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Abstract

Background: Triple-negative breast cancer (TNBC) is a heterogeneous disease and we have previously shown that
rapid relapse of TNBC is associated with distinct sociodemographic features. We hypothesized that rapid versus late
relapse in TNBC is also defined by distinct clinical and genomic features of primary tumors.

Methods: Using three publicly-available datasets, we identified 453 patients diagnosed with primary TNBC with
adequate follow-up to be characterized as ‘rapid relapse’ (rrTNBC; distant relapse or death ≤2 years of diagnosis),
‘late relapse’ (lrTNBC; > 2 years) or ‘no relapse’ (nrTNBC: > 5 years no relapse/death). We explored basic clinical and
primary tumor multi-omic data, including whole transcriptome (n = 453), and whole genome copy number and
mutation data for 171 cancer-related genes (n = 317). Association of rapid relapse with clinical and genomic
features were assessed using Pearson chi-squared tests, t-tests, ANOVA, and Fisher exact tests. We evaluated logistic
regression models of clinical features with subtype versus two models that integrated significant genomic features.

Results: Relative to nrTNBC, both rrTNBC and lrTNBC had significantly lower immune signatures and immune
signatures were highly correlated to anti-tumor CD8 T-cell, M1 macrophage, and gamma-delta T-cell CIBERSORT
inferred immune subsets. Intriguingly, lrTNBCs were enriched for luminal signatures. There was no difference in
tumor mutation burden or percent genome altered across groups. Logistic regression mModels that incorporate
genomic features significantly outperformed standard clinical/subtype models in training (n = 63 patients), testing
(n = 63) and independent validation (n = 34) cohorts, although performance of all models were overall modest.

Conclusions: We identify clinical and genomic features associated with rapid relapse TNBC for further study of this
aggressive TNBC subset.
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Background
Triple negative breast cancer (TNBC) is an aggressive
breast cancer subtype defined by lack of targetable estro-
gen receptor (ER), progesterone receptor (PR), and
HER2 [1]. TNBC accounts for 15% of breast cancer
cases, yet is responsible for 35% of breast cancer related
deaths [1, 2]. Relative to hormone receptor positive
breast cancers, TNBCs are more likely to develop distant
rather than local recurrence and TNBCs spread more
frequently to visceral sites, including lung and brain [2–
4]. Understanding determinants of distant relapse is im-
perative as the median overall survival after diagnosis of
metastatic disease was historically only 13–17months [2,
5] and remains only 25 months even among patients
with PD-L1 positive TNBC receiving chemo-
immunotherapy [6].
Advances in sequencing technology have facilitated

comprehensive molecular profiling of breast cancers, in-
cluding subsets of TNBC [7, 8]. Two landmark analysis
of primary TNBCs revealed six subtypes of TNBC with
distinct expression profiles [9, 10] and an integrated
copy number/transcriptome analysis identified four
overlapping TNBC subsets [11]. Genomic analyses dem-
onstrate high frequency of mutations in TP53 (~ 75% of
TNBCs) and PIK3CA ~ 25% [11–13] while TNBCs also
reflect widespread copy number alterations [11–13]. The
existing TNBC subsets/groupings provide a critical
framework for understanding intrinsic genomic charac-
teristics but are only associated with modest differences
in patient survival. Among the approximately 30% of
TNBCs who develop metastatic disease, a subset have an
aggressive phenotype associated with rapid relapse,
therapeutic resistance, and poor prognosis, while others
have a relatively late relapse associated with more indo-
lent or treatment responsive disease – yet we have a
poor understanding of genomic features associated with
distinct timing of relapse [1, 2, 14].
To more accurately understand the differences in pa-

tient outcome in TNBC, we sought to understand distinct
clinical and genomic features among primary TNBCs cat-
egorized based on outcome: rapid (rrTNBC), late
(lrTNBC) and no relapse (nrTNBC). In several large
TNBC cohort studies, the median time to distant metasta-
sis was around 2 years, ranging from 19.7 to 31.2months,
[2, 14–16] thus we define rrTNBC as relapse or death
within 24months of diagnosis. We previously demon-
strated in two large cohorts (Surveillance, Epidemiology,
and End Results Program/SEER and National Comprehe-
hensive Cancer Network/NCCN) that disparities in socio-
demographic features are strongly associated with
rrTNBC, including insurance type, race, and surgical man-
agement [17–19]. These studies demonstrate the rele-
vance of understanding factors contributing to rrTNBC
yet are limited by lack of biologic understanding.

As an initial investigation of genomic features associ-
ated with rrTNBC, we aggregated data across multiple
cohorts then utilized a train/test split and an independ-
ent validation cohort to model predictors of rapid versus
late relapse.

Methods
Patient and tumor characteristics
Patient-specific data were obtained from The Cancer
Genome Atlas (TCGA) [12], Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC)
[20, 21], our published meta-analysis (“neoadjuvant data-
set” as described previously) [7], and the Fudan TNBC
cohort [22]. These variables included age at diagnosis,
grade, stage at diagnosis, pathologic receptor status (ER,
PR, and HER2), response to neoadjuvant chemotherapy
(when available), and distant metastasis-free or overall
survival. TNBC was defined as being negative for ER,
PR, and HER2: immunohistochemistry (IHC) 0 and
FISH HER2/CEP17 ratio of less than 2.0. Neoadjuvant
chemotherapy response was based on study-reported
outcomes. As we previously reported, all patients in the
“neoadjuvant dataset” received neoadjuvant chemother-
apy but from diverse regimens: 41% of patients received
anthracycline/taxane +/− alkylator, 15% anthracycline
+/− alkylator, 35% taxane alone, and 9% anthracycline/
platinum.

Genomic data
For data from the METABRIC, normalized gene expres-
sion data, copy number data, and somatic mutation data
for 171 cancer-related genes were obtained from the
publicly available European Genome-Phenome Archive
(IDs EGAD00010000210 and EGAD0001000021) and as-
sociated publications [13, 21]. Copy number segmented
data files were processed using GISTIC2.0 [23]. For data
from TCGA, breast cancer gene expression data, GIST
IC copy number data, and somatic mutation data were
obtained from the XENAbrowser (version 2015-02-24).
Gene expression data from 17 published studies of
breast cancer patients prior to NAC were re-processed
from raw files, as previously described [7]. Genomic data
from the Fudan TNBC study was downloaded from the
National Omics Data Encyclopedia (accession
OEP000155) [22].

Gene expression signatures, expression-based subtypes,
and inferred immune subsets
Given gene expression data from multiple studies and
disparate platforms, gene expression data for all TNBCs
for each dataset (METABRIC n = 287, TCGA n = 160,
neoadjuvant dataset n = 446) were extracted, quantile
normalized within TNBCs from each study, and subse-
quently median centered. We evaluated summary
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expression metrics (e.g. signatures, intrinsic subtypes,
CIBERSORT proportions). One hundred twenty-five
published gene expression signatures were calculated as
we have previously described [7]. We determined
PAM50 intrinsic breast cancer subtype using the ‘Bio-
classifier’ package from Parker et al. after balancing
TNBC data with an equal number of ER-positive cases
for each dataset [24]. TNBC subtype was determined
using the TNBCtype tool [9, 25]. Proportion of infiltrat-
ing immune cell subsets were calculated using the
CIBERSORT algorithm [26].

Modeling and performance
We compared the performance of three logistic regres-
sion models in predicting rapid relapse versus late re-
lapse. The “null model” contained only clinical variables
(age/stage at diagnosis and PAM50/TNBC subtype). The
“null plus significant genomic features”, adds any feature
significantly different between rrTNBC and lrTNBC with
a nominal p-value < 0.05. The “genomic features re-
duced”, is a reduced version of the second model that
only includes features among the top 25 most important
genomic features in at least half of the independent runs.
Lasso reduction and tuning of the regularization param-
eter lambda were performed. To evaluate model per-
formance, we calculated the average receiver-operator
characteristic (ROC) AUC of the 25 runs, and 95% con-
fidence interval was calculated using the standard devi-
ation of the sample of means.

Statistical analysis
Differences in patient and tumor characteristics were
evaluated using Pearson chi-squared tests. The associ-
ation of gene signatures with neoadjuvant chemotherapy
response was evaluated using simple linear regression
and t-tests. All calculations of association were multiple-
testing corrected using the Benjamini–Hochberg proced-
ure for false discovery rate. For continuous variables, we
calculated p-values comparing rapid vs. late and relapse
vs. no relapse using ANOVA and logistic regression. For
count variables (e.g. mutated vs. not) we used Fisher
exact tests to evaluate relapse vs. not and rapid vs. late
relapse. P-values for CIBERSORT and mutation signa-
tures were evaluated using logistic regression, while
CNAs, and mutations were evaluated using Fisher exact
tests. Data visualization was made using ggplot2 [27]. All
statistical analyses were performed in R version 3.4.1.

Results
Defining rapid vs. late vs. no relapse triple-negative
breast cancer
From three large cohorts with primary breast cancer
genomic data – TCGA, [12] METABRIC, [20, 21] and
our prior breast cancer gene expression meta-analysis

[7] – we identified 893 TNBCs from a total of 4473
breast cancer cases. For our analyses, we included pa-
tients with at least 60 months of follow-up or those with
a distant metastasis-free survival (DMFS) event prior to
our 60-month cutoff, leaving a total of 453 TNBCs in
our evaluable dataset. Of these, 453 had gene expression
data, 317 had copy number data, and 317 had mutation
data. (Fig. 1a).
We assessed the percentage of total DMFS events each

year (Fig. 1b). In this dataset, over 20% of DMFS events
occurred each of the first 2 years after diagnosis, catego-
rized as ‘rapid relapse’ (rrTNBC). Among lrTNBCs, most
DMFS events occurred within the first 5 years after diag-
nosis, with sporadic events beyond year 6. Our main
goal was to identify differences among TNBCs with clin-
ically distinct outcomes, so we visualized DMFS for our
relapse categorization (Fig. 1c) in comparison with
DMFS for existing intrinsic expression-based subtype
approaches PAM50 [24] (Fig. 1d) or Lehmann/Pietenpol
TNBCtype [9] (Fig. 1e) within the same cohort. The
Lehmann/Pietenpol TNBCtype (log-rank p = 0.01), but
not PAM50, was associated with significant differences
in DMFS. The strikingly different visualized outcomes
suggests that our relapse categorization does, in fact,
identify truly distinct subsets based on outcome when
compared to approaches that focus on intrinsic features.

Patient and tumor characteristics
We evaluated the association of clinical, pathologic, and
intrinsic expression subtype with rapid vs. late vs. no re-
lapse status (Table 1). There was no significant differ-
ence in age at diagnosis or grade, however, rrTNBCs
were significantly more likely to be higher stage (Chi-
square p = 1.9e-10). The majority of patients were basal-
like PAM50 subtype (78%), but, lrTNBCs were signifi-
cantly more likely to be non-basal (non-basal: rrTNBC
18%, lrTNBC 29%, nrTNBC 20%, Chi-square p = 0.03).
Lehmann/Pietenpol TNBC subtype also reflected signifi-
cant differences across groups (Chi-square p = 0.02). The
immunomodulatory phenotype was highest in nrTNBC
(16% rrTNBC, 16% lrTNBC, 24% nrTNBC), luminal an-
drogen receptor was highest in lrTNBC (9% rrTNBC,
16% lrTNBC, 9% nrTNBC), and basal-like 2 was highest
in rrTNBC (15% rrTNBC, 9% lrTNBC, 6% nrTNBC). A
subset of patients in this cohort (127/453; 28.0%) had
data on response to neoadjuvant chemotherapy (NAC).
As anticipated, those patients with rrTNBC or lrTNBC
were significantly more likely to have residual disease
(RD) after neoadjuvuant chemotherapy (93 and 94% RD,
respectively), relative to those with nrTNBC (51% RD;
Chi-square p = 1.9e-7). Intriguingly, the rate of residual
disease was similar among rrTNBC and lrTNBC despite
markedly different timing of relapse.
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Response to Neoadjuvant chemotherapy and survival in
TNBC: immune and expression signatures
Response to NAC is known to be a robust prognostic
biomarker in TNBC [28]. In this cohort, only 28% (127/
453) of patients received NAC and many of the regimens
were non-standard (e.g. taxane alone). Because of this,
the pathologic complete response (pCR) after NAC was
only 22.8%, much lower than modern current regimens,
typically ~ 40%. Despite these significant limitations,
pCR was strongly associated with nrTNBC (p < 0.001).
The patients with data on response to NAC all had
whole transcriptome data but no available mutation or
copy number data, so we calculated a score for 125 pub-
lished gene expression signatures and evaluated the as-
sociation of each signature with NAC response (pCR vs.
RD) and DMFS. Signatures were grouped by phenotype
as previously described [7] (n = 127 patients; Fig. 2a). Im-
mune signatures were associated with better prognosis
and most were also associated with improved response

to NAC. Proliferation signatures tended to be associated
with improved response to NAC, as we have previously
described [7], yet there was variable association with
DMFS.
To understand what immune cell types in the tumor

microenvironment may be reflected by the immune sig-
natures, we visualized the association of three represen-
tative signatures from each group (immune,
proliferation, ER/HER2, mesenchymal) with the relative
proportion of 22 inferred immune cell subsets via
CIBERSORT (Fig. 2b) [26]. Immune signatures were
strongly positively correlated with anti-tumor immune
cell types including M1 macrophages, CD8 T-cells, and
memory B-cells (all Pearson’s r ≥ 0.3, all p < 1.2e-8) and
anti-correlated with immune suppressive cell types in-
cluding M2 macrophages, memory resting CD4 T-cells,
resting NK cells, and resting mast cells. ER/HER2 signa-
tures reflected an almost opposite pattern to immune
signatures, with positive correlation to immune

Fig. 1 Study design and definition of triple-negative breast cancer (TNBC) rapid vs. late relapse. a REMARK diagram. b Proportion of distant
metastasis-free survival (DMFS) events per year after diagnosis among evaluable dataset. ‘Rapid relapse’ was defined as DMFS events within the 2
years of diagnosis and ‘late relapse’ DMFS events beyond 2 years. c-e Kaplan-Meier diagram of DMFS in study cohort reflecting TNBC group
definitions (c), compared with DMFS by intrinsic subtype approaches PAM50 subtype (d), and Lehmann TNBC subtype (e). P-value indicates
log-rank test
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suppressive cell types and anti-correlation with anti-
tumor immune cell type. Metabolic signatures appeared
to have a strong correlation specifically with M0 macro-
phages (all Pearson’s r > 0.27, all p < 8.4e-9). As a sensi-
tivity analysis, we evaluated the association of three
representative signatures from each group with 7 im-
mune cell-type specific signatures from MSigDB [30, 31]
(instead of CIBERSORT) and found similar results (Sup-
plementary Figure 1A).

Expression signatures in rapid vs. late vs. no relapse
TNBC
To assess pathways and phenotypes associated with
rapid vs. late vs. no relapse, a score was calculated for
125 published gene expression signatures across the en-
tire dataset (Supplementary Figure 1B). Evaluating each
signature individually across the three groups revealed
16 signatures that were significantly different (ANOVA

FDR p < 0.05; Fig. 3, Supplementary Figure 2A-B).
Among these, five signatures were immune-related [9,
32–34] and all were significantly higher in nrTNBC rela-
tive to rrTNBC and lrTNBC. Eight significant signatures
were related to luminal phenotype – all were highest in
lrTNBC, lowest in rrTNBC, and intermediate in
nrTNBC. While we and others have demonstrated that
proliferation signatures are strongly associated with re-
sponse to neoadjuvant chemotherapy independent of
immunophenotype [7, 35] as well as overall survival, [36]
we did not identify a significant association of prolifera-
tion signatures across all three groups (Supplementary
Figure 2B). However, when evaluating rapid versus late
relapse only as an exploratory analysis, late relapse was
associated with significantly lower proliferation, for ex-
ample the PAM50 proliferation score (t-test p = 0.007).
Most CIBERSORT immune subsets were not statistically
significant (Supplementary Figure 2C), however,

Table 1 Cohort clinical and pathologic features

Rapid Relapse All patients n = 453
n (%)

Rapid Relapse n = 110
n (%)

Late Relapse n = 125
n (%)

No Relapse n = 218
n (%)

P

Age at diagnosis, by decade 0.12

< 40 years 75 (17) 15 (14) 27 (22) 33 (15)

40 to 50 years 117 (26) 27 (24) 28 (22) 62 (29)

50 to 60 years 124 (27) 33 (30) 25 (20) 66 (30)

> 60 years 137 (30) 35 (32) 45 (36) 57 (26)

Grade at diagnosis 0.86

I 6 (2) 2 (2) 2 (2) 2 (1)

II 54 (14) 14 (15) 17 (26) 23 (13)

III 321 (84) 75 (83) 89 (82) 157 (86)

Stage at diagnosis < 0.001

I 73 (17) 3 (3) 18 (15) 52 (25)

II 231 (54) 43 (44) 69 (56) 119 (58)

III 123 (29) 52 (53) 35 (29) 36 (27)

Pam50 Subtype 0.03

Basal 354 (78) 90 (82) 89 (71) 175 (80)

Non-Basal 99 (22) 20 (18) 36 (29) 43 (20)

TNBC Subtype 0.02

Basal-like 1 103 (23) 23 (21) 26 (21) 54 (25)

Basal-like 2 40 (9) 16 (15) 11 (9) 13 (6)

Immunomodulatory 91 (20) 18 (16) 20 (16) 53 (24)

Luminal androgen receptor 49 (11) 10 (9) 20 (16) 19 (9)

Mesenchymal 66 (14) 19 (17) 20 (16) 27 (12)

Mesenchymal stem-like 24 (5) 10 (9) 3 (2) 11 (5)

Unselected 80 (18) 14 (13) 25 (20) 41 (19)

Response to Neoadjuvant Chemo < 0.001

Pathologic complete response 29 (23) 4 (7) 1 (6) 24 (49)

Residual disease 98 (77) 57 (93) 16 (94) 25 (51)
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neutrophils were significantly higher in rrTNBC (ANOVA
FDR p = 0.001). To more comprehensively investigate in-
ferred immune subsets, we evaluated the association of
summed protumorigenic subsets (Tcells-CD4 naive,
Bcells-naive, Mast cells-resting, NK cells-resting, Tcells-
CD4 memory resting, Plasma cells, Dendritic cells resting,
Tcells-regulatory/Tregs, Macrophages-M0, Macropha-
gesM2) and summed antitumorigenic subsets (Monocytes,
Eosinophils, Tcells-gamma delta, Tcells-follicular helper,
Tcells-CD8, NK cells-activated, Bcells-memory, Mast
cells-activated, Neutrophils, Macrophages-M1, Dendritic

cells-activated, Tcells-CD4 memory activated) with rapid
versus late versus no relapse (Supplementary Figure 2D).
Antitumorigenic subsets were significantly different
among relapse groups (ANOVA p = 0.002), highest in ‘no
relapse’, while there was no difference in the protumori-
genic subsets (ANOVA p = 0.62), although the absolute
differences were small.

Mutations and copy number alterations
In this cohort, 70% (317/453) of patients had data on
single nucleotide variant/mutation data including 171

Fig. 2 Immune and Expression Signatures and Response to Neoadjuvant Chemotherapy and Survival in TNBC. a The calculated score for 125
published gene expression signatures for 127 patients with data on response to neoadjuvant chemothrapy and distant metastasis-free survival
(DMFS). Each signature is a point. The association of each signature with neoadjuvant chemotherapy response (pathologic complete response vs.
RD) by simple linear regression (y-axis) and hazard ratio for each signature using DMFS (x-axis) are displayed. Signatures were grouped by
phenotype (as previously described [7]), identified by color: proliferation signatures (red), immune signatures (blue), ER/HER2 signatures (green),
mesenchymal signatures (orange), others (grey). Size of each point relates to the hazard ratio p-value for each signature. b The association of
three representative signatures from each group (immune, proliferation, ER/HER2, mesenchymal) with the relative proportion of 22 inferred
immune cell subsets via CIBERSORT across all samples with gene expression data (n = 453) are visualized using CorrPlot [26, 29].
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cancer-related genes and whole genome CNAs [21].
Only a small subset of patients (11.7%; 53/453) had
whole exome mutation data, so we focused on the 171
cancer-related genes to ensure adequate statistical
power. When evaluating general mutational features,
there was no significant difference in mutations per
megabase (ANOVA p = 0.64; Fig. 4a) nor percent gen-
ome altered by copy number (ANOVA p = 0.96; Fig. 4b).
We first compared the frequency of alteration for each

mutation and cytoband (for CNAs) for relapse (rrTNBC
+ lrTNBC) vs. nrTNBC (Fig. 4c) because of low muta-
tion frequency for most genes. There were no genes that
were significantly different after multiple testing (Supple-
mentary Figure 3A) when comparing relapse vs. no re-
lapse, but PIK3CA mutations were more frequent in
relapse relative to nrTNBC. In addition, PTEN, ARID1A,
and RYR2 mutations were enriched in nrTNBC relative
to rrTNBC (Fisher exact nominal p < 0.05). We then
compared rrTNBC vs. lrTNBC (Fig. 4d) and found that
rrTNBC were significantly more likely to harbor a muta-
tion in TP53 compared to lrTNBC patients (Fisher exact
FDR p = 0.009). Among CNAs, the copy number land-
scape was similar across the rapid vs. late vs. no relapse
groups (Supplementary Figure 3B) and there were no

significantly altered genes or regions among these three
groups after multiple test correction yet there were sev-
eral regions that demonstrated enrichment within spe-
cific groups (nominal p < 0.05; Fig. 4c-d).

Clinical and multi-‘omic model of rapid vs. late relapse in
TNBC
Having identified discrete clinical, expression, im-
mune, mutation, and copy number features among
primary TNBCs with distinct clinical outcomes, we
sought to develop an optimal, multi-‘omic predictive
model for rrTNBC vs. lrTNBC. We compared per-
formance of three logistic regression models with
lasso reduction (detailed in the Methods; Fig. 5a).
The clinical, “null model”, performed marginally in
both the testing cohort and the independent valid-
ation cohort (average AUC 0.574 and 0.525, respect-
ively). The other two models (clinical+genomic and
reduced genomic) had significantly improved perform-
ance in both the testing cohort and the independent
validation (average AUC: 0.774 and 0.821 for testing;
0.645 and 0.620 for validation; Fig. 5b; all Wilcoxon
rank sum p < 0.005). The genomic features that con-
tributed most included clinical features (stage,

Fig. 3 Expression Signatures in Rapid vs. Late vs. No Relapse TNBC. The calculated score for 16 published gene expression signatures that
demonstrated statistical significance (ANOVA FDR p < 0.05) comparing rapid vs. late vs. no relapse. Signatures visualized as relative values (Z-score)
with rapid relapse (red), late relapse (green), and no relapse (blue)
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expression subtypes), mutations (ARID2, DNAH11,
SETDB1), copy number alterations (loss LAMA2,
CLK3, MLLT4, SYNE1 and gain DNAH5, LIFR,
PETN), and expression signatures (signatures of
RBBP8 [37], ER negative chemoresistance [38], PTEN
deletion [39], beta catenin [40], STAT3 [41], and

RAS pathway activation [42]). We evaluated add-
itional models, including machine learning ap-
proaches (random forest, support vector machine) as
well as the universe of available genomic data, how-
ever, these additional modeling approaches were
characterized by overfitting even in the context of

Fig. 4 Mutations and copy number alterations in rapid vs. late vs. no relapse TNBCs. a Mutations per megabase of 171 cancer-related genes. b
Percent genes altered by copy number gain (GISTIC 1 or 2) or loss (GISTIC −1 or − 2). c Frequency of alteration of 171 cancer-related genes
(green dots), copy number gains (red dots) or losses (red dots) by cytoband among rapid relapse (x-axis) vs. no relapse (y-axis) TNBCs (c) or rapid
relapse (x-axis) vs. late relapse (y-axis) TNBCS (d). Size of dot indicates negative log of p-value for Fisher exact test with those genes and
cytobands indicated demonstrate nominal p < 0.05. Zoomed-in image of those alterations with < 20% frequency indicated in right panel
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model tuning and demonstrated no significant im-
provement in performance relative (data not shown).

Discussion
We previously demonstrated in two large cohorts that
disparities in sociodemographic features are strongly as-
sociated with rrTNBC, [17–19] and in this report sought
to investigate genomic features associated with rrTNBC.
We aggregated data from the available cohorts that have
multi-‘omic data as well as adequate follow-up to
characterize TNBCs as rrTNBC, lrTNBC, or nrTNBC.

Although limited by the retrospective nature and limited
number of patients who received modern NAC, we pro-
vide initial observations regarding genomic features and
rrTNBC.
Our goal was to identify distinguishing features and

determine if predictive models incorporating clinical,
expression-based subtype, and/or multi-‘omic models
could identify patients at high risk of rapid relapse.
lrTNBCs are more likely to be non-basal (primarily lu-
minal A/B) and our data identify eight luminal signa-
tures are associated with late relapse. Multiple groups

Fig. 5 Developing an optimal clinical and multi-‘omic model of rapid vs. late relapse in TNBC. a Schematic of experimental steps including
definition of variables, descriptive statistics, comparative modeling including model tuning, and assessment of model performance. b Receiver-
operator characteristic (ROC) plots for each model’s performance, measured by average area under the curve (AUC) of 25 independent runs of
the train-test split. Each model was tuned to ensure optimal performance. Models are grouped and colored by cohort—red indicates training
data (n = 63), green indicates testing data (n = 63), and blue indicates the independent validation Fudan cohort (n = 34). For each grouping, the
three models shown are: 1) “null model”, including only clinical variables; 2) “null plus significant features”, adding any feature significantly
different between rrTNBC and lrTNBC with a nominal p-value < 0.05; and 3) “null plus significant features reduced”, including only features from
model 2 that are among the top 25 most important genes in at least half of the independent runs. Asterisks indicate significance by Wilcoxon
rank sum, * indicates p < 0.05, ** indicates p < 0.01, NS indicates “not significant” (p > 0.05)
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have identified a ‘luminal androgen receptor’ subset of
TNBC based on molecular classifications, [9, 11] and
40% (20/49) of the Lehmann LAR subtype tumors in our
cohort ultimately had late relapse. To develop predictive
models, we first identified the relatively few specific fea-
tures that were significantly different across subsets (61
features from > 35,000 initial data points) then built
models based on a priori feature identification. This ap-
proach led to overall good performance of multiple
models, and importantly allows us to understand what
genomic features contribute most. More complex mod-
eling approaches (e.g. machine learning algorithms) did
not improve model performance and led to challenges
with overfitting. Our models were evaluated in over two
times the number of TNBC patients available in TCGA
[12] alone – a remarkable number for a disease that ac-
counts for only approximately 15% of breast cancers [1,
2]. Collectively, our data support the categorization by
Burstein et al. [11] and suggest that lrTNBCs are
enriched for luminal phenotypes while rrTNBCs are
likely enriched for the ‘basal-like immune suppressed’
phenotype.
Stage at diagnosis was strongly associated with

rrTNBC in univariate analyses and in logistic regression
models. One hypothesis is that stage at diagnosis cap-
tures non-biological features including socioeconomic or
demographics features [43–45]. Race/ethnicity is com-
plex, [46, 47] was largely unavailable in the included
datasets, and warrants further study [48, 49]. In a paral-
lel study, we investigated the association of sociodemo-
graphic features with rrTNBC among 3016 primary
TNBCs at ten academic cancer centers [50]. In this large
cohort, we found that stage at diagnosis remained sig-
nificant, as well as Medicaid/indigent insurance, lower
income, and younger age [50]. Collectively, this suggests
that timing of relapse is impacted by a complex set of
clinical, genomic, and sociodemographic features that
warrant further multi-level analyses.
Response to neoadjuvant chemotherapy remains the

best prognostic biomarker for TNBC, [28] but there are
clear differences in disease course among TNBCs who
develop relapse earlier vs. later. At the time of these ana-
lyses, no large multi-‘omic dataset including NAC and
long-term outcomes were available although this is an-
ticipated in the future. Despite significant limitations of
NAC analyses, somewhat unexpectedly patients destined
for rrTNBC and lrTNBC in this cohort had similarly
high rates of residual disease to neoadjuvant chemother-
apy. Both rrTNBC and lrTNBC had lower expression of
immune signatures compared with nrTNBCs, reflecting
reduced anti-tumor immune response. This supports
our and others’ work, [7, 51–54] including our analyses
of the BrighTNess phase III clinical trial, which provides
largest transcriptome dataset and association with NAC

and demonstrated that stratifying patients by prolifera-
tion and immune signatures can effectively stratify likeli-
hood of pCR irrespective of NAC regimen. Given the
recent FDA approval of immunotherapy for metastatic
TNBC [6], there is great interest to augment the existing
host anti-tumor immune response [55–58].
Clinically, it is clear that a subset of patients with

TNBC have highly aggressive, largely treatment-
refractory disease [1, 2, 14]. In the modern era, NAC of-
fers a biological ‘readout’ of chemosensitivity that is
highly associated with both recurrence and survival end-
points and has become standard of care, with pathologic
response used to guide subsequent escalation/de-escal-
ation of adjuvant therapy [59]. However, among the
highest risk TNBCs with RD after NAC, we still have
limited ability to identify the ~ 40% patients destined for
relapse [7, 8]. We envision that the results of this and
similar efforts, such as circulating tumor DNA minimal
residual disease assays, [60–62] could identify patients at
highest risk (rrTNBCs in the current study) and direct
these patients to escalation of therapy, additional main-
tenance therapy, and/or intensive monitoring.
While this study presents promising methods to

categorize TNBC relapse it does possess significant limi-
tations. Categorization of tumors depends on study-
reported estrogen receptor (ER) status; variability and
changes in standard determination of estrogen receptor
positivity since 2010 guidelines [63] may have influenced
whether a subset of tumors included had very low ER
(e.g. < 10%). The lack of available robust multi-‘omic
datasets with long-term outcome data leads to inherent
limitations of aggregating multiple datasets. We incorpo-
rated genomic data from multiple studies, generated
using multiple platforms, and over multiple years. While
we have attempted to account for this through standard
normalization approaches and analysis only of summary
statistics (e.g. expression signatures not individual
genes), batch/platform effects and computational ana-
lyses could impact our results. For assessment of tumor
mutation burden, we used mutation data from a 317
gene targeted panel assay. While several studies suggest
that TMB by targeted panel overall correlates with whole
exome or whole genome sequencing, these methodolo-
gies are not identical [64–66]. Therapy for TNBC has
changed, including: 1) standard use of neoadjuvant
chemotherapy for nearly all patients with TNBC, while
not all patients included received neoadjuvant or adju-
vant therapy, particularly in METABRIC (161/273;
59.0%); 2) incorporation of capecitabine for RD based on
CREATE-X [67]; and 3) recent FDA approval of im-
munotherapy for metastatic, PD-L1 positive TNBC [6].
In conclusion, we provide evidence that rrTNBC re-

flects a distinct clinical entity characterized by unique
genomic features. Predictive modeling using clinical and
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genomic features in these datasets revealed modest re-
sults, but with improved data may identify patients at
high risk for ‘rapid relapse.’ Multi-level analyses of the
interaction between clinical, multi-‘omic, and sociode-
mographic features and timing of relapse are warranted.
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