3+3, CRM or EWOC cognisant of
the possibility that higher doses might not bring greater
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efficacy. The drawback of this putative approach is that it
risks allocating patients in the dose-finding trial to inap-
propriate doses. Trialists that regard this as unethical
would be encouraged to use seamless phase I/II method-
ologies, described above.
It is possible that monotonic efficacy effects in dose

are observed in long-term clinical outcomes like OS and
PFS, even if they are not seen in surrogate outcomes like
response. We cannot provide any evidence to support
or refute this hypothesis since survival outcomes were
reported by dose extremely infrequently. If this hypoth-
esis is true, however, it calls into question the validity
of objective response as a surrogate outcome for clinical
outcomes.
The sample size of the trials included in this research

is small. Researchers might legitimately ponder the

feasibility of detecting strong dose-event relationships
with such small sample sizes. It was advantageous, then,
that we included and analysed DLT outcomes because
they have shown that evidence of stark relationships can
be garnered from small trials, particularly when analysed
together. Within study, OR outcomes routinely failed to
show the strength of relationship with dose shown by DLT
outcomes.
It is perhaps self-fulfilling that we have observed stark

monotonic effects in toxicity because dose-finding trials
escalate dose in the absence of unacceptable toxicity and
de-escalate dose or halt the trial when toxicity manifests.
For this reason, it is plausible that the toxicity relation-
ships we have presented here may be biased upwards.
Nevertheless, this does not explain the lack of evidence for
a relationship between dose and efficacy.
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Recently, Hazim et al. [153] investigated the relationship
between dose and efficacy in single-agent phase I trials in
oncology. They did so by calculating aggregate response
rates at dose categories defined by the ratio of the given
dose to the recommended phase II dose (RP2D). They
found evidence that response rates increased modestly as
doses approached the RP2D. Compared to their study, this
research benefits from including treatment combinations,
including both efficacy and toxicity outcomes, and using
statistical modelling.

How could dose-finding be conducted in modern cancer
therapeutics?
We conclude this article with some discussion on the
design, conduct and reporting of dose-finding clinical
trials.
It is our opinion that early phase clinical trials of mod-

ern cancer therapies should seek to optimise the delivery
of treatments, balancing the risk of harmful toxicity with
the expectation of improving meaningful clinical out-
comes. This same sentiment was recently advocated by
early phase trial methodologists at MD Anderson [154].
Naturally, this requires that toxicity and efficacy outcomes
are evaluated, and used to adapt the doses given to future
patients.
Investigators should be clear on what constitutes a

meaningful clinical outcome. OS and quality of life mea-
sures are widely seen as gold standard outcomes for
demonstrating benefit to patients and, in many settings,
PFS is also considered a valid clinical outcome. Over-
whelmingly, however, we have seen that efficacy is mea-
sured in dose-finding trials only by categorical response
outcomes.
Where response has been validated as a reliable surro-

gate for a clinical outcome in a patient group, it should
continue to be used to measure efficacy in dose-finding
trials. In this scenario, we recommend using co-primary
toxicity and response outcomes in a phase I/II dose-
finding design. These designs are unified by the belief that
the MTD may not be the best dose. Many examples of
such designs have been published [9–13] and more will
surely be added. More recently, methods have been devel-
oped for modeling toxicity and time to event outcomes
like PFS [155, 156].
Comparing to traditional phase I designs that only

assess toxicity, seamless phase I/II designs will likely take
longer to run and require more patients. However, as
phase I/II designs also answer the question typically inves-
tigated in a traditional phase II trial, the more appropriate
comparison is the total time and sample size required to
run a phase I followed by a phase II trial. By this com-
parison, when considering that a seamless design requires
only one protocol and no break between trials, a seamless
designmay not require more resource than separate trials.

Where response has not been validated as a reliable
surrogate for a clinical outcome in a patient group, the
situation is much more challenging. If investigators seek
to avoid using a surrogate of unknown utility, the entire
clinical trial program will amount to contrasting clinically
meaningful outcomes at several different doses, perhaps
compared to a shared control, incorporating pre-specified
decisions to narrow the experimental doses, culminating
in a final test of superiority. These goals can be achieved
using the multi-arm multi-stage design [157] if we treat
the doses as experimental arms. Other methodologists
have also recently addressed the topic of broad seamless
dose-finding trials [158]. These proposals are obviously
ambitious, covering the combined goals of trials at phases
I, II and III. However, they illustrate how dose-finding
could be embedded into an entire drug development pro-
gram to maximise the chances of identifying the best dose
for patients.
Justifiable operating characteristics and statistical error

rates will naturally vary with the incidence of the disease.
Logically, overall probabilities of failing to stop in gen-
uinely toxic or ineffective scenarios should be similar to
type I error rates typically used in trials, and the probabili-
ties of correctly identifying one of the most superior doses
should be comparable to conventional power.
Without doubt, this would require larger dose-finding

trials. However, our proposals could be viewed as reallo-
cating some patients from late phase trials to early phase
stages of seamless trials, so that total sample sizes are
not necessarily increased. Relating to this theme, [154]
extolled that a dose-finding trial should not be seen as a
challenge to be overcome as quickly as possible, but as
an opportunity to optimise the way that an experimental
treatments is given and maximise benefit for patients.
Regarding trial reporting, we advise that investigators

identify the assumptions implicit in their design and jus-
tify them with reference to the nature of the treatment.
We recommend that outcomes are always reported bro-
ken down by the doses investigated. A goal of dose-finding
trials is to evaluate outcomes under a set of investiga-
tional doses and pooling outcomes across doses obfus-
cates that goal. Furthermore, investigators should discuss
how the data concur or refute the assumptions, and the
implications of violated assumptions on conclusions and
recommendations.

Conclusion
We conclude that dose-escalation clinical trials routinely
use methods whose assumptions are violated by the
outcomes observed. Specifically, methods that implicitly
assume that efficacy monotonically increases in dose are
very commonly used. However, we have demonstrated
that the probabilities of disease response frequently do
not increase with dose. We have shown this across a
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range of treatment types, including monotherapies and
combinations. Consequently, dose-finding trials risk rec-
ommending unjustifiably high doses that may be harmful
to patients. We recommend that trialists consider exper-
imental designs that allow toxicity and efficacy outcomes
to jointly determine the doses given to patients and rec-
ommended for further study.
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