Liu et al. BMC Cancer (2021) 21:98
https://doi.org/10.1186/s12885-021-07817-5

BMC Cancer

RESEARCH ARTICLE Open Access

Comprehensive analysis of ceRNA network
related to lincRNA in glioblastoma and

Check for
updates

prediction of clinical prognosis

Guangdong Liu', Danian Liu?, Jingjing Huang?, Jianxin Li*, Chuang Wang', Guangyao Liu', Shigiang Ge' and

Haidong Gong'"

Abstract

Background: Long intergenic non-coding RNAs (lincRNAs) are capable of regulating several tumours, while
competitive endogenous RNA (ceRNA) networks are of great significance in revealing the biological mechanism of
tumours. Here, we aimed to study the ceRNA network of lincRNA in glioblastoma (GBM).

Methods: We obtained GBM and normal brain tissue samples from TCGA, GTEx, and GEO databases, and
performed weighted gene co-expression network analysis and differential expression analysis on all lincRNA and

mRNA data. Subsequently, we predicted the interaction between lincRNAs, miRNAs, and target mRNAs. Univariate
and multivariate Cox regression analyses were performed on the mRNAs using CGGA data, and a Cox proportional
hazards regression model was constructed. The ceRNA network was further screened by the DEmiRNA and mRNA
of Cox model.

Results: A prognostic prediction model was constructed for patients with GBM. We assembled a ceRNA network
consisting of 18 lincRNAs, 6 miRNAs, and 8 mRNAs. Gene Set Enrichment Analysis was carried out on four lincRNAs
with obvious differential expressions and relatively few studies in GBM.

Conclusion: We identified four lincRNAs that have research value for GBM and obtained the ceRNA network. Our

research is expected to facilitate in-depth understanding and study of the molecular mechanism of GBM, and
provide new insights into targeted therapy and prognosis of the tumour.
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Background

Glioblastoma (GBM) is the most aggressive and destruc-
tive primary malignant central nervous system tumour
[1]. At present, the most established treatment protocol
for this tumour involves curative surgery and adjuvant
radiotherapy combined with temozolomide; however, its
prognosis is still very poor, and the average survival time
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of patients is approximately 2 years [2]. Moreover, vari-
ous treatment methods affect normal brain tissue, and
the quality of life of patients does not significantly im-
prove afterwards. Therefore, an in-depth study of the
molecular mechanism of GBM occurrence and develop-
ment, while exploring possible therapeutic targets, may
prove beneficial for the diagnosis and treatment of the
tumour.

Although approximately 90% of genes in the human
genome can be transcribed, only approximately 2% of
the genes are protein coding, and non-coding RNAs ac-
count for most of the remainder [3]. Long non-coding
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RNAs (IncRNAs) contain > 200 nucleotides and have no
protein coding function. They are mainly transcribed
from different regions of the genome by RNA polymer-
ase II, and have been shown to be closely related to can-
cer [4, 5]. The tissue specificity of IncRNA expression
has been reported to be higher than that of mRNA ex-
pression, which applies even in pathological conditions
such as cancer [6]. Long intergenic non-coding RNA
(lincRNA) is a type of IncRNA that does not overlap
with exons of protein-coding genes and other non-
lincRNA genes, and participates in many important bio-
logical processes [7, 8]. Cancer-related lincRNAs may be
targeted to provide new ways for cancer diagnosis and
treatment [9]. Linc-ROR is a tumour promoter, which
mainly participates in tumour cell proliferation, apop-
tosis, invasion, angiogenesis, and cancer stem cell gener-
ation by regulating target genes [10]. NEATI is a p53-
regulated lincRNA, which plays a key role in cancer oc-
currence [11]. LincRNA-p21 plays an important role in
regulating TAM function in tumour microenvironments,
and can be used as a new cancer treatment target for
macrophage infiltration [12]. In general, molecular
mechanisms related to lincRNA in tumours have im-
portant research value.

The COX proportional hazard regression model can
analyze the impact of several factors on survival simul-
taneously, and is the most commonly used multi-factor
analysis method for survival analysis. Long et al. found
that a prognostic model composed of 4 mRNAs is a reli-
able tool for predicting the survival of liver cancer pa-
tients [13]. A new type of COX model containing 6
genes can improve the prognosis prediction of patients
with uterine sarcoma [14]. In summary, the COX model
can help clinicians select personalized treatment plans
for patients and predict prognosis.

A competitive endogenous RNA (ceRNA) network is
the interaction between IncRNAs, miRNAs, and mRNAs
that constitutes a complex regulatory network system,
which has extensive functions in the human genome and
plays a significant role in cancer [15]. The ceRNA network
includes mRNAs, miRNAs, IncRNAs, and circRNAs,
which play a key role in the occurrence and development
of gastric cancer and colorectal cancer, and can be used as
biomarkers for tumour treatment [16, 17]. It has been re-
ported that linc-ROR can be used as the ceRNA of miR-
145 to regulate the proliferation, invasion, and tumouri-
genicity of pancreatic cancer cells [18]. Further, a study
has demonstrated that lincRNA-HOTAIR is highly
expressed in a variety of tumour tissues and cells, and is
associated with tumour metastasis and poor prognosis.
Additionally, its related ceRNA network has been shown
to play a role in the progression of kidney cancer [19]. At
present, there are few studies on the ceRNA network in
glioblastoma, conducted mainly for a single database and
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with a small sample, and there are fewer prognostic pre-
diction analyses [20, 21]. In their study, Liu et al. used two
databases to construct a ceRNA network for GBM, but
did not incorporate WGCNA analysis, nor did they sys-
tematically construct a prognostic prediction model [22].
Therefore, in this study, we comprehensively analysed the
GBM data retrieved from The Cancer Genome Atlas
(TCGA), National Center for Biotechnology Information
(NCBI), Gene Expression Omnibus (GEO), Chinese Gli-
oma Genome Atlas (CGGA), and Genotype Tissue Ex-
pression (GTEx) databases. We used weighted gene co-
expression network analysis (WGCNA) and differential
analysis to screen key lincRNAs, construct lincRNA-
related ceRNA networks in GBM, and obtain a prognostic
model. We believe this study provides a basis for further
studies on the molecular mechanism of GBM and explor-
ation of new therapeutic targets.

Methods
Data acquisition and pre-processing
Figure 1 shows the flow diagram of our study. We ob-
tained RNA-Seq data of 165 GBM samples and 1029
normal brain tissue samples from the TCGA and GTEx
databases, respectively, using the UCSC Xena Browser
(https://xena.ucsc.edu/). Further, the mRNA-seq and
clinical data of 693 glioma samples were retrieved from
CGGA (http://cgga.org.cn/), from which 248 GBM sam-
ples were selected for this study. Among the selected
samples, 236 patients had survival information, while
198 had all clinical information. Additionally, we re-
trieved GSE50161 (comprising 34 GBM and 13 normal
samples; platform: Affymetrix-GPL570), GSE134783
(comprising 71 GBM samples; platform: Affymetrix-
GPL570), and GSE90603 (comprising 16 GBM and 9
normal samples; platform: Affymetrix-GPL21572) from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/).
The IDs of all samples were transformed into gene
symbols based on GENCODE (https://www.
gencodegenes.org/human/). The RNA-seq data fetched
from TCGA and GTEx were collated and merged, and
the expression matrices of mRNA and lincRNA were ob-
tained. We also combined the GEO data and obtained
the mRNA and miRNA expression matrix. The unit of
RNA-seq data is FPKM. The R package oligo [23] was
utilized for format conversion, missing data filling, back-
ground correction, and data normalisation. All data were
downloaded from public databases, and the data were
approved by medical ethics when they were first pub-
lished. Therefore, this study did not require medical eth-
ics documents.

Construction of weighted gene co-expression network
Using the combined data of TCGA and GTEx, a
weighted gene co-expression network was constructed
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for lincRNA and mRNA. Based on the mRNA of the
GEO combined data, a weighted gene co-expression net-
work was constructed. WGCNA R software package [24]
was used to build a co-expression network to mine key
modules related to GBM. First, a hierarchical cluster
analysis was performed to check the heterogeneity of the
samples. Subsequently, according to the scale-free topo-
logical standard, we chose the appropriate soft threshold
power () to construct a weighted adjacency matrix and
convert the adjacency relationship into a topological
overlap matrix. Finally, we obtained the gene modules,
and determined the modules related to the pathogenicity
of GBM through the relationship between the modules
and traits, and used a scatter plot to show the correl-
ation between gene significance and module
membership.

Screening of differentially expressed genes

We used the Limma R package [25] to screen the differ-
entially expressed lincRNA (DElincRNA) between the
GBM patients and control group from the combined
data of TCGA and GTEx.

Differential expression analysis was performed on the
mRNA data in the TCGA and GTEx combined data and
GEO combined data, and the two selected differential
genes were combined to obtain differentially expressed
mRNA (DEmRNA). Additionally, differential analysis
was performed on GSE90603 to obtain DEmiRNA. (P <
0.05, and |log2 FC| = 1).

Preliminary construction of ceRNA network

The most relevant modules to GBM were selected and
analysed with DElincRNA to screen for overlapping
lincRNA. Further, miRcode (http://www.mircode.org/)

was used to predict miRNA, and the miRNA target
mRNA was predicted using miRDB (http://www.mirdb.
org/), miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/),
and TargetScan (http://www.targetscan.org/). The pre-
dicted mRNA, WGCNA key module mRNA (TCGA and
GTEx, GEO), and DEmRNA were analysed to obtain the
overlapping mRNA. Additionally, Cytoscape 3.7.2 soft-
ware was used to visualise the ceRNA network.

Gene function and pathway enrichment analysis

We used the clusterProfiler R package [26] for Gene
Ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis. GO
is used to describe gene function, and KEGG is used to
obtain possible pathways. Further, the GOplot R package
[27] was used to visualise the GO term or KEGG ap-
proach (adjusted p < 0.05).

Construction of cox regression model

Univariate COX regression analysis was performed on
the CGGA data, using the Survival R software package,
to evaluate the effect of mRNA expression on the sur-
vival time of GBM patients. Additionally, we performed
multivariate COX regression analysis, constructed a
multivariate Cox regression model, and identified the
corresponding coefficients of GBM prognostic features.
Further, we calculated the risk score to predict survival
time, dividing the samples into high-risk and low-risk
groups, with the median as the critical value. The “pre-
dict ()” function was used to calculate the risk score: risk
score = ho(t)*exp.(B1x1 + PaXa+ ... + PuXn). The correlation
between the prognostic characteristics of patients and
overall survival rate was then calculated through univari-
ate and multivariate Cox regression analyses of clinical
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factors related to overall survival. Finally, the R package
survivalROC was used to draw the receiver operating
characteristic curve and calculate the area under the
curve (AUC).

CeRNA network in GBM

Based on the mRNA obtained through multivariate Cox
regression analysis and DEmiRNA, we screened and re-
constructed the ceRNA network.

Gene set enrichment analysis (GSEA)

GSEA software was used to analyse the RNA-seq data of
lincRNA retrieved from the CGGA database. According
to the median of lincRNA expression, the samples were
divided into high and low expression groups. Statistical
significance was set at p <0.05. A set of genes “c2. cp.
kegg. v7.2. symbols. gmt” was retrieved from the Mo-
lecular Signature Database (MSigDB, http://software.
broadinstitute.org/gsea/msigdb/index.jsp) and selected as
the reference gene set.
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Results
WGCNA identifies key modules
We combined GTEx and TCGA data to construct a co-
expression network for all lincRNAs, using the R pack-
age ‘WGCNA’, and confirmed that the p value in the
network was 4 (Fig. 2a). Further, the dynamic tree cut-
ting method was used to generate co-expression mod-
ules, and the closely related modules were merged into
larger modules. Finally, 19 modules were generated in
the lincRNA co-expression network (Fig. 2b). The mod-
ule eigengenes (MEs) of the turquoise module had the
strongest correlation with GBM traits (Fig. 2¢). Figure 2d
shows the correlation between gene significance and
module membership in the turquoise module, which
was considered a key module containing 2206 lincRNAs.
We also constructed the co-expression networks of all
mRNAs for GTEx and TCGA combined data and GEO
combined data, comprising 20,270 and 14,807 mRNAs,
respectively. In the mRNA co-expression networks of
the two sets of data, p values were 8 and 4 (Fig. 3a and
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Fig. 4a), and 22 and 21 modules were generated (Fig. 3b
and Fig. 4b), respectively. In the combined GTEx and
TCGA data, the MEs of the blue and dark green mod-
ules have the strongest correlations with the tumour and
normal traits, respectively (Fig. 3c). The blue and dark
green modules were considered key modules, comprising
7736 mRNAs. In the GEO data, Fig. 4c shows that the
MEs of the blue and turquoise modules (comprising
8022 mRNAs) have the strongest correlations with the
tumour and normal traits, respectively. Figures 3d-e and
Fig. 4d-e show the correlation between gene significance
and module membership.

Identification of differentially expressed lincRNAs
(DElincRNAs), miRNAs (DEmiRNAs) and mRNAs
(DEmRNAs)

We identified DElincRNAs and DEmRNAs from the
GTEx and TCGA combined data, including 163 up-
regulated lincRNAs, 176 down-regulated lincRNAs, 2953
up-regulated mRNAs, and 2932 down-regulated
mRNAs. From the GEO data, 2434 up-regulated and
1995 down-regulated mRNAs were identified. The two
groups of mRNAs were then comprehensively analysed
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to obtain overlapping 1040 down-regulated mRNAs and
1358 up-regulated mRNAs. Finally, 339 DElincRNAs
and 2398 DEmRNAs were identified. Through the
GSE90603 dataset, 155 down-regulated and 134 up-
regulated miRNAs were identified.

Preliminary construction of ceRNA network

Through WGCNA analysis of lincRNAs, we obtained
2206 lincRNAs in the turquoise module and then inte-
grated the analysis with 339 DElincRNAs to obtain 251
overlapping lincRNAs. Further, using the miRcode on-
line tool, 251 lincRNAs were used to predict miRNAs.
Additionally, using the miRDB, TargetScan, and miR-
TarBase datasets, the predicted miRNAs were used to
obtain the corresponding mRNAs. By analysing the pre-
dicted mRNAs, WGCNA key module mRNA (TCGA
and GTEx, GEO), and DEmRNA, we obtained 111
mRNAs (24 down-regulated and 87 up-regulated
mRNAs). The predicted miRNAs and 251 lincRNAs
were analysed using the 111 mRNAs, and 25 lincRNAs
and 30 miRNAs were finally obtained. Subsequently, we
used Cytoscape version 3.7.2 software to build a
lincRNA-miRNA-mRNA ceRNA network (Fig. 5).
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Functional enrichment analysis

A functional enrichment analysis was performed on the
111 mRNAs obtained previously. The biological pro-
cesses of enrichment were mainly cell cycle, ossification,
and sex differentiation (Fig. 6a). The cellular compo-
nents were concentrated in the transcription factor, pro-
tein kinase, and serine/threonine protein kinase
complexes (Fig. 6b). Enriched molecular function was
mainly involved in DNA-binding transcription activator
activity, RNA polymerase II-specific core promoter bind-
ing, and HMG box domain binding (Fig. 6¢). KEGG path-
way analysis showed that the genes were associated with
cellular senescence, cell cycle, multiple cancers, miRNA in
cancer, and TGF-beta signalling pathway (Fig. 6d).

Construction of prognostic models

Among the CGGA GBM samples, complete survival in-
formation was available for 236 samples, and all clinical
information was available for 198 samples. Univariate
Cox regression analysis was performed on the 111
mRNAs previously obtained, and 27 mRNAs related to
survival time were obtained (p<0.05) (Fig. 7a).

Multivariate Cox analysis was performed using 27
mRNAs, and a Cox proportional hazards regression
model of GBM patients containing 13 mRNAs was con-
structed (Fig. 7b). Based on the median risk score, all pa-
tients were divided into two groups (high-risk and low-risk
groups). Figure 7c shows the survival status, survival time,
and mRNA expression levels of patients. Survival analysis
showed that patients in the low-risk group survived longer
than those in the high-risk group (p <0.001) (Fig. 7d). The
univariate Cox regression analysis showed that recurrence
(p=0.004), isocitrate dehydrogenase (IDH) mutation (p =
0.009), 1p19q codeletion (p=0.014), and risk score (p=
0.001) were predictors (Fig. 7e). Moreover, multivariate Cox
regression analysis confirmed that recurrence (p = 0.002) and
risk score (p <0.001) were independent risk factors (Fig. 7f).
The risk score and recurrence AUCs of the nomogram were
0.668 and 0.663, respectively (Fig. 7g).

CeRNA network in GBM
Using the 13 mRNAs obtained from the previous multi-

variate COX regression analysis conducted to screen the
ceRNA network, a total of 14 miRNAs and 23 lincRNAs
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that interacted were found. We combined the previously
selected 14 miRNAs and DEmiRNAs, screened out 6
overlapping miRNAs, and then screened the ceRNA net-
work again. Finally, a ceRNA network containing 8
mRNAs, 6 miRNAs, and 18 lincRNAs was constructed
(Fig. 8).

GSEA reveals the close relationship between lincRNA and
GBM

Using | log2FC | =2 as a condition to screen 18 kinds of
lincRNA, we obtained seven of them: MALATI, MEGS3,

NEATI, MIR7-3HG, FAM95B1, EPB41L4A-AS1, and
ACI25494.1. Among them, extensive research has been
conducted on MALATI and NEATI1. Thus, we selected
MEG3, MIR7-3HG, FAM95BI1, and EPB41L4A-ASI in
248 CGGA samples for GSEA. As shown in Fig. 8, the
GSEA results revealed that these lincRNAs were closely
related to cancer. MEG3 showed potential effects on
prostate cancer, colorectal cancer, and cancer pathways
(Fig. 9a), MIR7-3HG demonstrated potential role in
small cell lung cancer, prostate cancer, and cancer path-
ways (Fig. 9b), FAM95BI was closely related to
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endometrial cancer, non-small cell lung cancer, renal lincRNAs can act as oncogenes or tumour suppressor
cell carcinoma, and MTOR signalling pathway (Fig. 9c),  genes in cancer. In recent years, ceRNA network-related
while EPB4114A-AS1 was associated with small cell lung research has gained intense attention. In a ceRNA net-
cancer, prostate cancer, and JAK/STAT signalling path-  work, lincRNAs can competitively bind miRNAs to regu-
way (Fig. 9d). AC125494.1 is not found in the CGGA late the expression of target mRNAs. Additionally,

data. several studies have shown that ceRNA network is
closely related to the occurrence and development of
Discussion cancer and may be valuable in predicting the prognosis

GBM, which is the most common type of glioma, ac- of patients.

counts for about 15% of all brain tumours. It has been In this study, we used WGCNA to find key modules
reported that there are about three GBM patients per related to GBM pathogenicity and combined differen-
100,000 people, and the average survival time of patients  tially expressed genes for analysis. Based on the
is only approximately 12—18 months. The 5-year and 10-  lincRNA-miRNA-mRNA interaction, a ceRNA network
year survival rates are approximately 5.5 and 2.9%, re- of GBM patients was preliminarily constructed, and 111
spectively [28, 29]. The low recovery rate and poor sur- mRNAs in the network were functionally enriched. The
vival time of GBM patients may be related to the lack of  results showed that these mRNAs have potential roles in
efficient therapeutic targets. Therefore, it is of great sig-  cell cycle, various cancers, miRNA in cancer, DNA-
nificance to find new biomolecular markers and thera-  binding transcriptional activator activity, TGE-f signal-
peutic targets of GBM. Currently, many scholars and ling pathway, transcription factor complex, RNA poly-
research institutions focus on the role of non-coding merase II specificity, etc. Further, univariate Cox
RNAs in tumours, and several molecules have been sig-  regression and multivariate Cox regression analyses were
nificantly associated. Studies have shown that many used to construct a Cox proportional hazards regression
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model with 13 key genes: CDK6, FAMS84B, FBLIMI,
FJX1, GNBS5, HOXA3, MLEC, PDXK, SOXI11, SPRY4,
TBPL1, TRIB2, and WEEI. We calculated the risk score
of patients, and verified that the prognostic model is
highly accurate. In addition, the nomogram based on the
risk score has the highest AUC value. We combined
DEmiRNA and 13 mRNAs to screen the ceRNA net-
work. Finally, 8 mRNAs, 6 miRNAs, and 18 lincRNAs
were used to construct a ceRNA network. We selected
four lincRNAs, including MEG3, MIR7-3HG, FAM95BI,
and EPB41L4A-AS1, and predicted their functions using
the GSEA software. Our previous studies have shown
that there are few studies on these four lincRNAs and
GBM. These lincRNAs were shown to be closely related
to a variety of cancers. Among them, MEG3 and MIR7-
3HG are related to cancer pathways, while these two and
EPB4114A-AS1 all regulate the JAK/STAT signalling
pathway.

MALATI and NEATI have been widely studied non-
coding RNAs, and some studies have demonstrated that
they have clear correlations with various cancers such as
hepatocellular carcinoma and lung cancer [30-33]. It
has also been reported that MALATI can be used as
ceRNA of miR-199a to promote the expression of
ZHX1, which in turn can regulate the proliferation of

GBM cells [34]. The ceRNA effect between NEATI and
miR-194-5p is related to the angiogenesis of glioma [35].

MEG3, also known as gene trap locus 2, is an
imprinted gene located at 14q32 [36]. It is a new type of
tumour suppressor that plays a role in various tumours,
such as ovarian and bladder cancers [37, 38]. Studies
have shown that MEG3 is under-expressed in gliomas,
and its over-expression has a significant inhibitory effect
on the proliferation and migration of glioma cells, while
promoting its apoptosis and autophagy, and inhibiting
the PI3K/AKT/mTOR signalling pathway [39, 40].
MEGS3 can act as a ceRNA for miR-19a, thereby exerting
an inhibitory effect on glioma [41]. The present study
also predicted that MEG3 is potentially valuable in mul-
tiple tumours and cancer pathways.

According to previous reports, MIR7-3HG is associated
with tumour progression and is highly expressed in endo-
metrial cancer. Bioinformatics analysis by Wang et al.
showed that its high expression in breast cancer is signifi-
cantly related to the survival time of patients [42, 43]. It
has also been reported that this gene can be used as
ceRNA to up-regulate the expression of PEGIO0 by
sponged miR-27a-3p, and thus plays a role in retinoblast-
oma [44]. EPB41L4A-AS]1, located in the 5q22.2 region of
the human genome, is an induced gene of p53 and pGC-
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1o, can regulate glycolysis and glutamine metabolism, and
plays an important role in cancer metabolic reprogram-
ming [45]. It is highly expressed in colorectal cancer tis-
sues and is involved in the proliferation, invasion, and
migration of colorectal cancer cells [46]. Additionally,
FAMO95B1 has been shown to be associated with thyroid
cancer [47]. Limitations of our study include the lack of
cell or animal experiments and its retrospective nature.
Subsequently, we hope to verify our results by conducting
cell-based experiments.

Conclusion

Conclusively, in this study, we constructed the lincRNA-
miRNA-mRNA ceRNA network of GBM, which may be
involved in its molecular regulation, and identified four
lincRNAs with potential roles in the tumour. To our
knowledge, three of these lincRNAs, namely MIR7-3HG,
FAM95BI1, and EPB41L4A-AS1, are novel potential
therapeutic targets for GBM, as there are no previous re-
lated studies. Further, we created a prognostic model
containing 13 genes, which may serve as a reliable prog-
nostic indicator of GBM. Limitations of our study in-
clude the lack of cell or animal experiments and its
retrospective nature. Subsequently, we hope to verify
our results by conducting cell-based experiments. How-
ever, the present study is expected to facilitate in-depth
understanding and study the molecular mechanism of
GBM, and provide new insights into targeted therapy
and prognosis of tumours.
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