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Abstract

Background: There is evidence to consider that the tumor microenvironment (TME) composition associates with
antitumor immune response, and may predict the outcome of various non-Hodgkin lymphoma subtypes. However,
in the case of mantle cell lymphoma (MCL), a rare and aggressive disease, there is lacking a detailed study of the
TME components, as well as an integrative approach among them in patients’ samples. Also, from the genetic
point of view, it is known that single nucleotide variants (SNVs) in immune-response genes are among important
regulators of immunity. At present, it is uncertain whether SNVs in candidate immune-response genes and the TME
composition are able to alter the prognosis in MCL.

Methods: We assessed a detailed TME composition in 88 MCL biopsies using immunohistochemistry, which was
automatically analyzed by pixel counting (Aperio system). We also genotyped SNVs located in candidate immune-
response genes (IL12A, IL2, IL10, TGFB1, TGFBR1, TGFBR2, IL17A, IL17F) in 95 MCL patients. We tested whether the
SNVs could modulate the respective protein expression and TME composition in the tumor compartment. Finally,
we proposed survival models in rituximab-treated patients, considering immunohistochemical and SNV models.

Results: High FOXP3/CD3 ratios (p = 0.001), high IL17A levels (p = 0.003) and low IL2 levels (p = 0.03) were
individual immunohistochemical predictors of poorer survival. A principal component, comprising high quantities of
macrophages and high Ki-67 index, also worsened outcome (p = 0.02). In the SNV model, the CC haplotype of IL10
(p < 0.01), the GG genotype of IL2 rs2069762 (p = 0.02) and the AA+AG genotypes of TGFBR2 rs3087465 (p < 0.01)
were independent predictors of outcome. Finally, the GG genotype of TGFB1 rs6957 associated with lower tumor
TGFβ levels (p = 0.03) and less CD163+ macrophages (p = 0.01), but did not modulate patients’ survival.

Conclusions: Our results indicate that the TME composition has relevant biological roles in MCL. In this setting,
immunohistochemical detection of T-reg cells, IL17A and IL2, coupled with SNV genotyping in IL10, TGFBR2 and IL2,
may represent novel prognostic factors in this disease, following future validations.
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Background
Mantle cell lymphoma (MCL) is an uncommon non-
Hodgkin lymphoma (NHL) subtype, marked by presence
of the t (11:14) translocation in more than 90% of the
cases, which leads to overexpression of cyclin D1 [1].
MCL has an aggressive clinical course, debilitating po-
tential and yet limited prognostic stratification. Some
features are already known to impact MCL survival, such
as the use of rituximab (anti-CD20 antibody) and the
Mantle Cell Lymphoma International Prognostic Index
(MIPI). The Ki-67 cell proliferation index, assessable in
patients’ biopsies, is also proposed as directly related to
tumor aggressiveness [2]. More recently, molecular
events, such as B-cell receptor activation and TP53 /
CDKN2A mutations, were associated with treatment re-
sistance [3, 4]. These results brought new insights in the
pathophysiology of MCL. However, factors such as the
interactions between tumor cells and surrounding in-
flammatory populations need further exploration.
In this setting, the composition of tumor microenvir-

onment (TME) has emerged as a promising prognostic
marker in patients with a variety of tumors, including
NHLs [5]. The TME encompasses extracellular matrix,
inflammatory cells, fibroblasts, the vascular bed and sol-
uble signaling molecules. Interactions among these com-
ponents control oxygen and nutrient supplies for tumor
cells, and also regulate the antineoplastic immune re-
sponse [5]. Depending on the balance among TME com-
ponents, disease course may be defined either as
immune evasion and tumor progression, or as an effi-
cient immune response and disease clearance [6]. As-
sessment of the TME cellular composition has helped to
better stratify prognosis in various types of NHLs [5].
For MCL, the roles of circulating monocytes [7], T-cells
[8] and follicular dendritic cells [9] on patients´ outcome
have been demonstrated in few studies, but the
remaining inflammatory cells, as well as an integrative
approach among them, remain largely unexplored in this
disease. Moreover, inflammatory cytokines, which com-
pose the molecular counterpart of the TME, are also in-
creasing subjects of interest in lymphoma, due to their
capacity of modulating immune responses and lymph-
oma cells’ growth [10–13]. For instance, one recent
study characterized, in vitro, the role of IL10 in main-
taining survival of MCL cells via M2-macrophages [13].
These findings not only highlighted important interplays
among MCL cells, TME cells and cytokines, but also
stressed the need of exploring cellular and molecular pa-
rameters of the TME in patient-derived samples.
However, as the capacity of immune response is vari-

able in humans [14], it may be relevant to assess not
only the levels of cytokine profiles, but also the genetic
determinants for their expression. Previous studies dem-
onstrated that single nucleotide variants (SNVs) located

in immune-response genes, including cytokines, may
alter NHL onset and progression [14–17]. This may be
especially valid in the case of functional variants, in
which alteration of the transcript and/or protein may
regulate the tumor microenvironment composition and
ultimately modulate disease outcome [18]. However, this
question was not yet properly addressed in MCL, despite
the role of immune subsets in sustaining the survival of
lymphoma cells [11, 13, 19].
Herein, we assessed the prognostic role of immune-

response components of the TME in biopsies from a
retrospective cohort of MCL. We also studied SNVs in
immune-response related genes, attempting to elucidate
whether they could alter the TME composition and the
outcome of MCL patients.

Methods
Patient selection and clinical data
We analyzed all 122 MCL cases diagnosed between 1999
and 2016 at the Hematology and Hemotherapy Center
of the University of Campinas (n = 74) and A. C.
Camargo Cancer Center (n = 48).
The diagnosis of MCL was made according to the

World Health Organization (WHO) Classification for
Lymphoid Tumors [20]. Tumor cells were character-
ized by a CD20+/CD5+/cyclin D1+ phenotype. The
Mantle Cell International Prognostic Index (MIPI)
was calculated and used as the reference prognostic
instrument [2].

Single genetic variants choice and genotyping
The choice of SNVs was based on a candidate gene ap-
proach. We selected SNVs in genes related to immune-
response with previous evidences of active roles in
lymphoma, cancer or modulation of the immune re-
sponse [13–16, 21–42]. A minor allele frequency (MAF)
of 5% was preconized. Sixteen SNVs were finally selected
in 8 candidate genes: IL12A, IL2, IL10, TGFB1, TGFBR1,
TGFBR2, IL17A and IL17F (Table 1).
DNA samples were extracted from peripheral blood of

patients, using precipitation with lithium chloride. As-
sessments of DNA yield (ng/μL) and purity (260/280
and 260/230 ratios) were performed using the Nano-
Drop spectrophotometer (ThermoFisher Scientific, Wil-
mington, DE, USA). Whenever necessary, sodium
acetate (3M) was added to the extracted DNAs, followed
by new ethanol precipitations, to improve purity. The
final concentration of all samples was set to 50 ng/μL.
Genotyping of SNVs was performed using the Taq-

man® OpenArray® QuantStudio™ Real-Time PCR System
(Life Technologies Inc., Carlsbad, CA, USA). Briefly,
DNA samples were pipetted together with Taqman®
Openarray® Master Mix on 384-well plates. This mixture
was then transferred to genotyping plates using the
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Openarray® Accufill™ system. Thermocycling was per-
formed during 40 cycles, and visualization of poly-
morphic alleles was possible by using fluorophores
(VIC™ and FAM™). A single reaction allowed the simul-
taneous detection of all 16 SNVs.

Tissue samples and immunohistochemistry
Formalin-fixed, paraffin embedded (FFPE) diagnostic
blocks from MCL cases were obtained from the par-
ticipating hospitals. All slides were reviewed by an ex-
perienced hematopathologist (JV), and two
representative areas from each source block were se-
lected to construct a tissue microarray (TMA). Core
fragments with diameter of 1 mm were taken using a
Tissue Microarrayer (Beecher Instruments, Silver
Springs, MD), and samples were put as duplicates in
the recipient block. Immunohistochemistry was then
performed, using a broad panel of antibodies to study
key TME components, including tumor-infiltrating
lymphocytes (CD3, CD4, PD1, FOXP3, CD8, gran-
zyme B, perforin, CD57) and macrophages (CD68,
CD163, iNOS). We also performed immunohisto-
chemistry to detect the proteins encoded by the genes
used in the SNV approach (IL12A, IL2, IL10, TGFβ,
TGFBR1, TGFBR2, IL17A, IL17F). Reactions for Ki-67
and SOX11 were performed as well. A detailed list of
antibodies, including suppliers and dilutions, is in
supplementary Table 1.
Eighty-nine blocks were used for SOX11 evaluation,

and 88 were considered suitable for TME assessment.

The immunohistochemical (IHC) reaction was per-
formed using standard procedures. Briefly, unstained
slides were submitted to antigen retrieval using citric
acid solution/pH 6.0 or EDTA/pH 9.0 buffers. Endogen-
ous peroxidase activity was blocked by hydrogen perox-
ide solution for 20 min. Exposure to the primary
antibody was performed overnight. The signal was amp-
lified by a third generation polymer tagged with anti-
mouse/anti-rabbit immunoglobulins and horseradish
peroxidase (Novolink Polymer Detection System, Leica
Biosystems, Newcastle Upon Tyne, UK), and the color
was developed with diaminobenzidine chromogenic sub-
strate (Sigma, D5637, St. Louis, MO, USA). Positive cells
were observed in golden brown color. The negative con-
trol was performed by omitting the primary antibody.

Immunohistochemical analysis
Quantification of IHC markers was performed on the
entire TMA cores. For the majority of the markers, this
was done automatically using the Aperio ImageScope™
software (Leica Microsystems Inc., Buffalo Grove, IL,
USA) (Fig. 1). The Positive Pixel Count algorithm was
used to grade pixels as negative, low positive, positive
and high positive. Inputs for the algorithm were a hue
value of 0.1, hue width of 0.5 and color saturation
threshold of 0.1 (for most cores). In some rare cases pre-
senting with nonspecific background, the color satur-
ation threshold was increased to 0.15 to minimize noise
capture. For antibodies staining specific TME popula-
tions (e.g. CD68, FOXP3, CD3), the fraction of all

Table 1 Genes, single nucleotide variants and their biological rationale for inclusion in this study

Gene SNVs Biological rationale

IL12A rs755004, rs485497, rs568408, rs583911 -Controversial molecule in B-cell lymphoma models (antitumoral effect /
exhaustive effect in T-cells) [21, 22];
-SNVs previously associated with lymphoproliferative disorders [16, 23–25].

IL2 rs2069762, rs6822844 -Cytokine with potential cytotoxic effect in mantle cell lymphoma [26];
-SNVs previously associated with the regulation of IL2 levels and lymphoma
prognosis [15, 27].

IL10 rs3024491, rs1800872, rs1800890 -Cytokine with effects on mantle cell lymphoma proliferation and survival [13, 28];
-SNVs were previously implicated on regulation of IL10 levels and
lymphomagenesis [14, 29–31].

TGFB1 rs6957, rs1800471, rs1800469 -Pathway with a potential role in mantle cell lymphoma signaling [32];
-SNVs associated with functional changes in the TGFβ pathway [33–35].

TGFBR1 rs334348 -Pathway with a potential role in mantle cell lymphoma signaling [32];
-SNV with an effect on cancer risk and postulated functional change [36].

TGFBR2 rs3087465 -Pathway with a potential role in mantle cell lymphoma signaling [32];
-SNV associated with changes in promoter activity [37].

IL17A rs3748067 -Molecule with potential but still uncertain role in B-cell lymphomas’ pathophysiology,
including mantle cell lymphoma [38, 39];
-SNV previously associated with prognostic features in cancer, and with a putative
functional role [40].

IL17F rs763780 -Molecule with a potential role in B-cell lymphomas, and adverse prognostic role in
T-cell lymphoma [38, 39, 41];
-SNV previously associated with alterations in protein function [42].

SNVs Single nucleotide variants
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positive pixels was considered as the score. For anti-
bodies that heterogeneously stained both tumor and
microenvironment cells (e.g. cytokine antibodies), we
calculated the H-score, which applies different multi-
pliers for low positive, positive and high positive stain-
ings (1, 2 and 3, respectively) [43].
For SOX11 assessment, we performed categorization

using a visual approach, similarly to others [44, 45]. In
this setting, cases were classified as SOX11high (nuclear
staining in more than 10% of cells) or SOX11low (nuclear
staining in less than 10% of cells or negative staining).
Immunohistochemical scores were analyzed individu-

ally and also as part of a dimension-reducing method-
ology (principal component analysis; please see
“statistical analyses”).

Statistical analyses
Associations between variables were assessed using χ2,
Fisher’s exact test, Mann Whitney’s test and Spearman’s
correlation index. When necessary, continuous variables
were dichotomized as “high” and “low” based on the me-
dian values.
Regarding SNVs assessment, the Hardy-Weinberg

equilibrium (HWE) was evaluated using the chi-square
(χ2) goodness-of-fit test. Pairwise linkage disequilibrium
(LD) analyses were performed using the Haploview 4.2
software (www.broad.mit.edu/mpg/ haploview) to ensure
that the markers were appropriate for inclusion in the
haplotype estimates. The LD was measured by the

disequilibrium coefficient (D′), and LD significance was
considered at a D′ ≥ 80%.
Exploratory principal component analysis (PCA) with

Varimax rotation was used as a dimension-reducing
method in IHC quantifications. Interactions between IHC
variables were estimated and expressed as principal com-
ponents. In this setting, stronger interactions had higher
computed variance values [46]. The associations between
principal components and clinicopathological features
were estimated with linear regression analyses.
Survival analyses were also performed. However, as anti-

CD20 therapy may be a potential confounder for the TME
function, only patients who received rituximab in first-line
regimens were included in this analysis [47]. In a similar
way, only patients that did not undergo bone marrow trans-
plantation were put in survival analysis, as transplantation
modulates the proportion of immune cells [48, 49]. Overall
survival (OS) was defined as the time from diagnosis until
death by any cause or last follow-up. Event-free survival
(EFS) was defined as the time from diagnosis until death,
disease progression or last follow-up. Three survival models
were tested: one model considering individual IHC assess-
ments (IHC model), another one testing genotyping data
(SNV model), and one last model using the data from PCA.
Survival curves were plotted with the Kaplan-Meier
method, and compared using the log-rank test. We further
performed Cox univariate regressions for variables influen-
cing survival in Kaplan-Meier curves. Finally, a Cox multi-
variate model was proposed, enclosing all variables with a p
value of less than 0.10 in the univariate analysis.

Fig. 1 Representative examples of immunohistochemical analysis using the Aperio system in mantle cell lymphoma. Assessment of CD68 (a-b)
and IL17A (c-d), in which “a” and “c” illustrate the original stainings, and “b” and “d”, the respective decodified images. In the latter ones, blue
color identifies negative pixels, yellow color indicates weak positive staining, orange color highlights positive staining and red color denotes
strong positive staining
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Simultaneous testing of redundant information (e.g. age
and the MIPI) was not performed. Follow-up update was
performed on January, 2019.
The significant results of multivariate Cox regressions

were internally validated using the Bootstrap resampling
method (1000 replications).
When necessary, the Benjamini-Hochberg method was

performed for correction of multiple comparisons. All
statistical tests were two-tailed, and a p value of less than
0.05 was considered statistically significant.

Results
Demographic and clinical characteristics of the
population
Median age at diagnosis for all MCL patients was of 66
years old (range: 31–93), and there was a predominance
of male sex (93/122 or 76.2%). The majority of patients
(107/122 or 87.7%) were included in Ann Arbor stages
III or IV. The MIPI allowed classification of available pa-
tients as high-risk disease (35.3%), followed by inter-
mediate risk (27.0%) and, finally, low risk (24.6%).
Seventy-eight patients (63.9%) had received rituximab as
first-line therapy. Twenty-seven patients (22.1%) under-
went hematopoietic stem-cell transplantation (autolo-
gous in 26 cases and allogeneic in 1). The main clinical
variables are detailed in supplementary Table 2.

Immunohistochemical quantifications
In 88/122 (72.1%) cases, diagnostic FFPE blocks were
suitable for TME assessment. The most frequent im-
mune cells found on the MCL biopsies were T lympho-
cytes, mainly CD4+ (median = 6.43% of pixels, range:
0.09–58.60). Macrophages (CD68+) were slightly less
frequent (median = 3.82% of pixels, range: 0.79–23.69).
Regarding inflammatory cytokines, IL17A had the high-
est expression (median HScore = 223.85, range: 54.18–
281.40) (Fig. 2). The expression of TGFBR2 was visually

negative in all cases, therefore, no quantification was
performed. Representative stainings for each marker are
available in supplementary Figs. 1, 2 and 3.
Positive correlations were found between some of the

IHC markers: CD4 with CD8 (p < 0.001), perforin with
CD8 (p = 0.02), and CD68 with CD4 (p < 0.001), CD8
(p = 0.001), and IL10 (p < 0.001). IL17A and CD57 were
inversely correlated (p = 0.008) (Fig. 3).
Higher pixel counts of PD1+ cells were associated with

less B-symptoms at diagnosis (p = 0.04). Also, higher levels
of macrophages (CD68+) and higher CD4/CD8 ratios
were found in patients with less aggressive MIPI categor-
ies (low or intermediate risks, p = 0.02 and 0.04, respect-
ively). In contrast, higher CD8/CD3 ratios were more
frequently found on high-risk MIPI patients (p = 0.02). Fi-
nally, high IL12A and IL17A levels associated, respectively,
with bone marrow infiltration (p = 0.01) and blastoid cy-
tology (p = 0.04) (supplementary Tables 3 and 4).
Regarding SOX11 evaluation, the majority of patients

were categorized as SOX11high (76 out of 89 evaluable
cases, or 85.4%). The remaining cases (13/89 or 14.6%)
were classified as SOX11low (representative photomicro-
graphs in supplementary Fig. 4). There was a higher per-
centage of female patients in the SOX11low group (46.2 vs
19.7%; p = 0.03); no other clinicopathological differences
were seen (supplementary Table 5). Composition of the
TME was mostly similar between SOX11high and SOX11-
low groups, except for a trend towards higher IL2 and per-
forin levels in SOX11low cases (supplementary Fig. 5).

Single nucleotide variants genotyping and TME
composition
Genotyping of SNVs was possible in 95 patients. In all
but 1 SNV (TGFBR1 rs334348) the HWE was observed
(supplementary Table 6).
The only SNV associated with the respective protein

levels was TGFB1 rs6957. Significantly lower TGFβ

Fig. 2 Quantifications of the tumor microenvironment markers in mantle cell lymphoma. a Markers quantified using positivity levels (0–100%)
and (b) Markers quantified using the H-Score (0–300). Graphs show scatterplots with superimposed median levels and interquartile range
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levels were found in tumors from patients harboring
the GG genotype (p = 0.03, Fig. 4a). The same geno-
type also associated with decreased CD163+ pixels
(p = 0.01, Fig. 4b).
Besides, the recessive “T” allele of IL2 rs6822844 was

seen in patients with increased FOXP3 pixel counts (p =
0.001, Fig. 4c). Finally, considering IL17F rs763780, pa-
tients carrying the recessive “C” allele had tumors with
lower quantities of perforin-expressing cells (p < 0.0001,
Fig. 4d).
Based on the LD coefficients, we were able to estimate

haplotypes in IL12A and IL10 (supplementary Table 7,
supplementary Fig. 6). The haplotypes presented no as-
sociations with features at diagnosis (data not shown).

Survival models including individual
immunohistochemical markers and SNVs
Survival analyses were performed in 55 patients that re-
ceived rituximab and did not undergo stem cell transplant-
ation. Univariate analyses considering clinical features
evidenced significant adverse prognostic roles of B-
symptoms (both in EFS and OS), bone marrow infiltration
(OS only) and MIPI index (trend of significance in EFS only
(supplementary Table 8). These variables were, therefore,
used as covariates on multivariate Cox regressions.
Univariate survival analyses of IHC markers showed

that the presence of low IL2 levels associated with worse

EFS and marginally with OS (p = 0.01 and 0.09, respect-
ively) (Fig. 5a and Fig. 6a). High FOXP3/CD3 ratios (p =
0.002) and high CD8/CD3 ratios (p = 0.03) associated
only with worse EFS, and low granzyme B levels pre-
sented a trend of association with worse EFS (p = 0.06)
(Figs. 5b-d). On the other hand, high IL17A levels asso-
ciated only with shorter OS (p = 0.03) (Fig. 6b). SOX11
expression was not associated either with EFS or with
OS (Figs. 5e and Fig. 6c).
Regarding the SNVs, presence of the GG genotype of

IL2 rs2069762 negatively affected both EFS (p = 0.01,
Fig. 5f) and OS (p = 0.006, Fig. 6d). In addition, patients
carrying the CC haplotype in IL10, involving rs3024491
and rs1800872, had improved EFS (p = 0.04, Fig. 5g) and
OS (p = 0.007, Fig. 6e). Besides, the GG genotype of
TGFB1 rs6957, compared with GA +AA genotypes, as-
sociated solely with worse OS (p = 0.03, Fig. 6f). Finally,
the AA+AG genotypes of TGFBR2 rs3087465 (p = 0.001)
and the TC + CC genotypes of IL17F rs763780 (p = 0.03)
associated only with worse EFS (Fig. 5h and i).
After multivariate analyses, in the IHC model, high

FOXP3/CD3 ratios (HR = 5.03, 95% CI: 1.97–12.84, p =
0.001) and low IL2 tumor levels (HR = 2.83, 95% CI:
1.06–7.58, p = 0.03) remained independent predictors of
worse EFS, whereas high IL17A tumor levels were inde-
pendently associated with worse OS (HR = 4.68, 95% CI:
1.72–12.77, p = 0.003) (Table 2).

Fig. 3 Correlation matrix for immunohistochemical markers in mantle cell lymphoma. Blueish tones indicate higher positive correlations, whereas
reddish tones point toward negative correlations. Larger circle diameters denote higher modules of the correlation coefficient (r). Non-significant
correlations are shown as white intersections
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In the multivariate SNV model, presence of the CC
haplotype in IL10 was independently associated both with
prolonged EFS (HR = 0.32, 95% CI: 0.14–0.74, p = 0.008)
and prolonged OS (HR = 0.26, 95% CI: 0.10–0.68, p =
0.006). In addition, the GG genotype of IL2 rs2069762
remained an independent predictor of EFS (HR = 3.13,
95% CI: 1.12–8.69, p = 0.02). Finally, the AA+AG geno-
types of TGFBR2 rs3087465 were associated with worse
EFS (HR = 4.32, 95% CI:1.88–9.93, p = 0.001).

Principal component analysis
To address the interplay among TME components with
a more biologically plausible approach, we used PCA to
verify interactions and trends of convergence among the
various IHC markers. The final PCA model was based
on 6 factors and explained 75.02% of the variance (sup-
plementary Table 9). The first component highlighted
the opposition between granzyme B and IL10, IL17A,
IL17F and TGFBR1. The second one directly associated

FOXP3/CD3 and CD8/CD3 ratios and opposed them
against macrophage infiltration (CD68). The third com-
ponent emphasized the presence of a cytotoxic marker
(CD57) that opposed IL17A and the proliferative index
Ki-67. On the fourth component, pan-macrophages
(CD68+), M2-macrophages (CD163+) and Ki-67 were
directly associated. The fifth component aggregated to-
gether two cytotoxic markers (granzyme B and perforin),
as well as IL2 levels. Finally, the last component in-
versely associated T-cell levels and IL2.
The presence of the fourth principal component was

associated with blastoid cytology, using a linear regres-
sion model (F = 9.43, p = 0.003, R2 = 0.14). No other as-
sociations with features at diagnosis were seen.
The third and fourth principal components presented

associations with OS in univariate analysis (p = 0.08 and
0.03, respectively). After multivariate analysis, only the
presence of the fourth component was significantly asso-
ciated with worse OS (HR = 1.68, 95% CI: 1.08–2.62, p =
0.02) (Table 2).

Discussion
In this cohort of MCL patients, the traditional assess-
ment of TME components in tumor biopsies was com-
plemented with the genotyping of candidate SNVs from
immune-response genes. Increased numbers of FOXP3+
lymphocytes, higher IL17A, lower IL2 and a principal
component involving Ki67 and macrophages were inde-
pendently associated with worse outcome in the tumor
compartment. Within the genetic counterpart of the
TME, SNVs in IL10, TGFBR2 and IL2 also showed asso-
ciation with prognosis. Our results, although explora-
tory, provide further evidence that the immune
microenvironment poses relevant biological relevance in
this disease. This, ultimately, could foster the develop-
ment of TME-directed therapies that may complement
the traditional treatment [1, 13, 50, 51].
The prognostic role of some T-cell subpopulations in

MCL was previously assessed by Nygren et al. (2014),
who found that the predominance of CD4+ lymphocytes
over CD8+ lymphocytes was associated with less aggres-
sive disease [8]. As CD4+ cells represent a heteroge-
neous group of lymphoid subpopulations, it remains to
be elucidated how the balance among different subtypes
of CD4+ lymphocytes could explain their findings. We
assessed some of these subtypes and found that high
FOXP3/CD3 ratios and high IL17A tumor levels were
associated with worse outcomes. FOXP3 is traditionally
used as a marker of CD4+ regulatory T-cells (T-reg),
which were already implicated on immune suppression
and worse prognosis of other lymphoma subtypes, such
as follicular lymphoma [52]. Complementarily, IL17A is
produced by other subtypes of T-CD4+ cells (Th17
cells). It enhances proliferative and pro-angiogenic

Fig. 4 Modulation of the tumor microenvironment in mantle cell
lymphoma by single nucleotide variants. Associations of TGFB1
rs6957 with (a) TGFβ and (b) CD163 levels. c Association of IL2
rs6822844 with FOXP3 levels; (d) Association of IL17F rs763780 with
perforin levels. Graphs show scatterplots with superimposed median
levels and interquartile range. All p-values were obtained with two-
tailed Mann-Whitney tests
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signals to neoplastic cells, including lymphoma cell lines,
which might explain the adverse prognostic role found
in our study [53, 54]. Interestingly, the fact that both T-
reg cells and IL17A were prognostic in our series also
raises the possibility of involvement of “inflammatory T-
regs” (IL17 producing T-reg cells) on the immune land-
scape of MCL [55]. Confirmation of this hypothesis re-
lies on additional studies performing experiments such
as double immunostainings.
When evaluating the TME by PCA, tumors rich in

CD163 and with a high proliferative index had a worse
prognosis. An association with the blastoid cytomor-
phology was also observed. The presence of higher Ki-67
is a known prognostic factor in MCL [2], and a higher
density of CD163+ macrophages was previously associ-
ated with adverse clinical features in this disease [7]. Re-
cently, an interplay between M2-macrophages and MCL

cells was also described as relevant for the production of
CSF1 and survival of lymphoma cells [13], which might
explain the adverse prognostic role of the PCA detected
in the present study.
Regarding the genetic counterpart of the TME, we

found that the CC haplotype in IL10 (composed of the
“C” alleles of rs3024491 and rs1800872) was a predictor
of better OS and EFS in MCL. In previous reports ad-
dressing patients with Hodgkin’s lymphoma and B-cell
lymphomas, similar results were achieved for the second
SNV individually [56, 57]. It was already suggested that
the locus involving rs1800872 might modulate IL10 pro-
duction, however, the results concerning this modulation
are conflicting [56]. On the other hand, Assis et al. [29]
reported that the “A” allele of rs3024491 associated with
higher production of IL10 than the “C” allele, a finding
that might have an impact on the CC haplotype. In our

Fig. 5 Kaplan-Meier curves (event-free survival) of mantle cell lymphoma patients. Categorizations by (a) IL2 levels, (b) FOXP3/CD3 ratios, (c) CD8/
CD3 ratios, (d) Granzyme B levels, (e) SOX11 positivity, (f) Genotypes of IL2 rs2069762, (g) Haplotypes in IL10, (h) Genotypes of TGFBR2 rs3087465
and (i) Genotypes of IL17F rs763780. Each graphic contains the hazard ratios and p-values obtained in the respective univariate Cox regressions
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samples, we did not find any evidence of changes in
local IL10 production either by the SNVs or by the
CC haplotype; however, the systemic levels of this
interleukin need to be addressed in further studies. A
reduction of IL10 production by the haplotype seems
a plausible explanation for the prolonged survival of
CC patients, because IL10 induces a pro-tumorigenic
microenvironment in MCL [13].
Another potentially targetable pathway in MCL is

TGFβ and related proteins. Rizzatti et al. (2005) de-
scribed that several genes from the TGFB superfamily
were up-regulated in MCL samples, compared to con-
trols, but this was little explored in further studies [32].
In our cohort, we found that the AA+AG genotypes of
TGFBR2 rs3087465 independently associated with
poorer EFS. To the best of our knowledge, this is the
first association of this SNV with survival in cancer pa-
tients. The” A” allele of rs3087465 was previously found
to increase the promoter activity of TGFBR2 [37], but its
specific role in MCL and the mechanisms influencing
survival in our cohort are yet to be elucidated. In the
same pathway, the SNV TGFB1 rs6957 was not a pre-
dictor of outcome after multivariate analysis; however,
the GG genotype was associated with decreased levels of
TGFβ and CD163+ macrophages in MCL biopsies.
These findings are similar to a previous report in asthma
patients, in whom this SNV also modulated macrophage
proliferation [33]. However, the low frequency of the

GG genotype of rs6957 demands further investigation in
larger sample sizes.
Finally, considering the cytotoxic (Th1) immune-

response pathway, we found that the GG genotype of
IL2 rs2069762 was an independent predictor of worse
EFS. This mirrors the findings of Cerhan et al. (2007), in
which the same genotype worsened the survival of fol-
licular lymphoma patients in the pre-rituximab era [15].
Interestingly, the GG genotype was previously associated
with reduction of IL2 production in healthy individuals
[58]. Even though the SNV was not associated with
modulation of IL2 levels in our samples, the presence of
low scores of IL2, in the IHC model, was associated with
worse EFS. Taken together, these results endorse the
role of IL2-dependent cytotoxicity observed in MCL ex-
perimental models [26]. Therefore, further investigation
of this pathway in patient-derived samples should be
fostered.
In our cohort of MCL, SOX11 expression was not as-

sociated with prognosis. The importance of this tran-
scription factor for the diagnosis of MCL is already
established [59]. More recently, the role of this molecule
in MCL homing and migration was also proposed [60].
However, a possible prognostic role remains in debate.
This is illustrated by controversial results associating
SOX11 negativity with both better and worse clinical
outcomes in this disease [61, 62]. We believe that this
controversy might be due to different approaches (gene

Fig. 6 Kaplan-Meier curves (overall survival) of mantle cell lymphoma patients. Categorizations by (a) IL2 levels, (b) IL17A levels, (c) SOX11
positivity, (d) Genotypes of IL2 rs2069762, (e) Haplotypes in IL10 and (f) Genotypes of TGFB1 rs6957. Each graphic contains the hazard ratios and
p-values obtained in the respective univariate Cox regressions
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or protein expression), and also due to the lack of a
standardized cut-off for the immunohistochemical ex-
pression of SOX11 [63].
The limited sample size represents a drawback of this

study. Furthermore, the two institutions involved in our

study present different sociodemographical profiles that
might influence response to therapy [64]. In addition, we
were unable to assess TP53 mutational status, which is a
well-known prognostic factor in MCL [65]. Therefore,
we recognize the need of independent studies to validate

Table 2 Univariate and multivariate Cox regressions for candidate biomarkers in mantle cell lymphoma survival

Biomarker Univariate Multivariate

EFS
HR (95% CI)

p OS
HR (95% CI)

p EFS*
HR (95% CI)

p OS*
HR (95% CI)

p

Immunohistochemical model

FOXP3/CD3 ratio

High 3.16 (1.52–6.58) 0.002 1.77 (0.75–4.19) 0.18 5.03 (1.97–12.84) 0.001a N/A N/A

Low Reference Reference Reference Reference

CD8/CD3 ratio

High 2.22 (1.04–4.77) 0.03 1.06 (0.44–2.51) 0.88 1.02 (0.33–3.13) 0.96 N/A N/A

Low Reference Reference Reference Reference

Granzyme B

High 0.50 (0.24–1.04) 0.06 0.69 (0.28–1.67) 0.41 1.18 (0.51–2.72) 0.69 N/A N/A

Low Reference Reference Reference Reference

IL2

High Reference 0.01 Reference Reference 0.03b Reference 0.07

Low 2.71 (1.26–5.83) 2.06 (0.88–4.80) 0.09 2.83 (1.06–7.58) 2.50 (0.92–6.77)

IL17A

High 1.48 (0.73–2.97) 0.27 2.55 (1.06–6.12) 0.03 N/A N/A 4.68 (1.72–12.77) 0.003c

Low Reference Reference Reference Reference

SNV model

IL2 rs2069762

GG 4.26 (1.56–11.60) 0.005 9.05 (2.33–35.05) 0.001 3.13 (1.12–8.69) 0.02d 2.73 (0.86–8.67) 0.08

GT+TT Reference Reference Reference Reference

TGFB1 rs6957

GG 1.86 (0.43–7.92) 0.39 5.38 (1.17–24.73) 0.03 N/A N/A 3.22 (0.57–18.15) 0.18

GA + AA Reference Reference Reference Reference

TGFBR2 rs3087465

AA+AG 3.40 (1.60–7.22) 0.001 1.37 (0.56–3.36) 0.47 4.32 (1.88–9.93) 0.001e N/A N/A

GG Reference Reference Reference Reference

IL10 CC haplotype

Present 0.45 (0.21–0.97) 0.04 0.28 (0.11–0.70) 0.007 0.32 (0.14–0.74) 0.008f 0.26 (0.10–0.68) 0.006g

Absent Reference Reference Reference Reference

IL17F rs763780

TC + CC 0.40 (0.17–0.91) 0.03 1.16 (0.34–3.99) 0.80 1.42 (0.47–4.23) 0.52 N/A N/A

TT Reference Reference Reference Reference

Principal components model

Component 3 0.670 (0.40–1.10) 0.12 0.58 (0.31–1.08) 0.08 N/A N/A 0.77 (0.48–1.24) 0.29

Component 4 1.34 (0.89–2.01) 0.15 1.65 (1.04–2.61) 0.03 N/A N/A 1.68 (1.08–2.62) 0.02h

EFS Event-free survival; OS Overall survival; HR Hazard ratio; 95% CI 95% Confidence interval; SNV Single nucleotide variant; N/A Not applicable. Component 3:
encompasses high levels of NK cells (CD57+), low levels of IL17A and low Ki-67. Component 4: encompasses high Ki-67 index and high counts of CD68+ and
CD163+ macrophages. (*) Adjustement for B-symptoms and the MIPI index (EFS); adjustement for B-symptoms and bone marrow infiltration (OS).ap (bootstrap) =
0.02, bp (bootstrap) = 0.12, cp (bootstrap) = 0.004, dp (bootstrap) = 0.12, ep (bootstrap) = 0.004, fp (bootstrap) = 0.03, gp (bootstrap) = 0.11, hp (bootstrap) = 0.04
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our findings. However, the genotyping of SNVs in im-
mune response genes, as well as the use of PCA in TME
subpopulations, enabled a novel and more integrative
approach to address the TME in MCL. Also, our survival
analyses were performed only in patients that received
anti-CD20; hence, our findings present translational
relevance. Finally, the majority of the IHC markers were
analyzed quantitatively and automatically, minimizing
the risk of bias and poor reproducibility of manual scor-
ing in lymphoma studies [66].

Conclusions
This is the first study to provide a broader approach of
the TME in MCL, by evaluating both the TME immune
cell composition in biopsies and SNVs within immune-
response genes. Our study supports the associations of
tumor FOXP3/CD3 ratios, IL17A and IL2 with outcome
in the rituximab era. We also demonstrate, in the same
cohort, the prognostic roles of TGFBR2 rs3087465, IL2
rs2069762 and the CC haplotype of IL10. The distinct
approach presented herein might contribute to novel in-
sights in the biology of MCL, and in future studies con-
sidering new therapeutic options in this lymphoma.
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