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Abstract

Background: Hepatocellular carcinoma (HCC) remains the most frequent liver cancer, accounting for approximately
90% of primary liver cancers worldwide. The recurrence-free survival (RFS) of HCC patients is a critical factor in
devising a personal treatment plan. Thus, it is necessary to accurately forecast the prognosis of HCC patients in
clinical practice.

Methods: Using The Cancer Genome Atlas (TCGA) dataset, we identified genes associated with RFS. A robust
likelihood-based survival modeling approach was used to select the best genes for the prognostic model. Then, the
GSE76427 dataset was used to evaluate the prognostic model’s effectiveness.

Results: We identified 1331 differentially expressed genes associated with RFS. Seven of these genes were selected
to generate the prognostic model. The validation in both the TCGA cohort and GEO cohort demonstrated that the
7-gene prognostic model can predict the RFS of HCC patients. Meanwhile, the results of the multivariate Cox
regression analysis showed that the 7-gene risk score model could function as an independent prognostic factor. In
addition, according to the time-dependent ROC curve, the 7-gene risk score model performed better in predicting
the RFS of the training set and the external validation dataset than the classical TNM staging and BCLC.
Furthermore, these seven genes were found to be related to the occurrence and development of liver cancer by
exploring three other databases.

Conclusion: Our study identified a seven-gene signature for HCC RFS prediction that can be used as a novel and
convenient prognostic tool. These seven genes might be potential target genes for metabolic therapy and the
treatment of HCC.
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Background
In 2018, liver cancer remained among the top six preva-
lent carcinomas. There were 841,080 new patients, and
781,631 patients died of liver cancer according to the
Global Cancer Statistics [1, 2]. Hepatocellular carcinoma
(HCC) is the most frequent liver cancer, accounting for
approximately 90% of primary liver cancers [3]. Cur-
rently, Hepatectomy and Radiofrequency ablation are
the main two ways to treat HCC [4, 5]. Despite the con-
tinuous development of medical technology, the out-
come of many patients who receive treatment and the

prognosis of liver cancer remain poor with a 2-year re-
currence rate of 76.9% [6–8]. And many studies have
shown that HCC is the most difficult to cure cancer, and
because of this, HCC has been described as a “chemore-
sistant” tumor [9]. Because of this, the prognosis of HCC
is poor. The recurrence-free survival (RFS) of HCC pa-
tients is a critical factor in devising a personal treatment
plan [10]. Thus, it is necessary to accurately forecast
HCC patients’ prognosis to improve the prognosis of
HCC. Most previous studies constructed prognostic
models using the Tumor-Node-Metastasis (TNM)

Fig. 1 GO functional and KEGG pathway analyses. a Summary of the differentially expressed genes and GO pathway enrichment. Red, blue, and
green bars represent the biological process, cellular component, and molecular function categories, respectively. The height of the bar represents
the number of differentially expressed genes observed in each category. b The top 10 pathways of genes associated with RFS
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staging system to assess the prognosis of HCC patients
[11]. However, the TNM staging system does not predict
the prognosis of HCC. Therefore, it is important to de-
velop a reliable tool for clinicians to predict the progno-
sis of patients with HCC.
Given the remarkable advances in high-throughput

technologies, the development of The Cancer Genome
Atlas (TCGA) (https://portal.gdc.cancer.gov/) and the
intergovernmental Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/gds) database provides an
abundance of high-quality information regarding HCC
[12]. Hence, it is urgent to develop methods to identify
reliable therapeutic gene targets that could enable earlier
prognostic evaluation and better therapeutic strategies
[13]. Therefore, we considered whether we could build a
gene-based risk score model [14]. Our goal was to gen-
erate simple and effective prognostic tools based on sev-
eral genes and other factors that may affect RFS [13, 15].
Using the TCGA dataset, we selected 7 genes by robust
likelihood-based survival modeling and built a risk score
system [16, 17]. We used an independent dataset
(GSE76427) to validate the effectiveness of the risk score
system and demonstrate that its clinical value in predict-
ing RFS in HCC patients is better than that of the TNM
staging system.

Methods
Data collection and survival analyses
First, we downloaded gene expression profiles and clin-
ical information from The Cancer Genome Atlas-liver
hepatocellular carcinoma (TCGA-LIHC) dataset, which
included 334 HCC samples [18]. We used GSE76427,
which contained the gene expression and clinical infor-
mation of 115 HCC samples, as the validation group.
The samples in TCGA-LIHC and GSE76427 that met
the following inclusion criteria were included in this
study: all samples had mRNA sequencing data and clin-
ical information related to RFS [19].

Identification of genes associated with RFS
The raw count data were normalized with a log(a + 1)
transformation. Then, using the “survfit” function in the
“survival” package, we plotted Kaplan-Meier curves for
the high and low expression groups of each gene. A log
rank test with a p-value less than 0.05 was considered
statistically significant [20].

Enrichment analysis of GO functions and KEGG pathways
For the selected genes, we used WebGestalt (http://
bioinfo.vanderbilt.edu/webgestalt) based on Gene Ontol-
ogy (GO) functions and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) to understand the bio-
logical significance of the identified genes [21].

Identification of the best genes for modeling
A robust likelihood-based survival approach was used to
identify the best genes for modeling after determining
the genes associated with RFS [22]. We used the
“rbsurv” package in R to complete this modeling
process.

Construction and validation of the risk score system
A multivariate Cox regression analysis and “rbsurv” ana-
lysis were performed to identify the genes related to RFS
and construct the prognostic gene signature. The “survi-
valROC” package in R was used to investigate the time-
dependent prognostic value. The optimal cut-off values
based on ROC curves were obtained to classify the pa-
tients into low-risk groups and high-risk groups. A cali-
bration curve and the concordance index (C-index) were
used to evaluate the risk score system.

External validation of the risk score system
We calculated the risk score in the GSE76427 dataset.
Then, the AUCs of the 12-month, 15-month, and 18-
month RFS and Kaplan-Meier curves were used to verify
the risk score system. A calibration curve was used to
validate the risk score system. In addition, the
prognosis-related genes included in the risk score system
were verified at the protein level by using The Human
Protein Atlas database. The CBioPortal for cancer gen-
omics was used to study genetic alterations in the risk
score system [23].

Statistical analysis
The statistical tests were performed using R software
and SPSS. Univariate and multivariate Cox regression
analyses were performed using a forward stepwise pro-
cedure. A p-value less than 0.05 was considered statisti-
cally significant [23].

Table 1 The best genes predicting recurrence-free survival of
hepatocellular carcinoma patients

Gene symbol nloglik AIC Select

TTK 808.79 1619.59 *

C16orf105 797.58 1599.16 *

PPAT 791.22 1588.43 *

CD3EAP 788.83 1585.66 *

SLCO2A1 787.91 1585.83 *

ACAT1 786.25 1584.50 *

GAS2L3 784.91 1583.83 *

SH2D5 784.84 1585.68

ATP8A2 784.75 1587.50

PABPC5 784.74 1589.49

*Gene selected for the risk score
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Fig. 2 Analysis of the seven-gene signature of HCC in TCGA dataset. a Risk score of each patient; b The RFS time and RFS status of the HCC
patients; c the expression levels of TTK, C16orf105, PPAT, CD3EAP, SLCO2A1, ACAT1 and GAS2L3 in the signature; Kaplan-Meier analysis of the
TCGA dataset; d The Kaplan-Meier curve for the risk score model in TCGA dataset
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Results
Acquisition of the gene expression and clinical data
We downloaded the TCGA-LIHC dataset from The Can-
cer Genome Atlas (http://portal.gdc.cancer.gov/). The
TCGA-LIHC dataset included 334 samples, 308 patients
received hepatectomy, and the remaining 26 patients re-
ceived radiofrequency ablation, and all samples included
data regarding the RFS time and censoring status. The

GSE76427 dataset was downloaded from the Gene Ex-
pression Omnibus database (http://www.ncbi.nlm.nih.gov/
gov/). The GSE76427 dataset included 115 samples from
HCC patients, but 7 patients had missing information re-
garding the RFS time and censoring status. Thus, 108
samples were included in this study, all 115 patients re-
ceived hepatectomy. The median RFS times in the TCGA
and GSE76427 series were 390 and 252 days, respectively,

Fig. 3 Analysis of the seven-gene signature of HCC in GEO dataset. a risk score of each patient; b The RFS time and RFS status of the HCC
patients; c The expression levels of TTK, C16orf105, PPAT, CD3EAP, SLCO2A1, ACAT1 and GAS2L3 in the signature; Kaplan-Meier analysis of the
GSE76427 dataset; d The Kaplan-Meier curve for the risk score model in GEO dataset
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and the two datasets contained clinical information, such
as gender, age, and the TNM stage.

Genes associated with RFS
We used the “survfit” function in the “survival” package
and found 1331 genes associated with RFS. Then, to ex-
plore the genetic biological implications, we analyzed the
1331 genes through Gene Ontology (GO) functional and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses. As shown in Fig. 1, in the KEGG ana-
lysis, we found that these genes are enriched in signaling
pathways, such as the cell cycle, homologous recombin-
ation, DNA replication, the Fanconi anemia pathway,
complement and coagulation cascades, and the T cell re-
ceptor signaling pathway.

Construction of the prognostic model in TCGA-LIHC
Then, “rbsurv” was used to identify seven genes to con-
struct the risk score system. The seven genes included in
the system were TTK protein kinase (TTK), chromo-
some 16 open reading frame 54 (C16orf54), phosphori-
bosyl pyrophosphate amido transferase (PPAT), CD3e
molecule associated protein (CD3EAP), solute carrier or-
ganic anion transporter family member 2A1 (SLCO2A1),
acetyl-CoA acetyltransferase 1 (ACAT1), and growth-
arrest specific 2 like 3 (GAS2L3) (Table 1).
The risk score was calculated with the following

formula: risk score = (− 0.038)*expression of TTK+(−
0.357)*expression of C16orf54 + 0.634*expression of
PPAT+ 0.221*expression of CD3EAP+(− 0.076)*expres-
sion of SLCO2A1 + (− 0.184)*expression of ACAT1 +
0.277*expression of GAS2L3.
In total, 334 patients were divided into two groups

(134 high-risk patients and 200 low-risk patients) using
a cut-off of 4.9798 for the risk score. Furthermore, the
survival curve revealed that the RFS in the high-risk
group was significantly poorer than that in the low-risk
group (p < 0.0001; Fig. 2).

Validation of the prognostic model in GSE76427
We validated the risk score system in the GSE76427 co-
hort. In total, 108 patients were divided into two groups
(45 high-risk patients and 63 low-risk patients) using a

Table 2 Characteristics of HCC patients in TCGA-LIHC dataset

7-gene signature The chi-
square test

Univariate
cox
regression

Variables Score Low-risk
(200)

High-risk
(134)

p value HR

3.607

p value
< 0.001

Gender 0.330 0.975 0.879

Male 140 87

female 60 47

Age (years) 0.785 1.048 0.769

< 60 91 63

≥ 60 109 71

BMI (kg/m2) 0.061 0.900 0.509

< 25 91 75

≥ 25 109 59

TNM < 0.001 1.680 < 0.001

I 123 44

II 44 39

III 31 50

IV 2 1

Grade 0.001 1.112 0.515

1 + 2 139 68

3 + 4 61 64

NA 0 2

AFP (ng/ml) 0.014 0.976 0.913

< 300 134 63

≥ 300 31 30

NA 35 41

Child-Pugh score 0.082 1.202 0.581

A 136 68

B-C 10 11

NA 56 55

Table 3 Characteristics of HCC patients in GSE 76427 dataset

7-gene signature The chi-
square test

Univariate
cox
regression

Variables Score Low-
risk (63)

High-
risk (45)

p value HR
2.047

p value
0.014

gender 0.374 0.609 0.208

Male 11 11

female 52 34

Age (years) 0.161 1.048 0.769

< 60 21 21

≥ 60 42 24

TNM 0.877 1.267 0.191

I 36 16

II 15 19

III 10 9

IV 2 1

BCLC 0.877 1.112 0.515

0 2 2

A 41 30

B 16 9

C 4 4
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cut-off of 3.4144 for the risk score. Furthermore, the
survival curve revealed that the RFS in the high-risk
group was significantly poorer than that in the low-risk
group (p = 0.011; Fig. 3). In summary, these results indi-
cate that the prognostic model has moderate sensitivity
and specificity.

Association between the prognostic model and the
clinical characteristics of the patients
While assessing the correlation between the seven-gene sig-
nature and the clinical characteristics of the HCC patients,
we found that a high risk score was significantly correlated
with the TNM stage (p < 0.001), grade (p = 0.001), and AFP

Fig. 4 Multivariate Cox regression analysis. a Multivariate Cox regression analysis of the TCGA dataset. b Multivariate Cox regression analysis of
the GSE76427 dataset

Table 4 Univariate and multivariate Cox regression in TCGA-LIHC hepatectomized patients

Variables Univariate Cox regression Multivariate Cox regression

HR 95% CI p value HR 95% CI p value

risk score 2.788 2.174–3.574 < 0.001 2.501 1.660–3.376 < 0.001

vascular invasion 1.509 1.139–2.000 0.004 1.439 0.949–2.183 0.087

hepatic virus infection status 1.170 0.760–1.800 0.476 1.050 0.625–1.765 0.854
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(p = 0.014), but was not significantly associated with the
gender, age, BMI, or Child-Pugh score of the patients with
HCC (Table 2). In GSE76427, the results showed that the
7-gene signature was not significantly associated with gen-
der, age, BCLC (Barcelona Clinic Liver Cancer) or the
TNM stage (Table 3).

Independent prognostic role of the prognostic gene signature
Moreover, the results of the multivariate Cox
regression analysis showed that the TNM stage

(HR = 1.680, p < 0.001) and our prognostic model
(HR = 3.607, p < 0.001) were both independent factors
of RFS among the 334 TCGA-LIHC patients. How-
ever, among the 108 patients in the GSE76427 co-
hort, the TNM stage was not an independent
prognostic factor for RFS [24]. The prognostic model
(HR = 2.407, p = 0.014) was also an independent
factor for RFS (Fig. 4). In addition, we performed
univariate and multivariate Cox regression with other
well-known pathological factors such as vascular

Fig. 5 Validation of the risk score predicting RFS for HCC patients in TCGA-LIHC dataset. a The prognostic model’s AUCs of the 12-, 15-, and 18-
month RFS in the TCGA-LIHC dataset. b The TNM stage model’s AUCs of the 12-, 15-, and 18-month RFS in the TCGA-LIHC dataset
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invasion and hepatic virus infection status in TCGA-
LIHC hepatectomized patients. The results prove
that our prognostic model is an independent prog-
nostic factor as well (Table 4).

Comparison of the TNM stage model and BCLC model
To compare the accuracy of the prognostic model
and the TNM model, we calculated the AUCs of the
12-month, 15-month, and 18-month RFS. In the
TCGA-LIHC dataset, the prognostic model’s AUCs of
the 12-month, 15-month, and 18-month RFS were
0.7768, 0.7934, and 0.7529, and the TNM model’s
AUCs of the 12-month, 15-month, and 18-month RFS
were 0.6884, 0.7026, and 0.6721, respectively (Fig. 5).
In the GSE76427 dataset, the prognostic model’s
AUCs of the 12-month, 15-month, and 18-month RFS
were 0.6159, 0.6118, and 0.6217, and the TNM
model’s AUCs of the 12-month, 15-month, and 18-
month RFS were 0.6122, 0.6009, and 0.5762,
respectively. In addition, the BCLC model’s AUCs of
the 12-month, 15-month, and 18-month RFS were
0.5669, 0.5627, and 0.5684, respectively (Table 5).
Overall, our prognostic model showed a benefit in
predicting the RFS, which might help doctors with
targeted treatment (Fig. 6).

Development of the calibration curve
We calculated the C-index and drew calibration curves
for the 12-, 15- and 18-month survival predictions to
evaluate the calibration in the TCGA-LIHC dataset and
the GSE76427 dataset. The C-index of the TCGA-LIHC
dataset and GSE76427 dataset was 0.717 and 0.647, re-
spectively, as shown in Figs. 7 and 8.

External validation in an online database
The representative protein expression levels of
SLCO2A1, PPAT, GAS2L3, CD3EAP, and ACAT1 were
explored in the Human Protein Profiles. Then, we ex-
plored the TTK, C16orf54, PPAT, CD3EAP, SLCO2A1,
ACAT1, and GAS2L3 genes in the CBioPortal for cancer

genomics. TTK exhibited the most frequent genetic al-
terations (3%), and deep deletion was the most frequent
alteration. The second most altered gene was CD3EAP
(1.3%), and the most frequent alterations were amplifica-
tion mutations (Fig. 9). The expression levels of the
seven genes in different cancers are shown in Fig. 10. In
summary, the aberrant expression of these seven genes
may explain some of the abnormal expression of these
genes.

Discussion
In this study, we developed a risk score based on
seven genes that has the ability to predict the prob-
ability of RFS in HCC patients and is more accurate
than clinical indicators. Using this model, we can
identify patients with HCC who have a higher risk
of recurrence, indicating that these patients need
more attention. In the TCGA-LIHC dataset, in total,
1331 genes were found to be associated with RFS in
HCC patients. In the KEGG analysis, we found that
the 1331 genes were enriched in signaling pathways,
such as the cell cycle, homologous recombination,
DNA replication, the Fanconi anemia pathway, com-
plement and coagulation cascades, and the T cell re-
ceptor signaling pathway. This finding suggests that
the 7-gene signature might affect the RFS of HCC
patients through these pathways. Then, we selected
the best 7 genes to develop the risk score model as
follows: TTK, C16orf105, PPAT, CD3EAP,
SLCO2A1, ACAT1, and GAS2L3. Additionally, our
study showed that the TNM staging system is not an
accurate indicator for the prediction of RFS in HCC
patients, which is consistent with the results of other
studies. According to the prognostic model, we di-
vided the patients into low- and high-risk groups,
which exhibited significant differences in RFS. This
result indicated that the prognostic model could be
used as a conventional tool for the prediction of the
RFS of HCC patients.

Table 5 Comparison of the prognostic model with the TNM and BCLC model

Model TNM model BCLC model Prognostic model

TCGA-LIHC

12-month AUC 0.6884 (0.6272–0.7496) 0.7768 (0.7180–0.8356)

15-month AUC 0.7026 (0.6416–0.7636) 0.7934 (0.7367–0.8501)

18-mouth AUC 0.6721 (0.6086–07356) 0.7529 (0.6905–0.8153)

GSE76427

12-month AUC 0.6122 (0.4733–0.7511) 0.5669 (0.4408–0.6931) 0.6159 (0.4596–0.7722)

15-month AUC 0.6009 (0.4692–0.7326) 0.5627 (0.4400–0.6853) 0.6118 (0.4679–0.7575)

18-mouth AUC 0.5762 (0.4453–0.7072) 0.5684 (0.4458–0.6910) 0.6217 (0.4828–0.7605)
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Fig. 6 Validation of the risk score predicting RFS for HCC patients in GSE76427 dataset. a The prognostic model’s AUCs of the 12-, 15-, and 18-
month RFS in the GSE76427 dataset. b The TNM stage model’s AUCs of the 12-, 15-, and 18-month RFS in the GSE76427 dataset. c The BCLC
model’s AUCs of the 12-, 15-, and 18-month RFS in the GSE76427 dataset
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Fig. 7 Calibration curve for the 12-month, 15-month, and 18-month periods in the TCGA-LIHC dataset. a The prognostic model was used to
generate a calibration curve for the 12-month RFS prediction. b The prognostic model was used to generate a calibration curve for the 15-month
RFS prediction. c The prognostic model was used to generate a calibration curve for the 18-month RFS prediction
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Fig. 8 Calibration curve for the 12-month, 15-month, and 18-month periods in the GSE76427 dataset. a The prognostic model was used to
generate a calibration curve for the 12-month RFS prediction. b The prognostic model was used to generate a calibration curve for the 15-month
RFS prediction. c The prognostic model was used to generate a calibration curve for the 18-month RFS prediction
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The prognostic model was validated using another
independent dataset, i.e., GSE76427. The area under
the curve revealed the ability of the prognostic model
to differentiate the patients’ prognoses; the survival
curve represents the survival of the high-risk group,
which had a worse prognosis compared with that of
the low-risk group. These findings demonstrate that
the prognostic model has the ability to forecast RFS
in HCC patients.
Most of the seven genes in our prognostic model

have been reported to be involved in cancer. The
TTK protein levels differ in human liver cancer be-
tween liver cancer cells and adjacent noncancerous
liver cells [25]. This study also tested the utility of
TTK-targeted inhibition and demonstrated its thera-
peutic potential in an experimental model of liver
cancer in vivo. Furthermore, our study demonstrated
its effectiveness and incorporated it into the prognos-
tic model. PPAT, which a member of the purine/pyr-
imidine phosphoribosyl transferase family, regulates
pyruvate kinase activity and cell proliferation and in-
vasion and is a biomarker of lung adenocarcinoma.
Acetyl-CoA acetyltransferase (ACAT) was recently re-
ported to be elevated in human cancer cell lines [16].
ACAT1 exhibits acetyltransferase activity and can

acetylate pyruvate dehydrogenase (PDH), which affects
tumor growth [26].
In other scholars’ prognostic analysis of HCC,

CD3EAP is also a predictor, suggesting that CD3EAP
is an important predictor of HCC prognosis, but the
function of CD3EAP is not completely clear [27].
The function of GAS2L3 is still unknown, and
GAS2L3 may be involved in mediating the absorp-
tion and clearance of prostaglandins, but its function
in liver cancer has not been reported [19]. Moreover,
SLCO2A1 and C16orf105 have not been reported in
previous HCC studies, indicating that these genes
may be potential factors in the treatment of HCC.
Understanding the function of these genes may pro-
mote the development of HCC treatment.
However, despite the potential substantial clinical

significance of our results, this study still has some
limitations. One limitation is that although the cali-
bration curve performance and AUC value were ex-
cellent in the validation group, multicenter clinical
application is needed to further evaluate the external
utility of the prognostic model [28]. Second, only
1331 genes were defined as genes associated with
RFS and evaluated for the prognostic model con-
struction. Some important genes could have been

Fig. 9 External validation in online databases. a Representative protein expression levels of the seven genes in HCC and normal liver tissue. b
Genetic alterations of the seven genes
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excluded before building the prognostic model [29].
In addition, knowledge regarding signaling pathways
is urgently needed to reveal the functions of these
genes in HCC. Finally, other well-known pathological
factors, such as vascular invasion and hepatic virus

infection status, should be key topics of our further
studies. After collecting clinical tumor tissues with
pathological information, we will find a way to com-
bine our risk score with these clinical characteristics.
Meanwhile, we have realized that many studies
showed that different surgical methods had an im-
pact on the prognosis of HCC patients. We will pay
attention to distinguishing surgical methods when
collecting clinical cases and compare the difference
in the predictive effect of risk score on RFS in pa-
tients receiving different surgical methods in our fu-
ture study.

Conclusions
In conclusion, we developed and validated a prognostic
model for the prediction of the RFS probability of HCC
patients. The simple prognostic model has the ability to
predict RFS and could be a useful tool for doctors con-
ducting an evaluation of HCC and selecting treatment
plans for HCC patients.

Abbreviations
HCC: Hepatocellular carcinoma; RFS: Recurrence-free survival; TCGA: The
Cancer Genome Atlas; GEO: The intergovernmental Gene Expression
Omnibus; ROC: Receiver Operating Characteristic curve; TNM: Tumor Node
Metastasis; BCLC: Barcelona Clinic Liver Cancer; TCGA-LIHC: The Cancer
Genome Atlas-liver hepatocellular carcinoma; GO: Gene Ontology;
KEGG: Kyoto Encyclopedia of Genes and Genomes; C-index: Concordance
index; AUC: Area Under Curve; BMI: Body mass index; AFP: alpha fetoprotein;
HR: Hazard Ratio; NA: Not available

Acknowledgements
The authors would like to thank all patients and staff who have participated
in and contributed to the TCGA-LIHC registry.

Authors’ contributions
WW, LW, YY, XX, YL and QL conceived and designed the study. WW, YL and
QL analyzed the data. XX, YY and YL performed the literature search. WW,
LW, and YY wrote the paper, LW, XX and YL created the Figs. QL reviewed
and edited the manuscript. All authors read and approved the final
manuscript.

Funding
This research was partially supported by a grant from the National Natural
Science Foundation of China (91180525 to QL). The funder is also the
corresponding author, participated in the design of this research, and edited
the manuscript.

Availability of data and materials
The gene expression profiles and clinical information datasets downloaded
from The Cancer Genome Atlas (TCGA-LIHC)(https://portal.gdc.cancer.gov)
and the Gene Expression Omnibus (GEO)(https://www.ncbi.nlm.nih.gov),
accession numbers: GSE76427. Genetic alterations was retrieved from the
cBioPortal website (http://www.cbioportal.org/).

Ethics approval and consent to participate
No permissions were required to use any of the repository data as all TCGA-
LIHC data and GSE76427 date were publicly available.

Consent for publication
Not applicable.

Competing interests
The authors have no competing interests to declare.

Fig. 10 Expression levels of the seven genes in different cancers

Wang et al. BMC Cancer            (2021) 21:6 Page 14 of 15

https://portal.gdc.cancer.gov
https://www.ncbi.nlm.nih.gov
http://www.cbioportal.org/


Author details
1Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang
University, Nanchang 330006, Jiangxi, China. 2Department of Biostatistics and
Epidemiology, School of Public Health, Nanchang University, Nanchang
330006, Jiangxi, China. 3Center for Experimental Medicine, The First Affiliated
Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
4Department of General Surgery, The First Affiliated Hospital of Nanchang
University, Nanchang 330006, Jiangxi, China.

Received: 20 May 2020 Accepted: 25 November 2020

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;

69(1):7–34.
2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer

statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
3. Li G, Xu W, Zhang L, Liu T, Jin G, Song J, et al. Development and validation

of a CIMP-associated prognostic model for hepatocellular carcinoma.
EBioMedicine. 2019;47:128–41.

4. Facciorusso A, Serviddio G, Muscatiello N. Transarterial radioembolization vs
chemoembolization for hepatocarcinoma patients: a systematic review and
meta-analysis. World J Hepatol. 2016;8(18):770–8.

5. Rognoni C, Ciani O, Sommariva S, Facciorusso A, Tarricone R, Bhoori S, et al.
Trans-arterial radioembolization in intermediate-advanced hepatocellular
carcinoma: systematic review and meta-analyses. Oncotarget. 2016;7(44):
72343–55.

6. Chun YH, Kim SU, Park JY, Kim DY, Han KH, Chon CY, et al. Prognostic value
of the 7th edition of the AJCC staging system as a clinical staging system in
patients with hepatocellular carcinoma. Eur J Cancer. 2011;47(17):2568–75.

7. Facciorusso A. The influence of diabetes in the pathogenesis and the
clinical course of hepatocellular carcinoma: recent findings and new
perspectives. Curr Diabetes Rev. 2013;9(5):382–6.

8. Facciorusso A. Drug-eluting beads transarterial chemoembolization for
hepatocellular carcinoma: current state of the art. World J Gastroenterol.
2018;24(2):161–9.

9. Cabral LKD, Tiribelli C, Sukowati CHC. Sorafenib resistance in hepatocellular
carcinoma: the relevance of genetic heterogeneity. Cancers. 2020;12(6):1576.

10. Gu JX, Zhang X, Miao RC, Xiang XH, Fu YN, Zhang JY, et al. Six-long non-
coding RNA signature predicts recurrence-free survival in hepatocellular
carcinoma. World J Gastroenterol. 2019;25(2):220–32.

11. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK,
et al. The eighth edition AJCC cancer staging manual: continuing to build a
bridge from a population-based to a more "personalized" approach to
cancer staging. CA Cancer J Clin. 2017;67(2):93–9.

12. Liao X, Yang C, Huang R, Han C, Yu T, Huang K, et al. Identification of
potential prognostic long non-coding RNA biomarkers for predicting
survival in patients with hepatocellular carcinoma. Cell Physiol Biochem.
2018;48(5):1854–69.

13. Gao Z, Zhang D, Duan Y, Yan L, Fan Y, Fang Z, et al. A five-gene signature
predicts overall survival of patients with papillary renal cell carcinoma. PLoS
One. 2019;14(3):e0211491.

14. Chen SH, Wan QS, Zhou D, Wang T, Hu J, He YT, et al. A simple-to-use
Nomogram for predicting the survival of early hepatocellular carcinoma
patients. Front Oncol. 2019;9:584.

15. Yuan SX, Yang F, Yang Y, Tao QF, Zhang J, Huang G, et al. Long noncoding
RNA associated with microvascular invasion in hepatocellular carcinoma
promotes angiogenesis and serves as a predictor for hepatocellular
carcinoma patients' poor recurrence-free survival after hepatectomy.
Hepatology. 2012;56(6):2231–41.

16. Goudarzi A. The recent insights into the function of ACAT1: a possible anti-
cancer therapeutic target. Life Sci. 2019;232:116592.

17. Lee JH, Jung S, Park WS, Choe EK, Kim E, Shin R, et al. Prognostic
nomogram of hypoxia-related genes predicting overall survival of colorectal
cancer-analysis of TCGA database. Sci Rep. 2019;9(1):1803.

18. Joyce S, Nour AM. Blocking transmembrane219 protein signaling inhibits
autophagy and restores normal cell death. PLoS One. 2019;14(6):e0218091.

19. Wang Y, Sun L, Li Z, Gao J, Ge S, Zhang C, et al. Hepatoid adenocarcinoma
of the stomach: a unique subgroup with distinct clinicopathological and
molecular features. Gastric Cancer. 2019;22(6):1183–92.

20. Liu GM, Zeng HD, Zhang CY, Xu JW. Identification of a six-gene signature
predicting overall survival for hepatocellular carcinoma. Cancer Cell Int.
2019;19:138.

21. Wang L, Yan Z, He X, Zhang C, Yu H, Lu Q. A 5-gene prognostic nomogram
predicting survival probability of glioblastoma patients. Brain Behav. 2019;
9(4):e01258.

22. Luo D, Deng B, Weng M, Luo Z, Nie X. A prognostic 4-lncRNA expression
signature for lung squamous cell carcinoma. Artif Cells Nanomed
Biotechnol. 2018;46(6):1207–14.

23. Liu GM, Xie WX, Zhang CY. Identification of a four-gene metabolic signature
predicting overall survival for hepatocellular carcinoma. J Cell Physiology.
2019;235(2):1624-1636.

24. Buti S, Karakiewicz PI, Bersanelli M, Capitanio U, Tian Z, Cortellini A, et al.
Validation of the GRade, age, nodes and tumor (GRANT) score within the
surveillance epidemiology and end results (SEER) database: a new tool to
predict survival in surgically treated renal cell carcinoma patients. Sci Rep.
2019;9(1):13218.

25. Miao R, Wu Y, Zhang H, Zhou H, Sun X, Csizmadia E, et al. Utility of the
dual-specificity protein kinase TTK as a therapeutic target for intrahepatic
spread of liver cancer. Sci Rep. 2016;6:33121.

26. Chen L, Peng T, Luo Y, Zhou F, Wang G, Qian K, et al. ACAT1 and
metabolism-related pathways are essential for the progression of clear cell
renal cell carcinoma (ccRCC), as determined by co-expression network
analysis. Front Oncol. 2019;9:957.

27. Zhang G, Xue P, Cui S, Yu T, Xiao M, Zhang Q, et al. Different splicing
isoforms of ERCC1 affect the expression of its overlapping genes CD3EAP
and PPP1R13L, and indicate a potential application in non-small cell lung
cancer treatment. Int J Oncol. 2018;52(6):2155–65.

28. Abdelnabi M, Almaghraby A, Saleh Y, Abd Elsamad S. Hepatocellular
carcinoma with a direct right atrial extension in an HCV patient previously
treated with direct-acting antiviral therapy: a case report. Egypt Heart J.
2019;71(1):5.

29. Abou-Alfa GK, Shi Q, Knox JJ, Kaubisch A, Niedzwiecki D, Posey J, et al.
Assessment of treatment with Sorafenib plus doxorubicin vs Sorafenib
alone in patients with advanced hepatocellular carcinoma: phase 3 CALGB
80802 randomized clinical trial. JAMA Oncology. 2019;5(11):1582-1588.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Wang et al. BMC Cancer            (2021) 21:6 Page 15 of 15


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Data collection and survival analyses
	Identification of genes associated with RFS
	Enrichment analysis of GO functions and KEGG pathways
	Identification of the best genes for modeling
	Construction and validation of the risk score system
	External validation of the risk score system
	Statistical analysis

	Results
	Acquisition of the gene expression and clinical data
	Genes associated with RFS
	Construction of the prognostic model in TCGA-LIHC
	Validation of the prognostic model in GSE76427
	Association between the prognostic model and the clinical characteristics of the patients
	Independent prognostic role of the prognostic gene signature
	Comparison of the TNM stage model and BCLC model
	Development of the calibration curve
	External validation in an online database

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

