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Abstract

Background: Lung cancer remains the leading cause of cancer deaths across the world. Early detection of lung
cancer by low-dose computed tomography (LDCT) can reduce the mortality rate. However, making a definitive
preoperative diagnosis of malignant pulmonary nodules (PNs) found by LDCT is a clinical challenge. This study
aimed to develop a prediction model based on DNA methylation biomarkers and radiological characteristics for
identifying malignant pulmonary nodules from benign PNs.

Methods: We assessed three DNA methylation biomarkers (PTGER4, RASSF1A, and SHOX2) and clinically-relevant
variables in a training cohort of 110 individuals with PNs. Four machine-learning-based prediction models were
established and compared, including the K-nearest neighbors (KNN), random forest (RF), support vector machine
(SVM), and logistic regression (LR) algorithms. Variables of the best-performing algorithm (LR) were selected through
stepwise use of Akaike’s information criterion (AIC). The constructed prediction model was compared with the
methylation biomarkers and the Mayo Clinic model using the non-parametric approach of DeLong et al. with the
area under a receiver operator characteristic curve (AUC) analysis.

Results: A prediction model was finally constructed based on three DNA methylation biomarkers and one
radiological characteristic for identifying malignant from benign PNs. The developed prediction model achieved an
AUC value of 0.951 in malignant PNs diagnosis, significantly higher than the three DNA methylation biomarkers
(0.912, 95% CI:0.843–0.958, p = 0.013) or Mayo Clinic model (0.823, 95% CI:0.739–0.890, p = 0.001). Validation of the
prediction model in the testing cohort of 100 subjects with PNs confirmed the diagnostic value.

Conclusion: We have shown that integrating DNA methylation biomarkers and radiological characteristics could
more accurately identify lung cancer in subjects with CT-found PNs. The prediction model developed in our study
may provide clinical utility in combination with LDCT to improve the over-all diagnosis of lung cancer.

Keywords: CT, DNA methylation, Biomarkers, Lung cancer, Pulmonary nodules

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: fy20090604@qq.com; majie_fzbl@163.com
†Wenqun Xing and Haibo Sun contributed equally to this work.
1Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou
University, Henan Cancer Hospital, Zhengzhou, Henan, China
2Department of Molecular Pathology, Affiliated Cancer Hospital of
Zhengzhou University, Henan Cancer Hospital, No 127, Dongming Road,
Zhengzhou 450008, Henan, China
Full list of author information is available at the end of the article

Xing et al. BMC Cancer          (2021) 21:263 
https://doi.org/10.1186/s12885-021-08002-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-021-08002-4&domain=pdf
http://orcid.org/0000-0001-5346-8457
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:fy20090604@qq.com
mailto:majie_fzbl@163.com


Background
Lung cancer is the second most common cancer globally
and the leading cause of cancer mortality worldwide [1].
In 1987, it surpassed breast cancer as the leading cause
of cancer-related deaths of women. By2020, Lung cancer
is expected to account for 22% of all female cancer
deaths and 23% of all male cancer deaths [1].
The exceptional high mortality of lung cancer can be

attributed to a high degree by late diagnosis. The 5-year
survival rate of lung cancer is only 15–19% at all stages.
Outcomes can be significantly better at an early-stage
diagnosis, especially for stage I, the 5-year survival rate
can increase up to 81–85% [2, 3]. Thus, it seems reason-
able to improve lung cancer screening at earlier stages.
Low-dose computed tomography (LDCT) is widely
accepted as a reliable screening tool for lung cancer
early detection. The National Lung Screening Trial
(NLST) reported that LDCT decreases the mortality rate
by 20% in high-risk people [4, 5]. However, Pulmonary
nodules (PNs) are encountered with increased frequency
in asymptomatic individuals due to the widespread use
of LDCT. High false-positive rates and overdiagnosis
limited the diagnostic accuracy of LDCT screening. The
National Lung Screening Trial showed that in heavy
smokers, the positive rate of indeterminate PNs detected
by LDCT was 24.2%; however, 96.4% of these PNs were
ultimately confirmed to be false positives over the three
rounds of screening [5].
Currently, to predict the malignancy probability of

PNs found by LDCT, a series of examination techniques
have been proposed, including non-invasive and invasive
approaches [6]. Each approach has advantages and
disadvantages. Noninvasive approaches include follow-
up with positron emission tomography, LDCT, or mag-
netic resonance imaging for up to 2 years to determine
whether it is a benign lesion. These non-invasive ap-
proaches often result in unnecessary radiation exposure,
anxiety, procedures, and additional cost for subjects with
benign lesions. A CT-guided transthoracic needle biopsy
can establish a specific benign or malignant diagnosis
but is invasive, potentially risky, and sometimes non-
diagnostic [7]. Thus, it is clinically significant to develop
new approaches to accurately identify patients with ma-
lignant from benign PNs safely and cost-effectively.
Analysis of lung tumor-associated molecular changes

in body fluids may provide a safe and cost-effective
approach for detecting lung cancer. DNA methylation is
a relatively stable biochemical modification; it can be
detected not only from tissue but also in serum and
plasma [8]. Assessment of DNA methylation in plasma
offers a potentially cost-effective method in discriminating
malignant from benign PNs. Prostaglandin E receptor 4
gene (PTGER4), ras association domain family 1A (RASS
F1A), and short stature homeobox gene two (SHOX2)

methylation have been separately identified as valuable
biomarkers for lung cancer diagnosis in several research
studies [9–12]. However, investigating whether the three
methylation biomarkers are useful in distinguishing lung
cancer among individuals with LDCT-detected PNs has
hardly been reported.
Previous studies also showed that, based on subjects’

demographic characteristics and radiological features of
PNs on CT images, the constructed predictive models
could identify malignant from benign PNs [13–16]. For
example, Swensen et al. developed a Mayo Clinic model
based on six independent predictors (patients’ age,
smoking history, cancer history, nodule diameter, upper
lobe position, and spiculation), which had an AUC of
0.83 for the diagnosis of malignant PNs [13]. Gould
et al. established another prediction model, which
yielded 0.78 AUC based on age, smoking history, nodule
diameter, and smoking cessation [14, 15]. Recently,
McWilliams et al. also developed two similar prediction
models, with AUCs of 0.89–0.91 [16]. Although these
clinical/radiological characteristics-based models are
promising in identifying malignant PNs, the diagnostic
accuracy still need improvement.
Considering the complex tumor microenvironment

and clonal selection in lung cancer development, using
circulating biomarkers alone or clinical/radiological fac-
tors alone might not have sufficient diagnostic accuracy
for lung cancer. We aimed to investigate if combining
DNA methylation biomarkers with clinical/radiological
characteristics could more efficiently distinguish malig-
nant from benign lung nodules detected by LDCT.

Materials and methods
Ethics
We enrolled participants in Henan Cancer Hospital, the
Affiliated Cancer Hospital of Zhengzhou University. All
participants signed the informed consent before blood
collection, and they were informed of the usage of
plasma and the test results. The current study has been
received approval from the Medical Ethics Committee of
Henan Cancer Hospital (2018157).

Patient cohorts and study design
The participants were enrolled with lung nodules newly
detected in Henan Cancer Hospital from January 2019
to December 2019. We obtained blood samples from all
subjects who met the selection criteria. The inclusion
criteria were: (I) subjects detected pulmonary nodules
on CT scans. (II) LDCT-derived nodule diameter
between 4 and 35 mm; (III) the participants’ clinical
information should be complete. The exclusion criteria
were: (I) pregnancy or lactation; (II) current pulmonary
infection; (III) surgery within 6 months; (IV) radiother-
apy within 1 year; and (V) life expectancy of < 1 year.
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For the selected patients, CT examinations were
performed at our institution with the Revolution CT
(General Electric Medical Systems, Milwaukee, Wiscon-
sin, USA) or the Brilliance iCT (Philips Healthcare, Best,
The Netherlands) using a tube voltage of 120 kV and a
current of 200mA. The target lesion was reconstructed
with the following standard reconstruction parameters:
slice thickness, 1.0 mm; increment, 1 mm; pitch, 1.078; a
field of view, 15 cm; and a matrix of 512 × 512. We
collected the general characteristics and nodule radio-
graphic characteristics of participants from the hospital in-
formation system. General characteristics included age,
gender, smoking behavior (smoking status, pack-years,
and the number of years since quitting), and cancer his-
tory. Nodule radiographic characteristics comprised the
maximum transverse size; location; and nodule type (non-
solid or ground-glass opacity, perifissural, part-solid, solid,
and spiculation). The radiographic characteristics of PNs
were obtained from the radiology report, documentation
provided by an attending pulmonologist or thoracic
surgeon, and by review of imaging by the research team.
In the event of disagreement, the interpretation of the
research team was used. Malignant or benign diagnosis of
PNs was verified based on the pathologic examination of
tissues obtained via surgery or biopsy. The surgical patho-
logic staging was determined based on the TNM guide-
lines classification criteria [17]. According to the World
Health Organization classification to determine the histo-
pathologic classification [18].

Sample collection and storage
Plasma samples were collected from outpatients and inpa-
tients of Henan Cancer Hospital, and the sample informa-
tion was recorded in sample collection forms. Fivemillilitre
of peripheral blood from the subject was drawn in a 5-ml
K2EDTA anticoagulant tube (BD biosciences, Franklin
Lakes, NJ, USA). The plasma sample’s storage and trans-
portation followed the instructions of the Nucleic Acid Ex-
traction Reagent (Excellen Medical Technology Co., Ltd.).

DNA isolation and bisulfite conversion
Blood samples were collected before surgery, anesthesia,
and adjuvant therapy. The collected specimens were
processed within 4 h by centrifuging at 3000 g for 10 min
at 4 °C. Then, we transferred the collected plasma to a
new tube and stored at − 80 °C until use. DNA was ex-
tracted from plasma using the Nucleic Acid Extraction
Reagent (Excellen Medical Technology Co., Ltd.) accord-
ing to the instructions. In Brief, circulating DNA was
extracted from 2mL of plasma utilizing magnetic beads,
then converted the unmethylated cytosine residue to
uracil residue in DNA by a bisulfite reaction. After
further purification, bisulfite-converted DNA (bisDNA)
was eluted in 35 μL and ready for real-time PCR use.

DNA methylation analysis
DNA methylation analysis was performed according to
the diagnostic kit’s instructions (Excellen Medical
Technology Co., Ltd.). The eluted DNA was used as a
template for fluorescent real-time PCR. Each PCR
reaction mixture has a total reaction volume of 25 μL,
including 12.5 μL reaction buffer, 2.5 μL primer mix, and
10 μL eluted DNA. Fluorescence PCR amplifications
were performed on 96-well plates of Applied Biosystems
7500 Fast Real-Time PCR Systems. Each sample was
carried out in triplicate. In addition to subject DNA
samples, each plate also included positive controls
(in vitro methylated leukocyte DNA), negative controls
(normal leukocyte DNA or DNA from a known
unmethylated cell line), and water blanks. The thermal
profile for amplification reactions was 98 °C for 5 min,
followed by 45 cycles at 95 °C for 10 s and 63 °C for 5 s
to 58 °C for 30 s. In the PCR reaction, the primers and
probes were designed to amplify the methylated
sequences preferentially. During the PCR process, the
methylated target sequence can be exclusively identified
from unmethylated DNA. Increased inflorescent emis-
sion of the reporter dye can be detected on fluorescence
channels of FAM, HEX, Texas Red, and CY5. The
resulting data were analyzed by Applied Biosystems
7500 Fast Real-Time PCR System Sequence Detection
Software v1.4.1.
All samples were within the range of the assay of sen-

sitivity and reproducibility based on the amplification of
internal reference standard [threshold cycle (Ct) value
for β-Actin (ACTB)]. We calculated the 2-ΔCT for each
methylation detection replicate comparing it to the
mean Ct for ACTB, the average value of triplicates of
selected gene divided by the average value of triplicates
of ACTB. For some samples replicates with the ex-
tremely low levels of DNA methylation in plasma, a Ct
of 45 was used, creating a near-zero value for 2-ΔCT.
Lung Cancer Analysis software v2.2 (Excellen Medical
Technology Co., Ltd.) analyzes the PCR output, calculat-
ing a composite score, reflecting the overall methylation
level in the assay’s markers.

Statistical analysis
Adapted from Han et al. [19], we applied four well-
established machine-learning algorithms to predict a
malignant or benign nodule (as a binary variable). The
K-nearest neighbors (KNN), random forest (RF), support
vector machine (SVM), and logistic regression (LR)
algorithms used the DNA Methylation and clinically-
relevant variables as candidate features. We evaluated
the performance of classifiers through fourfold cross-
validation within the training set. In detail, we randomly
divided the training set into four equal portions; then,
during each of the four iterations, we first applied the 3/
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4 of the training data trained the classifiers (500 trees for
RF, the radial kernel for SVM, other parameters set by
default). Next, we applied the trained classifiers to the
remaining 1/4 of the training data for prediction. The
predictions from all four iterations were combined and
compared with the truth, then a receiver operator char-
acteristic curve (ROC) was created and the area under
the curve (AUC) was computed to evaluate the predic-
tion capability for each model separately. Finally, we
applied the classifier trained from the whole training set
to an independent sample to independently validate the
predictive power.
The variables for the final model of binomial logistic

regression were selected through stepwise use of
Akaike’s information criterion (AIC). Then the selected
variables were used to fit an ordinary logistic regression
model and estimate the regression coefficients. The final
constructed prediction model was validated in an inde-
pendent sample for identifying malignant PNs.
The primary endpoint was the diagnostic accuracy for

malignant PNs. We assessed each model’s diagnostic
accuracy by calculating the area under the ROC curve
(AUC) and 95% confidence intervals (CI). The non-
parametric approach of DeLong et al. was used to com-
pare the performance of the prediction model with that
of the plasma biomarkers and the Mayo Clinic model
[20]. The prediction model was developed in a cohort’s
training set and blindly validated in an additional set of
subjects by comparing the calculated results with the
final clinical diagnosis and the AUCs. We conducted a
power analysis for the comparison between performance
in the Mayo model versus our constructed prediction
model with power (1 – β) set at 0.8 and α = 0.05. Based
on published data [13], the expected AUC value of the
Mayo model for identifying PNs was defined as 0.85.
The analysis yielded a required sample size of 91 partici-
pants for detection 10% difference, estimated by the for-
mula published previously [21]. R version 3.3.2 (The R
Foundation for Statistical Computing) and MedCale Sta-
tistics were used for all analyses. P values < 0.05 were
considered to indicate statistical significance.

Results
Clinical characteristics of subjects
Altogether, we recruited 210 subjects, of which 120 were
diagnosed with malignant PNs, 90 nodules were diag-
nosed with benign. The subjects were divided into a
training cohort and a validation cohort by enrollment
time. The initial series of 110 cases and controls were
used for training and the subsequent series of 100 was
used for validation. For each patient, only the largest
nodule confirmed by histopathology was chosen for
analysis. In the training cohort, 110 nodules, of which
63 were malignant, and in the validated cohort, 100

nodules, of which 57 were malignant (Table 1). Among
persons with nodules, the rates of cancer in the two data
sets were 57.3 and 57.0%, respectively. Subjects with lung
cancer were generally older than subjects with benign
nodules (58 vs 55 years). Of the subjects, 63 (57.3%) were
male, and 69 (62.7%) were non-smokers. The 63 subjects
with malignant PNs were diagnosed with adenocarcin-
omas (n = 37), squamous cell carcinomas (n = 14), small
cell lung cancer (n = 8) and, unclassified lung cancer pa-
tients (n = 4). The LC patients consisted of 17 stage I, 21
stage II, and 25 stage III to IV cases. One hundred subjects
with PNs were used as a validated cohort to confirm the
prediction model for the differentiation of malignant from
benign PNs. The cohort consisted of 57 subjects with
malignant PNs (LC) and 43 subjects with benign PNs
(Table 2). Of the patients with malignant PNs, 32 were di-
agnosed with adenocarcinomas, 14 were diagnosed with
squamous cell carcinomas, 2 were diagnosed with small
cell lung cancer, and 9 were unclassified lung cancer pa-
tients. The demographic and clinical parameters, includ-
ing detailed information about the two cohorts’ nodule
characteristics, are shown in Tables 1 and 2, respectively.

Diagnostic accuracy of the three methylation biomarkers
for identifying malignant PNs
To determine the diagnostic values of the three methyla-
tion biomarkers, we quantitative analysis of promoter
methylation in the plasma DNA samples from the train-
ing cohort of 110 subjects using the diagnostic kit for
the methylated gene of lung cancer (Excellen Medical
Technology Co., Ltd.). Plasma expression level for each
methylation biomarker was compared between two
groups of subjects in the training set. As shown in Fig. 1,
three methylation biomarkers displayed higher plasma
expression levels in patients with malignant PNs com-
pared to individuals with benign PNs (All P < 0.01). The
three methylation biomarkers present potential plasma
biomarkers for identifying malignant PNs.
We further performed receiver operating characteristic

(ROC) curve analysis to evaluate the capability of using
the three methylation biomarkers to discriminate pa-
tients with malignant PNs from patients having benign
PNs. As shown in Fig. 2, the three DNA methylation
used in combination yielded 0.912 AUC in identifying
malignant from benign PNs. No statistically significant
association was observed between the logistic model
with subjects’ age, gender, and smoking history (all p >
0.05).

Developing a prediction model based on the methylation
biomarkers and radiographic features of PNs for
distinguishing malignant from benign PNs
Although use of the three DNA methylation showing
promise with an AUC value of 0.912, it is not sufficient
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for identifying malignant PNs in the clinic. To improve
the diagnostic accuracy for malignant PNs, we applied a
rigorous machine-learning approach to assess the com-
bined use of methylation biomarkers and all clinically-
relevant variables in classifying PNs. First, within the

training set, we applied four well-established machine-
learning algorithms K-nearest neighbors (KNN), ran-
dom forest (RF), support vector machine (SVM), and
logistic regression (LR) and evaluated their perform-
ance based on the area under the receiver operating

Table 1 Subjects’ Characteristics of Training Study

Characteristics Subjects with Malignant PNs
(n = 63)

Subjects with Benign PNs
(n = 47)

Clinical

Age (Years)

Median Age 58 55

Age Range 36–77 26–70

Sex

Male 36 27

Female 27 20

Smoking history

Non-smoker 30 39

Ex-smoker 12 3

Current smoker 21 5

Smoking pack-years

Mean Pack-years (Smokers only) 36.52 20

Years quit (Smoker sonly) 8.9 3

Histology subtype

Adenocarcinoma 37

Squamous cell carcinoma 14

Small cell lung cancer 8

Other 4

Stage

I 17

II 21

III-IV 25

Radiological

Nodule size (mm) 21.46 (SD 10.52) 11.89 (SD 6.81)

Nodule location

Left lower lobe 9 6

Left upper lobe 17 12

Right lower lobe 15 15

Right middle lobe 3 4

Right upper lobe 19 10

Nodule type (number)

Nonsolid or ground-glass opacity 17 13

Perifissural 6 5

Part-solid 9 8

Solid 13 11

Spiculation 18 10

PN pulmonary nodule, SD standard deviation
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characteristics curve (AUC) through fourfold cross-
validation. We found that the models of SVM and LR
can accurately classify malignant from benign PNs
with AUC of 0.92 and 0.93. Moreover, the best-
performing algorithm, LR, achieved a high AUC of

0.96 on the independent test set (Table 3). These re-
sults indicated that the combined use of methylation
biomarkers and clinically-relevant variables can effectively
provide an independent approach to validate the classifica-
tion of tumor subtypes.

Table 2 Subjects’ Characteristics of Validation Study

Characteristics Subjects with Malignant PNs
(n = 57)

Subjects with Benign PNs
(n = 43)

Clinical

Age (Years)

Median Age 62 54

Age Range 38–78 27–72

Sex

Male 39 29

Female 18 14

Smoking history

Non-smoker 25 30

Ex-smoker 12 4

Current smoker 20 9

Smoking pack years

Mean Pack-years (Smokers only) 40.77 21.64

Years quit (Smoker sonly) 7.35 3.75

Histology subtype

Adenocarcinoma 32

Squamous cell carcinoma 14

Small cell lung cancer 2

Other 9

Stage

I 18

II 20

III-IV 19

Radiological

Nodule size (mm) 21.83 (SD 10.88) 11.22 (SD 7.56)

Nodule location

Left lower lobe 12 10

Left upper lobe 12 10

Right lower lobe 11 11

Right middle lobe 5 4

Right upper lobe 17 8

Nodule type (number)

Nonsolid or ground-glass opacity 17 13

Perifissural 8 6

Part-solid 9 7

Solid 13 10

Spiculation 10 7

PN pulmonary nodule, SD standard deviation
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We next used the logistic regression model through
stepwise use of Akaike’s information criterion (AIC) to
select the variables for the final models. Once the AIC
value no longer decreases, the stepwise regression ana-
lysis terminates and the optimal regression equation is
output. Finally, the logistic regression model selected the
methylation biomarkers (p < 0.001) and diameter of PNs

(p < 0.001) as significant predictors for malignant PNs
(See Additional file 1). Variables were presented in the
prediction model by using the following formula: the
probability of malignant PNs = ex/(1 + ex), where e is the
base of the natural logarithm and x = − 4.433 + 1.066 ×
Composite score + 0.151 × Diameter of PNs. Then, we
evaluated the performance of this prediction model in

Fig. 1 Comparison of the studied DNA methylation expressions in patients with benign PNs, and patients with malignant PNs in a training
cohort. Scatter plots show the distribution of relative normalized methylation values for each of the 3 genes determined by q-PCR. The paired t-
test was performed

Fig. 2 Receiver-operator characteristic (ROC) curve analysis of the three models in a training cohort. The area under the ROC curve (AUC) for each
model conveys its accuracy for diagnosing malignant PNs. The prediction model produced a higher AUC value for identifying malignant PNs
comparing with the panel of the three DNA methylation biomarkers and the Mayo Clinic model
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the training set, which produced 0.951 AUC in identify-
ing malignant from benign PNs (Fig. 2). It has been re-
ported that several prediction models based on PNs
parameters on CT images and clinical characteristics of
subjects developing to predict the probability of malig-
nant PNs [13–16], of which the Mayo Clinic model is a
commonly used one. We also applied the equation of
the Mayo Clinic model: Probability of Malignancy = ex/
(1 + ex), x = − 6.8272 + (0.0391 × Age) + (0.7917 × Smok-
ing history) + (1.3388 × Cancer) + (0.1274 × Diameter) +
(1.0407 × Spiculation) + (0.7838 × Upper) [13] to predict
malignant PNs in the training cohort of 110 subjects, as
shown in Fig. 2. The AUC value obtained by the
Mayo Clinic model was 0.823, and the value was
similar to the previous reports [13–15]. The AUC
value of the prediction model (0.951, 95% CI:0.892–
0.983) was significantly higher than the panel of the
three methylation biomarkers (0.912, 95% CI: 0.843–
0.958, p = 0.013) used alone and the Mayo Clinic
model (0.823, 95% CI:0.739–0.890, p = 0.001).

Validating the prediction model for identifying malignant
PNs in an independent cohort
Firstly, we confirmed the expression of the DNA methy-
lation panel in an independent cohort. The three-gene
methylation biomarkers displayed higher plasma expres-
sion levels in patients with malignant PNs compared to
individuals having benign PNs (All p < 0.0001) (Fig. 3).
The observations were in agreement with the findings
observed in the above training test, which indicated that
the gene methylation could be reproducibly measured.
Then, we evaluated the diagnostic performance of the
three models. The AUC value of the prediction model in
the validated cohort (0.948) was similar to in the training
cohort (0.951). As shown in Fig. 4, the AUC value of the
prediction model was significantly higher than the panel
of the biomarkers (0.912, 95% CI: 0.84–0.96) and the
Mayo Clinic model (0.829, 95% CI: 0.94–0.90). We used
the optimal cut-offs obtained in the training set to deter-
mine the prediction model’s diagnostic performance in
the validated cohort. The prediction model produced a

Table 3 Accuracy and predictive value between four models

Cross Validation Model Sensitivity Specificity PPV NPV Accuracy AUC

4-fold on training cohort KNN 0.83 0.86 0.90 0.80 0.83 0.84

SVM 0.89 0.85 0.89 0.86 0.87 0.92

RF 0.88 0.85 0.89 0.85 0.87 0.91

RL 0.91 0.83 0.88 0.89 0.87 0.93

Validated in an independent cohort KNN 0.93 0.84 0.9 0.9 0.89 0.88

SVM 0.93 0.93 0.91 0.91 0.93 0.96

RF 0.91 0.93 0.89 0.89 0.92 0.95

RL 0.91 0.88 0.88 0.91 0.9 0.96

KNN K-nearest neighbors, SVM support vector machine, RF random forest, RL logistic regression, AUC area under the curve, PPV positive predictive value, NPV
negative predictive value

Fig. 3 Comparison of the studied DNA methylation expressions in patients with benign PNs, and patients with malignant PNs in an independent
cohort. Scatter plots show the distribution of relative normalized methylation values for each of the 3 genes determined by q-PCR. The paired t-
test was performed
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sensitivity of 89.5% and a specificity of 95.4%. Taken to-
gether, these results confirmed that the prediction model
had the potential for estimating malignant PNs among
individuals with CT-detected PNs.

Discussion
Low-dose spiral computed tomography (LDCT), a reli-
able screening tool for early detection of lung cancer,
was severely limited by its low specificity [4, 5]. LDCT
dramatically increases the number of indeterminate pul-
monary nodules (PNs), whereas most PNs are ultimately
false positives [22]. It is clinically significant to develop
new methods that can precisely identify malignant from
benign PNs safely and cost-effectively.
Some clinical/radiological characteristics-based

models have shown the potential to identify malignant
PNs [13–15]. The finding from our present study
confirmed the previous observations. However, the
moderate sensitivity and specificity of these models
limit the application in clinical. DNA methylation
plays a vital role in tumorigenesis at an early stage
[23–25]. That makes DNA methylation alterations
among the most promising candidates in biomarker
research. To improve the diagnostic accuracy of lung
cancer, various DNA methylation biomarkers have
been explored. Among them, PTGER4, RASSF1A, and

SHOX2 methylation biomarkers showed high potential
in the diagnosis and prognosis of lung cancer. Kneip
C et al. performed DNA methylation analysis of the
SHOX2 gene in blood, the result showed a sensitivity
of 60% and specificity of 90% in the diagnosis of lung
cancer [11]. Hu et al. reported that promoter hyper-
methylation of RASSF1A occurs frequently in lung
cancer and is frequently found in small cell lung
cancer [12]. Besides, Weiss G et al. validated that
SHOX2/PTGER4 DNA methylation marker panel
could discriminate between patients with malignant
and nonmalignant lung disease with an AUC value of
0.88 [9]. Inspired by these studies, we combined de-
tection of PTGER4, RASSF1A, and SHOX2 methyla-
tion biomarkers for estimating malignant from benign
PNs in a training cohort. The three methylation bio-
markers used in combination produced an AUC value
of 0.912. Despite showing promise, the diagnostic ac-
curacy also needed to be further improved. We devel-
oped a novel lung nodule risk prediction model by
integrating the three DNA methylation biomarkers
with one radiological variable of PNs to estimate the
probability of malignancy in PNs. The prediction
model has a higher AUC value than the Mayo Clinic
model or the panel of biomarkers used alone. Fur-
thermore, in an independent cohort, the prediction

Fig. 4 Comparison of ROC curves generated using the prediction model, panel of the three DNA methylation biomarkers, and Mayo Clinic model
in an independent cohort. The prediction model produced the highest AUC value of the three models
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model’s performance validated, further confirming the
tremendous potential for detecting malignant PNs.
Our current findings suggested that the prediction
model with three DNA methylation biomarkers and
the diameter of PNs may potentially guide the man-
agement of CT screening results.
Based on the Food and Drug Administration criteria, a

disease with a 5% prevalence, the screening test should
have a sensitivity exceeding 95% when the specificity
≤95%, and vice versa [26]. The prevalence of lung cancer
in high-risk populations is 1 to 3%, while LDCT has
about 90% sensitivity and only 61% specificity, which is
prone to produce a high false-positive rate. The ideal
prediction model should have > 95% specificity and
appropriate sensitivity for identifying malignant PNs,
thus could augment the performance of LDCT for lung
cancer screening [27]. Our result appears promising; the
developed prediction model achieved a sensitivity of
87.3% and a specificity of 95.7% with an AUC value of
0.951 in malignant PNs diagnosis, which suggested that
the prediction model does possess the required diagnos-
tic performance for routine clinical application.
However, our study also has some limitations. The

sample size is small. The exact number of subjects in
some histological subtype groups, such as small cell lung
cancer, may be insufficient. A large sample size is
needed in further studies to confirm the results. Further-
more, subjects in this study were recruited from
hospital-based patients with PNs. The subjects might
not be representative of a population-based LDCT
screening setting for lung cancer. We will conduct a
large trial of population-based LDCT screening to con-
firm the prediction model’s performance in identifying
malignant PNs.

Conclusions
In summary, we developed a simple prediction model
based on DNA methylation biomarkers with radiological
characteristics that could identify malignant from benign
nodules detected by LDCT. Future use of the prediction
model could reduce costs and avoid invasive diagnostic
procedures for patients with benign PNs, at the same
time, allowing immediate treatment for lung cancer pa-
tients. This prediction model could be used in combin-
ation with LDCT to improve the over-all diagnosis of
lung cancer. Nevertheless, undertaking a prospective
study of the prediction model for malignant PNs in an
extensive population-based LDCT screening is required.

Abbreviations
LDCT: Low-dose spiral computed tomography; LC: Lung cancer;
PNs: Pulmonary nodules; PTGER4: Prostaglandin E receptor 4; RASSF1A: Ras
association domain family 1A; SHOX2: Short stature homeobox gene two;
ROC: Receiver operating characteristic; AUC: Area under a receiver operator
characteristic curve; CI: Confidence interval

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12885-021-08002-4.

Additional file 1.

Acknowledgments
We thank all the participants in this study.

Authors’ contributions
WX and JM conceived and designed the paper. HS collected the data and
processed subject samples. CY, CZ, and DW analyzed and interpreted the
data. ML provided technical support. All authors contributed to the
preparation, editing, review of the manuscript and approved the final
manuscript.

Funding
This work was supported by Major Science and Technology Projects of
Henan, 161100311500, and supported by Project Construction of Precision
Medical Data Platform on Lung Cancer and other Common Malignancy. The
funding bodies played no role in the design of the study and collection,
analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets used and analyzed during the current study are available from
the corresponding author on reasonable request. Subjects data are not
publicly available for containing information that could compromise
participants’ consent and confidentiality.

Declarations

Ethics approval and consent to participate
We collected participation samples with written, informed consent with
human ethics approval from the Medical Ethics Committee of Henan Cancer
Hospital (2018157). All participants provided written informed consent.

Consent for publication
Not applicable.

Competing interests
ML is an employee of Excellen Medical Technology Co., Ltd. All other authors
have no conflicts of interest to declare.

Author details
1Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou
University, Henan Cancer Hospital, Zhengzhou, Henan, China. 2Department
of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University,
Henan Cancer Hospital, No 127, Dongming Road, Zhengzhou 450008,
Henan, China. 3Henan Key Laboratory of Molecular Pathology, Zhengzhou,
Henan, China. 4Excellen Medical Technology Co., Ltd., Beijing, China.

Received: 29 September 2020 Accepted: 2 March 2021

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;

70(1):7–30. https://doi.org/10.3322/caac.21590.
2. Begum S, Brait M, Dasgupta S, et al. An epigenetic marker panel for

detection of lung cancer using cell-free serum DNA. Clin Cancer Res. 2011;
17(13):4494–503. https://doi.org/10.1158/1078-0432.CCR-10-3436.

3. Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C.
Progress and prospects of early detection in lung cancer. Open Biol. 2017;
7(9):170070. https://doi.org/10.1098/rsob.170070.

4. Patz EF Jr, Pinsky P, Gatsonis C, et al. Overdiagnosis in low-dose computed
tomography screening for lung cancer. JAMA Intern Med. 2014;174:269–74.

5. National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al.
Reduced lung-cancer mortality with low-dose computed tomographic
screening. N Engl J Med. 2011;365(5):395–409. https://doi.org/10.1056/
NEJMoa1102873.

Xing et al. BMC Cancer          (2021) 21:263 Page 10 of 11

https://doi.org/10.1186/s12885-021-08002-4
https://doi.org/10.1186/s12885-021-08002-4
https://doi.org/10.3322/caac.21590
https://doi.org/10.1158/1078-0432.CCR-10-3436
https://doi.org/10.1098/rsob.170070
https://doi.org/10.1056/NEJMoa1102873
https://doi.org/10.1056/NEJMoa1102873


6. Diederich S, Das M. Solitary pulmonary nodule: detection and management.
Cancer Imaging. 2006;6(Spec No A): S42-S46. Published 2006 Oct 31. doi:
https://doi.org/10.1102/1470-7330.2006.9004.

7. National Lung Screening Trial Research Team, Aberle DR, Berg CD, et al. The
National Lung Screening Trial: overview and study design. Radiology. 2011;
258(1):243–53. https://doi.org/10.1148/radiol.10091808.

8. Hulbert A, Jusue-Torres I, Stark A, et al. Early detection of lung Cancer using
DNA promoter Hypermethylation in plasma and sputum. Clin Cancer Res.
2017;23(8):1998–2005. https://doi.org/10.1158/1078-0432.CCR-16-1371.

9. Weiss G, Schlegel A, Kottwitz D, König T, Tetzner R. Validation of the
SHOX2/PTGER4 DNA methylation marker panel for plasma-based
discrimination between patients with malignant and nonmalignant lung
disease. J Thorac Oncol. 2017;12(1):77–84. https://doi.org/10.1016/j.jtho.2016.
08.123.

10. Zhang C, Yu W, Wang L, et al. DNA Methylation Analysis of the SHOX2 and
RASSF1A Panel in Bronchoalveolar Lavage Fluid for Lung Cancer Diagnosis.
J Cancer. 2017;8(17):3585–91. Published 2017 Sep 30. https://doi.org/10.71
50/jca.21368.

11. Kneip C, Schmidt B, Seegebarth A, et al. SHOX2 DNA methylation is a
biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol. 2011;
6(10):1632–8. https://doi.org/10.1097/JTO.0b013e318220ef9a.

12. Hu H, Zhou Y, Zhang M, Ding R. Prognostic value of RASSF1A methylation
status in non-small cell lung cancer (NSCLC) patients: a meta-analysis of
prospective studies. Biomarkers. 2019;24(3):207–16. https://doi.org/10.1
080/1354750X.2019.1583771.

13. Swensen SJ, Silverstein MD, Ilstrup DM, Schleck CD, Edell ES. The probability
of malignancy in solitary pulmonary nodules. Application to small
radiologically indeterminate nodules. Arch Intern Med. 1997;157(8):849–55.

14. Gould MK, Ananth L, Barnett PG, Veterans Affairs SNAP Cooperative Study
Group. A clinical model to estimate the pretest probability of lung cancer in
patients with solitary pulmonary nodules. Chest. 2007;131(2):383–8. https://
doi.org/10.1378/chest.06-1261.

15. Schultz EM, Sanders GD, Trotter PR, et al. Validation of two models to
estimate the probability of malignancy in patients with solitary pulmonary
nodules. Thorax. 2008;63(4):335–41. https://doi.org/10.1136/thx.2007.084731.

16. McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in
pulmonary nodules detected on first screening CT. N Engl J Med. 2013;
369(10):910–9. https://doi.org/10.1056/NEJMoa1214726.

17. Ettinger DS, Wood DE, Akerley W, et al. Non-small cell lung cancer, version
1.2015. J Natl Compr Cancer Netw. 2014;12(12):1738–61. https://doi.org/10.
6004/jnccn.2014.0176.

18. Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health
Organization Classification of lung tumors: impact of genetic, clinical and
radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10(9):
1243–60. https://doi.org/10.1097/JTO.0000000000000630.

19. Han L, Yuan Y, Zheng S, Yang Y, Li J, Edgerton ME, Diao L, Xu Y, Verhaak
RGW, Liang H. The pan-Cancer analysis of pseudogene expression reveals
biologically and clinically relevant tumour subtypes. Nat Commun. 2014;5:
3963. https://doi.org/10.1038/ncomms4963.

20. Cui X, Heuvelmans MA, Han D, et al. Comparison of Veterans Affairs, Mayo,
Brock classification models and radiologist diagnosis for classifying the
malignancy of pulmonary nodules in Chinese clinical population. Transl
Lung Cancer Res. 2019;8(5):605–13. https://doi.org/10.21037/tlcr.2019.09.17.

21. Hajian-Tilaki K. Sample size estimation in diagnostic test studies of
biomedical informatics. J Biomed Inform. 2014;48:193–204. https://doi.org/1
0.1016/j.jbi.2014.02.013.

22. Blanchon T, Bréchot JM, Grenier PA, et al. Baseline results of the Depiscan
study: a French randomized pilot trial of lung cancer screening comparing
low dose CT scan (LDCT) and chest X-ray (CXR). Lung Cancer. 2007;58(1):50–
8. https://doi.org/10.1016/j.lungcan.2007.05.009.

23. Locke WJ, Guanzon D, Ma C, et al. DNA Methylation Cancer Biomarkers:
Translation to the Clinic. Front Genet. 2019;10:1150. Published 2019 Nov 14.
https://doi.org/10.3389/fgene.2019.01150.

24. Fukushige S, Horii A. DNA methylation in cancer: a gene silencing
mechanism and the clinical potential of its biomarkers. Tohoku J Exp Med.
2013;229(3):173–85. https://doi.org/10.1620/tjem.229.173.

25. Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in Cancer
and aging. Cancer Res. 2016;76(12):3446–50. https://doi.org/10.1158/0008-54
72.CAN-15-3278.

26. Ma J, Guarnera MA, Zhou W, Fang H, Jiang F. A prediction model based on
biomarkers and clinical characteristics for detection of lung Cancer in

pulmonary nodules. Transl Oncol. 2017;10(1):40–5. https://doi.org/10.1016/j.
tranon.2016.11.001.

27. Lin Y, Leng Q, Jiang Z, et al. A classifier integrating plasma biomarkers and
radiological characteristics for distinguishing malignant from benign
pulmonary nodules. Int J Cancer. 2017;141(6):1240–8. https://doi.org/10.1
002/ijc.30822.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Xing et al. BMC Cancer          (2021) 21:263 Page 11 of 11

https://doi.org/10.1102/1470-7330.2006.9004
https://doi.org/10.1148/radiol.10091808
https://doi.org/10.1158/1078-0432.CCR-16-1371
https://doi.org/10.1016/j.jtho.2016.08.123
https://doi.org/10.1016/j.jtho.2016.08.123
https://doi.org/10.7150/jca.21368
https://doi.org/10.7150/jca.21368
https://doi.org/10.1097/JTO.0b013e318220ef9a
https://doi.org/10.1080/1354750X.2019.1583771
https://doi.org/10.1080/1354750X.2019.1583771
https://doi.org/10.1378/chest.06-1261
https://doi.org/10.1378/chest.06-1261
https://doi.org/10.1136/thx.2007.084731
https://doi.org/10.1056/NEJMoa1214726
https://doi.org/10.6004/jnccn.2014.0176
https://doi.org/10.6004/jnccn.2014.0176
https://doi.org/10.1097/JTO.0000000000000630
https://doi.org/10.1038/ncomms4963
https://doi.org/10.21037/tlcr.2019.09.17
https://doi.org/10.1016/j.jbi.2014.02.013
https://doi.org/10.1016/j.jbi.2014.02.013
https://doi.org/10.1016/j.lungcan.2007.05.009
https://doi.org/10.3389/fgene.2019.01150
https://doi.org/10.1620/tjem.229.173
https://doi.org/10.1158/0008-5472.CAN-15-3278
https://doi.org/10.1158/0008-5472.CAN-15-3278
https://doi.org/10.1016/j.tranon.2016.11.001
https://doi.org/10.1016/j.tranon.2016.11.001
https://doi.org/10.1002/ijc.30822
https://doi.org/10.1002/ijc.30822

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Materials and methods
	Ethics
	Patient cohorts and study design
	Sample collection and storage
	DNA isolation and bisulfite conversion
	DNA methylation analysis
	Statistical analysis

	Results
	Clinical characteristics of subjects
	Diagnostic accuracy of the three methylation biomarkers for identifying malignant PNs
	Developing a prediction model based on the methylation biomarkers and radiographic features of PNs for distinguishing malignant from benign PNs
	Validating the prediction model for identifying malignant PNs in an independent cohort

	Discussion
	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

