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Abstract

Background: Cervical cancer (CC) is one of the most common gynaecological cancers. The gene signature is
believed to be reliable for predicting cancer patient survival. However, there is no relevant study on the relationship
between the glycolysis-related gene (GRG) signature and overall survival (OS) of patients with CC.

Methods: We extracted the mRNA expression profiles of 306 tumour and 13 normal tissues from the University of
California Santa Cruz (UCSC) Database. Then, we screened out differentially expressed glycolysis-related genes
(DEGRGs) among these mRNAs. All patients were randomly divided into training cohort and validation cohort
according to the ratio of 7: 3. Next, univariate and multivariate Cox regression analyses were carried out to select
the GRG with predictive ability for the prognosis of the training cohort. Additionally, risk score model was
constructed and validated it in the validation cohort.

Results: Six mRNAs were obtained that were associated with patient survival. The filtered mRNAs were classified
into the protective type (GOT1) and the risk type (HSPA5, ANGPTL4, PFKM, IER3 and PFKFB4). Additionally, by
constructing the prognostic risk score model, we found that the OS of the high-risk group was notably poorer,
which showed good predictive ability both in training cohort and validation cohort. And the six-gene signature is a
prognostic indicator independent of clinicopathological features. Through the verification of PCR, the results
showed that compared with the normal cervial tissuses, the expression level of six mMRNAs were significantly higher
in the CC tissue, which was consistent with our findings.

Conclusions: We constructed a glycolysis-related six-gene signature to predict the prognosis of patients with CC

using bioinformatics methods. We provide a thorough comprehension of the effect of glycolysis in patients with
CC and provide new targets and ideas for individualized treatment.
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Background
Cervical cancer (CC) is one of the most common gy-
naecological cancers, accounting for the fourth cause
of cancer-related death in women [1]. According to
global cancer statistics, in 2018, there were nearly 570
thousand new cases of CC worldwide, with approxi-
mately 310 thousand deaths [1]. In recent years, with
the launch of the human papillomavirus (HPV) vac-
cination programme, the incidence of CC in devel-
oped countries has significantly decreased, but in
developing countries, it is still on the rise [2], and the
age of onset tends to be younger. In addition, a large
proportion of patients with CC are found to be in an
advanced stage, and at this time, treatment options
are extremely limited, and side effects are more
serious, with a 5-year survival rate of less than 20%
[3-5]. Moreover, patients with the same clinical stage
and pathological type tend to adopt the same treat-
ment, but the prognosis of patients is different, which
is mainly due to the genetic heterogeneity of patients.
Therefore, it is necessary to identify effective bio-
markers to predict the prognosis of patients with CC.
Aerobic glycolysis is a special mechanism of tumour
cell metabolism, also known as the Warburg effect [6],
which plays an important role in promoting the growth
and metastasis of various tumours, including CC. Some
studies have found that HPV protein can promote the
development of cancer through the Warburg effect, and
the Warburg effect may also contribute to the enhance-
ment of virus replication ability in the early stage of
HPV infection [7]. In addition, total lesion glycolysis
(TLG) is a measure of tumour metabolic activity, and
some retrospective studies have found that TLG was sig-
nificantly related to the recurrence-free survival (RES)
and overall survival (OS) of patients with CC [8-10].
Moreover, some glycolytic enzymes have also been
proven to be related to the prognosis of CC. For ex-
ample, hexokinase-2 (HK2), an enzyme that catalyses the
conversion of glucose into glucose-6-phosphate, is over-
expressed in a variety of cancers, has a promoting effect
on the occurrence and development of CC, and is sig-
nificantly related to the prognosis of patients [11]. Lac-
tate dehydrogenase A (LDHA) and phosphofructokinase
P (PFKP) were found to be significantly correlated with
progression-free survival (PFS) and OS in patients with
CC, and the expression level of LDHA in recurrent tu-
mours was significantly higher than that in nonrecurrent
tumours [12]. Glyceraldehyde-3-phosphate dehydrogen-
ase (GAPDH) is a classical glycolytic enzyme that has
been reported to be significantly increased in CC [13].
However, single gene biomarkers cannot achieve a good
prediction effect, and some studies have suggested that
gene signatures may be a better choice for predicting pa-
tient outcomes.
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By mining public databases, many relevant studies
have found that the glycolysis-related gene (GRG) signa-
ture is closely associated with the prognosis of patients
with cancer, such as lung adenocarcinoma [14], liver
cancer [15], pancreatic ductal carcinoma [16] and
endometrial carcinoma [17]. Nevertheless, there is no
bioinformatics research on this in CC. Thus, in this
study, we analysed the relationship between the GRG
signature and CC through the University of California
Santa Cruz (UCSC) Database, which helped us better as-
sess the prognosis of patients and provided new insights
for individualized treatment of patients with CC.

Method

Acquisition of mRNA expression dataset

The workflow of the present study is displayed as Fig. 1.
We extracted the mRNA expression profiles of 306 CC
samples and 13 normal samples from the UCSC data-
base (http://xena.ucsc.edu/) (Supplementary Table 1).
For UCSC dataset, RNA-seq data (FPKM values) were
normalized into log2 (FPKM+ 1). Then, patients with
OS less than 30 days were excluded, and 273 CC pa-
tients were included. The clinical information of CC
patients were collected which included age, grade,
American Joint Committee on Cancer (AJCC) stage,
T classification, N classification, M classification, and
OS (Supplementary Table 2).

Identification and analysis of differentially expressed
glycolysis-related genes (DEGRGs)

To obtain the cancer-related genes, we compared the ex-
pression levels of 16,208 mRNAs between CC and nor-
mal tissues using the limma package. A gene with false
discovery rate (FDR) <0.05 and |[logFC|>1 was
defined as the DEG. Then, a list of GRGs (GO_
GLYCOLYTIC_PROCESS, HALLMARK_GLYCOLY-
SIS, KEGG_GLYCOLYSIS_GLUCONEOGENESIS, RE
ACTOME_GLYCOLYSIS, and BIOCARTA_GLY-
COLYSIS_PATHWAY) was downloaded from the
Molecular Signatures Database v5.1 (MSigDB). The
Venn diagram was to identify the DEGRGs by com-
bining GRGs and DEGs. Furthermore, to understand
the potential function and related pathway of DEGR
Gs, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment
analyses were carried out by the “clusterprofiler”
package.

Construction and validation of the prognostic risk score
signature

Previous researches indicated that GRGs have potential
prognostic value for cancer patients, but the role in CC
patients remains unclear. Therefore, the survival analyses
of GRGs in CC patients were performed in the present
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Searched for mRNAs expression profiles of 306 CC samples and
13 normal samples from UCSC database

[ Screened out differentially expressed glycolysis-related mRNAs ]

Training cohort
(n=193, 70%)

univariate and multivariate
Cox regression analysis

Validation cohort
(n=80, 30%)

with survival (6 mRNAs)

Identifcation of glycolysis-related mRNAs associated

A Risk score model
validation

N

Risk score=-0.5224 x expression of GOT1 + 0.6886 x
expression of HSPAS + 0.1495 x expression of ANGPTL4
+ 0.4280 x expression of PFKM + 0.3741 x expression of

PFKFB4 + 0.2287 x expression of IER3

[ K-M analysis on the basis of the risk score modle ]

signature for the patients

[ Stratified analysis for prognostic value of six-mRNA ]

Fig. 1 Flow chart of the bioinformatic analysis

-

study. First, according to the ratio of 7: 3, all CC patients
were randomly divided into training cohort (193 pa-
tients) and validation cohort (80 patients) (Table 1). In
our research, the prognostic signature was developed in
the training cohort and validated in the validation co-
hort. To identify the prognostic value of DEGRGs in CC
patients, we performed univariate Cox regression ana-
lysis to confirm OS-related DEGRGs in training cohort.
Then, based on the OS-related DEGRGs, a stepwise
model selection by the Akaike information criterion
(AIC) was used to avoid overfitting, and significant genes
were incorporated into the multivariate Cox analysis to
construct the GRG-based prognostic signature. By linear
combination of the expression values of the selected
genes weighted with the regression coefficients of the
multivariate Cox regression analysis, the prognostic risk
score model was established as follows:

Risk Score = Zﬁi*Gi

i=0

(B; is the coefficient of the gene; i in multivariate Cox

analysis; G; represents the expression value of gene i; n
is the number of genes in the signature).

The time-dependent receiver operating characteristic
(ROCQ) curve and area under the curve (AUC) value were
used to evaluate the discrimination of the prognostic
model. Additionally, the optimal cutoff value of risk
score was determined by performing X-tile software, and
patients were divided into low- and high-risk groups.
Kaplan-Meier (K-M) survival curve and the log-rank test
were adopted to compare the prognosis between two
groups.

To further study the prognostic value of GRG signa-
ture in an independent cohort, the risk score of each
patient in the validation cohort. Time-dependent ROC
curve, AUC value, and K-M survival curve were used to
show the prognostic ability of GRG signature in the val-
idation cohort.

Development of a clinical-GRG nomogram for CC patients
As reported in previous studies, several clinical variables
were confirmed as prognostic variables, such as AJCC, T
classification, N classification and M classification.
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Table 1 Clinicopathological parameters of patients with CC in the training cohort and validation cohort

Clinical characteristic Total Training cohort Validation cohort
(N =273) (N =193) (N =80)
N (%) N (%) N (%)
Age
<50 171 (62.6) 124 (64.2) 47 (58.8)
>50 102 (37.4) 69 (35.8) 33 (41.2)
Grade
G1-G2 142 (52) 103 (534) 39 (48.8)
G3-G4 105 (38.5) 72 (37.3) 33(41.2)
NA 26 (9.5) 18 (9.3) 8 (10)
T classification
T1-T2 192 (70.3) 139 (72) 53 (66.3)
T3-T4 26 (9.5) 17 (8.8) 9(11.2)
NA 55 (20.1) 37 (19.2) 18 (22.5)
N classification
NO 118 (43.2) 92 (47.7) 26 (32.5)
N1 53 (194) 32 (16.5) 21 (26.3)
NA 102 (374) 69 (35.8) 33 (41.2)
M classification
MO 101 (37) 69 (35.8) 32 (40)
M1 10 3.7) 8 (4.1) 225
NA 162 (59.3) 116 (60.1) 46 (57.5)
AJCC stage
Il 209 (76.6) 150 (77.7) 59 (73.8)
- 58 (21.2) 38(19.7) 20 (25)
NA 6 (2.2) 526) 1(1.2)

Abbreviations: T Tumor, N Node (regional lymph node), M Metastasis

Therefore, to develop a comprehensive prognostic
model for CC patients, we firstly studied the prognos-
tic value of clinical data, including age, grade, ATCC
stage and TNM classification in CC patients by
univariate Cox analysis. Moreover, the OS-related
clinical data and GRG signature were incorporated
into the multivariate Cox analysis and the independ-
ent variables were used to develop a nomogram.
Concordance-index(C-index) and calibration curve
were used to evaluate the nomogram.

Specimens sources

Ten cases of CC and 10 cases of normal cervical tissue
were obtained from the Department of gynecology and
obstetrics, the First Affiliated Hospital of Wenzhou
Medical University. Informed consent was provided by
all patients. This study was approved by the ethics com-
mittee of the First Affiliated Hospital of Wenzhou Med-
ical University. All tissues were pathologically diagnosed
and stored in — 80 °C for preservation.

Conducting quantitative real time (qRT)-PCR on tissues
Total RNA was refined from clinical specimens by TRI-
zol® reagent (Vazyme, Nanjing, China), then, following
the manufacturer’s protocol, a PrimeScript RT reagent
kit (Vazyme) was used to reverse transcription. qRT-
PCR was performed to evaluate the DEGRGs expression
in different specimens using SYBR-Green Premix
(Vazyme) with specifc PCR primers shown in Supple-
mentary Table 3. With GAPDH as the internal control,
and the Ct method (2-AACt) was used to normalize the
relative genes expression values.

Correlation analysis between immune cell infiltration and
glycolysis

We adopted CIBERSORT [18], which is widely used to
describe the immune cell composition of the gene ex-
pression profiles to explain the 22 immune cell subtypes.
The global P value of each sample deconvolution was
determined by CIBERSORT, and samples with CIBER-
SORT P<0.05 was selected for further study. Thus, we
included a total of 184 patients from 193 patients. To
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determine the relationship between immune cell infiltra-
tion and glycolysis, we divided 184 patients into high-
and low-risk groups based on the prognostic risk score
and compared the differences in immune cells between
the two groups and displayed the results by heatmap
and violin plot. Furthermore, we conducted univariate
Cox regression, LASSO and multivariate Cox regression
analyses to examine whether the risk score and immune
cells can be used as independent factors to predict the
prognosis of CC patients.

Results

Preliminary screening of glycolysis-related mRNA

We obtained the mRNA expression profiles from the
UCSC database, including 306 tumour samples and 13
normal samples. By comparing tumour and normal tis-
sue samples, we screened 4772 differentially expressed
mRNAs from 16,208 mRNAs. Then, Venn diagram soft-
ware was applied to identify the DEGRGs in the 4772
differentially expressed mRNAs and 5 glycolytic gene
sets, and the results showed that 96 DEGRGs were de-
tected (Fig. 2).

To further analyse the relationship between these
genes and glycolysis, we carried out GO analysis and
KEGG pathway enrichment analysis on these genes. As a
result, we found in GO analysis that the primary
enriched terms were ADP metabolic process, pyruvate
metabolic process and glycolytic process (Fig. 3a). For
KEGG pathway enrichment analysis, glycolysis/gluco-
neogenesis, fructose and mannose metabolism and car-
bon metabolism were the most enriched. Based on these
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results, it has been shown that the genes we selected are
indeed related to glycolysis (Fig. 3b).

Identification of DEGRGs associated with survival and
visualization of the DEGRG status

We analysed 96 mRNAs selected above to screen out
survival-related mRNAs in training cohort by univariate
Cox regression analysis and obtained 19 mRNAs with
P < 0.05 (Fig. 4a). Next, we performed a stepwise model
selection by the AIC, and six mRNAs (HSPA5, ANGP
TL4, PFKM, GOT]1, IER3 and PFKFB4) were obtained.
Finally, multivariate Cox analysis was carried out to fur-
ther identify the relationship of selected mRNAs with
CC patients’ prognosis and obtained the coefficients.
The filtered mRNAs were classified into the protective
type (GOT1), whose HR < 1 was related to better prog-
nosis, and the risk type (HSPA5, ANGPTL4, PFKM,
IER3 and PFKFB4), whose HR >1 was related to poor
prognosis (Table 2).

In addition, to examine the DEGRG status of the
whole genome, we visualized the data by using Circos
plots [19], which are shown in Fig. 4b. The outer
layer includes chromosomes and 96 DEGRGs. The
middle four layers, from the outside to the inside, are
the average expression values of DEGRGs in normal
tissues, the average expression values of DEGRGs in
tumour tissues, the logFC of the difference analysis,
and the 19 meaningful prognostic DEGRGs obtained
by univariate Cox regression analysis in the training
cohort. The inner layer is the protein-protein inter-
action (PPI) network of the DEGRGs. In addition, 0.4
was defined as the minimum required interaction

-

.

differentially expressed mRNAs

Fig. 2 Identification of 96 DEGRGs in the differentially expressed mRNAs and 5 glycolytic gene sets (GO_GLYCOLYTIC_PROCESS, HALLMARK
_GLYCOLYSIS, KEGG_GLYCOLYSIS_GLUCONEOGENESIS, REACTOME_GLYCOLYSIS, and BIOCARTA_GLYCOLYSIS_PATHWAY)

N

5 glycolytic gene sets
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Fig. 3 GO and KEGG pathway enrichment analysis of DEGRGs. a GO analysis. b KEGG pathway enrichment analysis. The right shows significantly
enriched GO or KEGG terms, each bar on the left represents a gene and the depth of the color represents the logFC value of the gene. The
intermediate line represents the connections between genes and GO or KEGG terms

u logFC
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score, and between 0.4 and 0.9 is displayed in blue,
while greater than 0.9 is displayed in red.

Constructing and validating a six-mRNA signature to
predict patient prognosis

Using the linear combination of the expression value of the
selected genes and the regression coefficient of multivariate
Cox regression analysis, the following predictive risk

scoring model was established: risk score = —0.5224 x ex-
pression of GOTI1 +0.6886 x expression of HSPAS5 +
0.1495 x expression of ANGPTL4 + 0.4280 x expression of
PFKM + 0.3741 x expression of PFKFB4 + 0.2287 x expres-
sion of IER3. Based on the prognosis risk score, 193 pa-
tients were divided into high- and low-risk groups by using
optimal risk score cutoff identified by X-tile as the bound-
ary value (Fig. 5a), and the respective survival status of 193

Fig. 4 The results of univariate Cox analysis and circos analysis of DEGRG status in the whole genome. a Nineteen DEGRGs associated with

survival. b The outermost layer shows 96 DEGRGs and their location in the whole genome, the middle part from the outside to the inside shows
the expression of these genes in normal and tumour tissues, and the 19 DEGRGs associated with prognosis obtained by univariate Cox regression
analysis in the training cohort. The inner layer is the PPl network. The medium confidence of the minimum required interaction score is 04, < 0.9

A
pvalue Hazard ratio :
ENO1 0.014 1.722(1.114-2.662) [ —
HSPA5 <0.001 2.340(1.474-3.715) : —_—
ANGPTL4 0.032 1.226(1.018-1.477) | -
AK4 0.014 1.548(1.091-2.194) : —a—
ALDH2 0.031 0.736(0.558-0.972) H—fl
PFKM 0.019 1.694(1.092-2.628) ——
GAPDH 0.047 1.460(1.005-2.120) }_._1
AGRN 0.037 1.473(1.024-2.120) —e—
PFKP 0.045 1.448(1.008-2.079) }—I—{
GOT1 0.001 0.423(0.251-0.714) e
ERO1A <0.001 1.753(1.265-2.429) : ——
EGLN3 0.036 1.265(1.016-1.576) ——
PLOD2 <0.001 1.615(1.253-2.083) : —a—
HS6ST2 0.049 1.235(1.001-1.523) =
SLC16A3 0.012 1.454(1.085-1.947) :|—.—1
TGFA 0.025 1.368(1.040-1.798) :|—.—1
IER3 0.007 1.339(1.082-1.656) | ——
CHPF2 0.036 1.865(1.041-3.341) :}_.—1
PFKFB4 0.001 1.796(1.252-2.577) | ——
UL U USEUSE
00 05 10 15 20 25 30 35
Hazard ratio
is blue, and > 0.9 is red




Cai et al. BMC Cancer (2020) 20:1133

Table 2 Information on six prognostic mMRNAs significantly
related to overall survival in patients with CC

mRNA B (Cox) HR 95%(Cl of HR P

HSPAS5 0.6886 1.99 1.14-348 0.015
ANGPTL4 0.1495 1.16 0.96-1.41 0.125
PFKM 0428 153 0.95-2.48 0.081
GOT1 -0.5224 0.59 0.34-1.05 0.072
IER3 0.2287 1.26 0.99-1.60 0.064
PFKFB4 0.3741 145 097-2.18 0.070

patients was presented (Fig. 5b). The K-M analysis showed
that compared to the high-risk group, the OS in the low-
risk group was dramatically better (p < 0.0001; Fig. 5¢c). The
AUC: for 1-, 3- and 5-year OS were 0.791, 0.731 and 0.782,
respectively (Fig. 5d), suggesting that the six-mRNA signa-
ture has excellent diagnostic significance for prognosis pre-
diction. Additionally, we generated a heatmap to exhibit
the expression profiles of the six mRNAs, from which we
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can see that, compared with the low-risk group, the expres-
sion level of risk-type mRNAs (HSPA5, ANGPTL4, PFKM,
IER3 and PFKFB4) of the high-risk group was apparently
higher, while the expression level of the protective-type
mRNA GOT1 was opposite (Fig. 5e).

Next, we validated the predictive ability of the six-mRNA
signature in the validation cohort. Eighty patients were di-
vided into high- and low-risk groups by using the same opti-
mal risk score cutoff which were used in the training cohort
(Fig. 6a), and the respective survival status of 80 patients was
presented (Fig. 6b). And the K-M analysis showed that the
patients in the low-risk group had significantly better OS
(P=0.021) (Fig. 6¢), which AUC values were 0.664, 0.635
and 0.661 for 1-, 3- and 5-year, respectively (Fig. 6d).

The risk score constructed by the six-mRNA signature is
an independent prognostic indicator

To evaluate whether the six-mRNA signature was an inde-
pendent prognostic indicator, we performed univariate
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and multivariate Cox regression analyses to compare the
prognostic values of risk score with other clinical charac-
teristics. We included a total of 193 patients, and among
these patients, 124 (64.2%) were younger than 50 years
old, 69 (35.8%) were older than 50 years old. Among 193
patients, 103 (53.4%) had grade 1-2 tumours, and 72
(37.3%) had grade 3—4 tumours, 139 (72.0%) had T1-T2
tumours, 17 (8.8%) had T3-T4 tumours. Furthermore,
among these patients, 92 (47.6%) had no lymph node me-
tastasis, 32 (16.5%) had lymph node metastasis, 69 (35.7%)
had no distant metastasis, and 8 (4.1%) had distant metas-
tasis. Additionally, among these patients, 150 (77.7%) had
stage I-II disease, and 38 (19.7%) had stage III-IV disease.
In all the above data, except for age and grade, AJCC stage
(HR =2.78, 95% CI 1.55-4.98, p <0.001), T classification
(HR =5.15, 95% CI 2.55-10.42, p < 0.001), M classification
(HR=4.70, 95% CI 1.53-14.50, p=0.007) and N

classification (HR=4.18, 95% CI 1.83-9.53 p<0.001)
showed significant differences in the univariate Cox re-
gression analysis, which can be used as independent prog-
nostic factors (Table 3). In the next multivariate Cox
regression analysis, only the N classification showed sig-
nificant differences (HR = 14.80, 95% CI 3.44-63.76, p <
0.001) (Table 3). However, regardless of univariate or
multivariate Cox regression analysis, the risk score showed
significant prognostic value (HR =2.72, 95% CI 1.92-3.85,
p<0.001; HR=257, 95% CI 147-4.49, p=0.002)
(Table 3). Based on these results above, we constructed a
nomogram prediction model combined the risk score with
N classification to predict CC patients’ OS (Fig. 7a), which
C index is 0.83. The calibration plot showed that in the
nomogram, the predicted values of OS at 1, 3 and 5 years
for CC patients have a good correlation with the actual
values (Fig. 7b-d).
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Table 3 Univariable and multivariable Cox regression analysis for each clinical feature
Clinical feature Univariate analysis Multivariate analysis
HR 95%Cl of P value HR 95%CI of HR P value
HR
Risk score 272 1.92-3.85 <0.001 257 1.47-4.49 0.002
Age (£50/> 50) 137 0.78-241 0.276 - - -
Grade (G1-G2/G3-G4) 1.03 0.55-1.93 0.925 - -
T (T1-T2/T3-T4) 5.15 2.55-1042 <0.001 - -
M (MO/M1) 4.70 1.53-14.50 0.007 - - -
N (NO/NT) 418 1.83-9.53 <0.001 14.80 344-63.76 <0.001
AJCC stage (I-I/1I-IV) 278 1.55-4.98 <0.001 - -
Abbreviations: T Tumor, N Node (regional lymph node), M Metastasis, HR Hazard ratio, 95% Cl 95%Confidence Interval
N
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Fig. 7 The establishment of a nomogram which can predict the prognosis probability of CC patients. a OS nomogram was constructed
combined with risk score and N classification. b-d The calibration plot of OS nomogram for 1-, 3- and 5-year survival
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Next, stratified analysis was performed to further valid-
ate whether the six-mRNA signature can be used as an in-
dependent prognostic factor, according to the grade,
AJCC, T classification and age. First, we classified patients
into the grade 1-2 dataset and grade 3—4 dataset, and the
patients in the datasets were divided into high- and low-
risk groups, respectively. As a result, we found that there
were significant differences in OS between these two
groups, and the OS of the low-risk group was obviously
better (Fig. 8a). Next, we did the same thing for the other
clinicopathological features, and we found that the OS of
the high-risk group was significantly worse than that of
the low-risk group regardless of the AJCC stage (stage I-1I
or stage III-IV) (Fig. 8b), T classification (TO or T1)
(Fig. 8c) and age (younger than 50 or older than 50)
(Fig. 8d), further confirming the reliability of our analysis.

Validating the overexpression of the six mRNAs in CC
tissues by qRT-PCR

We validated the expression level of six mRNAs in 10
CC tissues and 10 normal cervical tissues by using qRT-
PCR. The results showed that compared with the normal
cervial tissuses, the expression level of HSPA5, ANGP
TL4, PFKM, GOT1, IER3 and PFKFB4 were significantly
higher in the CC tissue (Fig. 9), making the bioinformat-
ics analysis result much more reliable and precise.

The relationship between immune cell infiltration and
glycolysis

We analysed a total of 184 patients’ immune cell compos-
ition from their gene expression profiles. Additionally, we
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divided these patients into two groups, and we can see
that the expression levels of CD8 T cells, regulatory T
cells (Tregs) and resting mast cells were significantly
higher in the low-risk group compared to the high-risk
group; however, in the high-risk group, the expression
levels of neutrophils, MO macrophages, activated mast
cells and resting CD4 memory T cells were dramatically
higher (Fig. 10).

In addition, we analyzed the relationship between
immune cells and prognosis of CC patients. In the
univariate Cox regression analysis, CD8 T cells, rest-
ing CD4 memory T cells, MO macrophages, M2 mac-
rophages, resting mast cells, activated mast cells and
Neutrophils all showed significant differences with
p<0.05. Among these immune cells, the HR of CD8
T cells, M2 macrophages and resting mast cells were
less than 1, which associated with better prognosis. In
the next multivariate Cox regression analysis, only ac-
tivated mast cells showed significant differences with
p<0.05. And both in univariate or multivariate Cox
regression analysis, the risk score showed significant
prognostic value (p <0.001) (Table 4).

Discussion

In recent years, increasing attention has been paid to the
relationship between energy metabolism and tumours,
among which the Warburg effect is a notable feature of
the energy metabolism of tumour cells. Despite the low
efficiency of glycolysis, tumour cells are still active in
glycolysis, which can produce more energy and various
metabolites in a short time so that tumour cells can
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benefit from glycolysis [6]. More importantly, the rapid
growth of tumours is often accompanied by hypoxia,
and hypoxia inducible factor (HIF), as the key regulator
of glycolysis, can solve the nutritional needs of tumour
cells by inducing the expression of glucose and amino
acid transporters (glucose transporter type 1 (GLUT1))
and L-type amino acid transporter 1 (LAT1) to further
promote the progression of cancer [20, 21]. There have
been many studies on the relationship between glycolysis
and tumours, but the relationship between GRGs and

the prognosis of patients with CC is still very limited.
Because a single gene biomarker cannot provide a strong
prediction effect, a more accurate and reliable gene
signature was used to predict the clinical outcomes of
patients. For instance, a glycolysis-related nine-gene sig-
nature was used to predict the survival of patients with
endometrial cancer [17]. A tumour microenvironment-
related nine-gene signature was used to predict overall
survival with ovarian cancer [22]. Moreover, an
autophagy-related five-gene signature was developed for
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Table 4 Univariable and multivariable Cox regression analysis for immune cells

Immune cells Univariate analysis

Multivariate analysis

HR 95%(Cl of HR P value HR 95%(Cl of HR P value

Risk Score 258 1.80-3.71 < 0.001 211 143-3.11 < 0.001
T cells CD8 0.002 3.89E-05 - 0.10 0.002 - - -

T cells CD4 memory resting 174.15 3.19-9503.14 0.011 - - -
Macrophages MO 3081.50 23.73-400,288.68 0.001 - - -
Macrophages M2 0.00 9.46E-08 - 0.22 0.018 - - -

Mast cells resting 0.00 1.14E-10 - 0.05 0.011 - - -

Mast cells activated 243E-06 207,417.10-24E+ 11 <0.00122925.08 6.23 - 8E+07 0.017

Neutrophils 2.23E+8 81.22-528E+ 10 0.005 - - -

prognosis prediction in patients with prostate cancer
[23]. In this study, we used the GRG signature for the
first time to predict the survival of patients with CC and
obtained a good prediction effect.

First, we screened out the differentially expressed
glycolytic mRNAs from the CC dataset in the UCSC
database and selected six DEGRGs with predictive ability
for the prognosis of patients with CC in the training co-
hort through univariate and multivariate Cox regression
analysis (P <0.05). Subsequently, by constructing the
prognostic risk score model, we found that there was a
significant difference in OS between the high- and low-
risk groups, and the OS of the high-risk group was evi-
dently worse. Furthermore, the risk score model was val-
idated in the validation cohort with good predictive
ability. Finally, further verification was done through
PCR, we found that the expression of these six genes in
tumor tissue was indeed significantly higher than that in
normal tissue.

From our analysis, we selected six DEGRGs
(HSPA5, ANGPTL4, PFKM, GOT1, IER3 and
PFKFB4). Heat shock protein A5 (HSPAS5, also konwn
as GRP78), a member of the HSP70 family, has been
found to play an important role in cancer malignancy
and anti-tumor therapy. And it has been reported
that the high expression of HSPA5 can protect cancer
cells from immune surveillance, and inhibition of its
expression can promote cell apoptosis and inhibit
tumor growth [24, 25]. Angiopoietin-like4 (ANGP
TL4) is highly expressed in various tumors, which is
closely related to tumor growth and metastasis, such
as hepatocellular carcinoma [26], breast cancer [27],
head and neck squamous cell carcinoma [28] and
melanoma [29]. And ANGPTL4 participates in the
construction of GRG signature in lung adenocarcin-
oma to predict the survival and metastasis of patients
[14]. In addition, previous studies have found that
ANGPTL4 is significantly associated with the suscep-
tibility of CC, is a potential risk factor [30]. Muscular
phosphofructokinase (PFKM), a member of the

phosphofructokinase (PFK) family, can promote the
growth of muscle-infiltrating bladder cancer [31] and
can be used as a new breast cancer gene [32], and its
expression level can distinguish normal tissues from
CC tissues [33]. 6-Phosphofructo-2-kinase/fructose-2,
6-biphosphatase 4 (PFKFB4), is a key kinase in War-
burg pathway [34], has been found to be associated
with a variety of cancers, including breast cancer [35],
prostate cancer [36] and glioblastoma [37], promoting
the progression and metastasis of cancer, and may be-
come an effective molecular target of anti-tumor
drugs. It was found that the expression of immediate
early response gene 3 (IER3) was increased in ad-
vanced cancer [38, 39], but some studies have found
that IER3 can also promote tumour cell apoptosis
and has anti-tumour activity, such as lower expression
in CC tissues [40], and increasing the expression of
IER3 can enhance the sensitivity of CC cells to radio-
therapy [41]. In contrast, in our study, we found that
IER3 exists as a risk factor. Moreover, glutamate oxa-
loacetate transaminase 1 (GOT1), is a gene that en-
codes cytoplasmic aspartate aminotransferase and a
key aspartate-producing protein. Glutamine metabol-
ism is essential for the proliferation of cancer cells in
addition to glucose. Glutamine derived glutamic acid
is used to generate nonessential amino acids by
GOT1 in high proliferative cells, which plays an im-
portant role in cell proliferation [42, 43]. Moreover,
HIFa can inhibit the proliferation of tumor cells by
inhibiting the synthesis of aspartate [44]; however, in
our study, we found that GOT1 was a protective fac-
tor, with higher expression in the low-risk group than
in the high-risk group. Hence, further studies are
needed to explore the relationship between these two
genes (IER3 and GOT1) and the prognosis of patients
with CC.

Interestingly, we also found some divergences in im-
mune cell infiltration between the high- and low-risk
groups, suggesting that glycolysis may be correlated with
tumour immunity. In addition, several previous studies
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have elucidated the relationship between glycolysis and
immunity. Excess glycolysis will lead to acidic tumor
microenvironment, affect the infiltration of immune cells
in varying degrees, and contribute to the survival of cancer
cells [45]. Cascone et al. found that in patients with mel-
anoma and NSCLC, high glycolytic activity will be accom-
panied by poor immune cell infiltration, such as cytoxic T
cells, T helper cells, memory T cells, macrophases, or nat-
ural killer (NK) cells reduction [46]. Li et al. found that
high glycolysis group had a higher immunescore and
higher TIL percentage in breast cancer, however, the im-
mune cells with anti-tumor effect were not enriched, and
concluded that high glycolysis was associated with im-
munosuppression of tumor microenvironment [47]. In
our study, the expression levels of CD8 T cells and resting
mast cells were significantly higher in the low-risk group.
CD8 T cells, to our knowledge, play a pivotal role in the
control of tumour cell growth, and their relationship with
the prognosis of patients with CC has also been confirmed
in a previous study [48, 49]. For mast cells, some studies
have found that mast cell infiltration in CC indicates poor
clinical prognosis [49-52], which was consistent with our
findings that resting mast cells were highly expressed in
the low-risk group and that activated mast cells were
highly expressed in the high-risk group. These findings
are consistent with previous studies and to some extent
explain why patients in the low-risk group have better sur-
vival outcomes.

It is undeniable that this study does have some defects.
On the one hand, we obtained clinical gene information
for only 273 cases of CC, and the sample size was not
large enough. On the other hand, it would be better to
have an external validation cohort to verify the accuracy
of the prediction model rather than the internal valid-
ation cohort. However, we verified these six DEGRGs
between tumor and normal tissues, which to some ex-
tent compensated for this defect.

In summary, we first identified the relationship be-
tween the GRG signature and the prognosis of patients
with CC using bioinformatics methods and found that
patients in the high-risk group had significantly lower
OS than those in the low-risk group. Furthermore, we
found some relationships between the infiltration of im-
mune cells and glycolysis.

Conclusion

In brief, we constructed a six-gene signature (HSPAS5,
ANGPTL4, PFKM, GOT1, IER3 and PFKFB4) to predict
the prognosis of patients with CC, which was also a
prognostic factor independent of clinicopathological fea-
tures. These findings will provide us with new insights
into the role of glycolysis in CC, guiding individualized
treatment for patients with CC.
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