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Abstract

Background: Next-generation sequencing (NGS) has shown that recurrent/metastatic breast cancer lesions may
have additional genetic changes compared with the primary tumor. These additional changes may be related to
tumor progression and/or drug resistance. However, breast cancer-targeted NGS is not still widely used in clinical
practice to compare the genomic profiles of primary breast cancer and recurrent/metastatic lesions.

Methods: Triplet samples of genomic DNA were extracted from each patient’s normal breast tissue, primary breast
cancer, and recurrent/metastatic lesion(s). A DNA library was constructed using the QIAseq Human Breast Cancer Panel
(93 genes, Qiagen) and then sequenced using MiSeq (Illumina). The Qiagen web portal was utilized for data analysis.

Results: Successful results for three or four samples (normal breast tissue, primary tumor, and at least one metastatic/
recurrent lesion) were obtained for 11 of 35 breast cancer patients with recurrence/metastases (36 samples). We
detected shared somatic mutations in all but one patient, who had a germline mutation in TP53. Additional mutations
that were detected in recurrent/metastatic lesions compared with primary tumor were in genes including TP53 (three
patients) and one case each of ATR, BLM, CBFB, EP300, ERBB2, MUC16, PBRM1, and PIK3CA. Actionable mutations and/or
copy number variations (CNVs) were detected in 73% (8/11) of recurrent/metastatic breast cancer lesions.

Conclusions: The QIAseq Human Breast Cancer Panel assay showed that recurrent/metastatic breast cancers sometimes
acquired additional mutations and CNV. Such additional genomic changes could provide therapeutic target.
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Background
Studies using next-generation sequencing (NGS) have dem-
onstrated remodeling of genes in metastatic cancer com-
pared with the primary tumor from the same individual,
possibly as a result of subclonal diversification or mutational

evolution [1–10]. Whole-exon or whole-genome analyses
can yield valuable information but are costly and time con-
suming. Whole-exon sequencing analysis of metastatic
breast cancers showed drug-targetable mutations in genes
such as ERBB4, NOTCH3, and ALK [11]. A targeted NGS
assay of metastatic breast cancers and their associated pri-
mary tumor using a general cancer panel can also detect
drug-targetable mutations. Vasan et al. reported that 84%
(43/51) of metastatic breast cancers showed at least one
genomic alteration that could be targeted by currently
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available drugs [12]. In 2016, Muller et al. reported that 45%
(10/22) of metastatic breast cancers contained molecular
targets for currently available therapies, including for off-
label use [13]. In these studies, comprehensive cancer panels
that were not breast cancer specific were used. To our
knowledge, there has been no study using breast cancer-
targeted NGS of paired samples of primary breast cancer
and recurrent/metastatic cancer.
The aim of the present study was to perform breast

cancer-targeted NGS to compare gene mutations and copy
number variations (CNVs) in samples of primary breast
cancer and recurrent/metastatic lesions from the same indi-
viduals. Becuse sequencing analyses of matched tumor and
normal tissue are essential [14], we performed an NGS
study using three or more samples from each patient, con-
sisting of normal breast tissue, primary breast cancer, and
recurrent/metastatic lesion(s). This study aimed to clarify
the practical possibility of breast cancer-targeted NGS and
improve understanding of subclonal diversification or mu-
tational evolution of metastatic breast cancers.

Methods
Patients and samples
One hundred seven cases of distant metastasis or local
recurrence of breast cancer were collected from the
pathology archives of Kawasaki Medical School Hospital
from 2010 to 2017. The microscopic evaluation of these
cases found that normal breast tissue, sufficient (20% or
more tumor content) primary breast cancer tissue, and
tissue from at least one relapse site were available for 35
patients. For 66 patients, the tumor content of samples
from primary tumors and/or recurrent/metastatic tu-
mors was less than 20%. For six patients, the primary
breast cancers were resected in other institutions, so
histologic specimens were not available (Supplementary
Fig. 1). The protocol of the present study was approved
by the Ethics Committee of Kawasaki Medical School
and Hospital (approval number: 2695).

DNA extraction and quality assessment
Formalin-fixed paraffin-embedded (FFPE) tissue blocks
were obtained from the Department of Pathology at Kawa-
saki Medical School Hospital. DNA was extracted from the
tumor and normal tissue at the primary site (breast) and
from sites of metastasis and/or local recurrence. Samples of
pleural or pericardial effusion were collected using the col-
lodion bag method to generate cell blocks. Four 10-μm sec-
tions were cut from each paraffin block. Maxwell 16 FFPE
Tissue LEV DNA purification kits (#AS1130; Promega,
Madison, WI, USA) were employed for DNA extraction.
DNA was quantified using a Qubit 2.0 Fluorometer
(Thermo Fisher Scientific, Waltham, MA, USA) and Qubit
dsDNA BR assay kits (#Q32850; Thermo Fisher Scientific).
DNA quality was assessed by calculating the QC score

(https://www.qiagen.com/us/resources/download.aspx?id=
aae35658-5ef2-44b2-bd02-fbe73fe7737c&lang=en). DNA
amplification for library construction was performed by
quantitative polymerase chain reaction (qPCR) using
QIAseq DNA QuantiMIZE Assay Kits (#DNQC-100Y-R;
Qiagen, Hilden, Germany) [15].

Next-generation sequencing
The QIAseq Human Breast Cancer Panel (93 genes, DHS-
001Z; Qiagen) and the GeneRead Human Comprehensive
Cancer Panel (160 genes, NGHS-501X; Qiagen) were used
for library construction according to the manufacturer’s
instructions. The libraries were assessed using a QIAseq Li-
brary Quant Assay Kit (#QSTF-ILZ-R; Qiagen) and applied
to a MiSeq sequencer (Illumina, San Diego, CA,
USA). The Qiagen web portal (https://www.qiagen.
com/us/shop/genes-and-pathways/data-analysis-center-
overview-page/) was utilized for data analysis [16].
For alignment, GenomeBrowse (http://goldenhelix.
com/products/GenomeBrowse/index.html) was used,
and GRCH37 was used as the human genome reference.
A commercial bioinformatic analysis service (Mitsubishi
Space Software Co. Ltd., Tokyo, Japan) was asked to inter-
pret the GeneRead Human Comprehensive Cancer Panel
results. CNV was calculated using the cloud analysis pipe-
line of the Qiagen web portal, and corrected for the per-
cent tumor content. Four or more and one or fewer CNVs
were regarded as significant.

Statistical analyses
Statistical analyses were performed using IBM SPSS Sta-
tistics for Windows (v 25; IBM Corp., Armonk, NY,
USA) and P < 0.05 was considered significant.

Results
Clinicopathological findings
For the 11 of the total 107 patients who were success-
fully analyzed (Supplementary Fig. 1), the median age
was 52.5 years at diagnosis of breast cancer. The median
time to first relapse was 11 months, and the overall sur-
vival was 39 months. All but one patient died from
breast cancer. The breast cancer subtypes were six
triple-negative, four luminal, and one HER2-enhanced.
All patients but one had received chemotherapy and/or
hormonal therapy (Table 1, Supplementary Table 1).

DNA quality and QIAseq human breast Cancer panel
The data for DNA quality are shown in Supplementary
Table 2. The QC score was calculated as the difference be-
tween the CT values obtained by qPCR using the 100-bp
and 200-bp primers of the QIAseq DNA QuantiMIZE
assay kit. A high QC score indicates severe DNA fragmen-
tation. A favorable QC score (≤0.04) was obtained from 43
of 85 (50.6%) samples. The samples with good DNA quality
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were collected significantly more recently than those
with poor DNA quality (p < 0.0005, Fig. 1). The FFPE
blocks used in this study were 6 months to 17 years
old; 66.7% (38/57) of the blocks that were ≥ 5 years
old had a QC score > 0.04. We attempted to construct
libraries from 14 high-QC-score samples; however,
the reading depth for the molecular-tagged sites in
eight cases (57.2%) was < 10, and failed to identify a
mutation. The depth of molecular-tagged sites and all
examined sites were both significantly correlated with
the storage years (P < 0.0005 and r = − 0.586, P = 0.004
and r = − 0.412, Spearman’s correlation).
Successful results were obtained from samples of 11

patients that comprised normal breast tissue, primary
tumor, and at least one metastatic/recurrent lesion (36
samples, Table 1), using the QIAseq Human Breast Can-
cer Panel. We detected somatic driver mutations in all
but one case (91%) (Table 2). The mutations shared be-
tween the primary tumor and a recurrent/metastatic le-
sion occurred in TP53 (five cases), PIK3CA (three cases),
CDH1 (one case), ESR1 (one case), GATA3 (one case),
and PTEN (one case). In five cases (45.4%), additional
mutations were detected in the recurrent/metastatic le-
sions compared with the primary tumor. These add-
itional mutations occurred in TP53 in three cases and in
ATR, BLM, CBFB, EP300, ERBB2, MUC16, PBRM1, and
PIK3CA in one case each (Table 2, Fig. 2). No additional
mutation was found in one long-surviving patient (K23)
at 92 months after partial mastectomy.
The results for CNV are shown in Table 2 and Supple-

mentary Table 3. CNV appears to be higher in distant
metastasis than in local recurrence, but this difference
was not significant (P = 0.091, Fig. 3).

GeneRead human comprehensive Cancer panel
For patient K31, only two mutations were identified by
the QIAseq Human Breast Cancer Panel. We suspected
the presence of undetected mutations, so performed
additional analyses using the GeneRead Human Com-
prehensive Cancer Panel and a commercial bioinfor-
matic analysis service (Mitsubishi Space Software Co.
Ltd). These analyses revealed an additional JAK2 muta-
tion (p.R588Kfs*8) that occurred before metastasis, an
ARID1A mutation (p.E672G) that appeared in the first
metastasis (pericardial fluid), and additional mutations
in XPC (p.R338T) and GATA3 (p.K378R) that were
present in the second metastasis (pleural fluid) (Fig. 4).
Although GATA3 is included in the QIAseq Human
Breast Cancer Panel, we were unable to detect this mu-
tation by web-portal analysis because of its low variant
frequency.
For patient K25, only a germ line TP53 mutation was

detected by the QIAseq Human Breast Cancer Panel.
The GeneRead Human Comprehensive Cancer Panel
analysis confirmed this TP53 germ line mutation with-
out identifying other significant mutations.

Discussion
We showed that older FFPE materials often had lower
DNA quality and could not be analyzed. The depth dis-
crepancy between molecular-tagged sites and all sites is
interesting. The Spearman’s correlation coefficients with
age were − 0.586 for tagged sites and − 0.412 for all sites,
suggesting that the molecular tag might be sensitive to
age-related DNA damage. PAXgene tissue fixation and/
or low-temperature paraffin block storing at 4 °C or −
20 °C could improve DNA quality [17].

Fig. 1 The samples with good QC scores (≤0.04) were collected more recently than those with poor QC scores (> 0.04) (P < 0.0005, Mann–
Whitney U test). A QC score threshold of 0.04 is recommended by Qiagen
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For 66 of 107 cases (61.7%), the tumor content in sam-
ples of primary tumors and/or recurrent/metastatic tu-
mors was less than 20%. The cell blocks of fluid materials
frequently included many inflammatory cells and reactive
mesothelial cells together with cancer cells; hence, the ex-
traction of tumor DNA from these cell blocks was often
inefficient. A primary breast cancer containing abundant
stromal lymphoplasmacytic cell infiltration or a severe
desmoplastic reaction would also inhibit effective cancer
genome recovery. Thus, the development of a more effi-
cient microdissection system is desirable.
We demonstrated that targeted NGS using the QIAseq

Human Breast Cancer Panel could detect the driver mu-
tations in all cases of breast cancer examined, except for
one case with a germline TP53 mutation that did not
meet the classic criteria for Li–Fraumeni syndrome [18]
or the Chompret criteria [19].
The most frequently detected mutation shared be-

tween primary and metastatic lesions was in TP53.
Breast cancer patients with a somatic TP53 mutation
have a poor prognosis [20, 21]; unfortunately, TP53 mu-
tations are not presently targetable. Phosphatidylinosi-
tide 3-kinase (PI3K) inhibitor could be a good
therapeutic option for cases with PIK3CA mutations
[22–24]. Alpelisib has been reported to improve the sur-
vival patients with PIK3CA-altered, ER-positive, HER2-
negative breast cancer [25, 26]. Alpelisib is already ap-
proved by the US Food and Drug Administration. The
Lotus trial showed that ipatasertib, an oral AKT inhibi-
tor, improved the progression-free survival of breast can-
cer patients with PIK3CA/AKT/PTEN mutations [27].
IPATunity130, a pivotal randomized phase III trial
evaluating ipatasertib (IPAT) + paclitaxel for PIK3CA/
AKT1/PTEN-altered advanced triple-negative or hor-
mone receptor-positive HER2-negative breast cancer, is
ongoing (http://ascopubs.org/doi/abs/10.1200/JCO.201
8.36.15_suppl.TPS1117). Breast cancers with a PIK3CA
mutation have a good prognosis [21]. CDH1-mutated
breast cancer cells are sensitive to ROS1 tyrosine kinase
inhibitors including foretinib or crizotinib [28]. ESR1
mutations of breast cancer are often reported after aro-
matase inhibitor and/or tamoxifen therapy [29]. The
SoFEA (Study of Faslodex Versus Exemestane With or
Without Arimidex) trial showed that cases with ESR1
mutations had better survival when treated with fulves-
trant compared with exemestane [30].
Of the additional mutations detected, ERBB2 p.S310F

is notable because it results in activation of HER2 with-
out gene amplification or protein overexpression [31]. A
tumor with this mutation is likely to be sensitive to nera-
tinib, as are those with G660D, R678Q, E693K, and
Q709 mutations [32]. The neratinib HER Mutation Bas-
ket Study (SUMMIT) has already started [33]. A PBRM1
mutation may evoke immunotherapy resistance [34].

Table 2 Mutations and copy number variations of primary
breast cancers and recurrent/metastatic lesions
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Cases with PTEN loss could be treated with PI3K/
AKT inhibitor [35]. Case K18 and K28 (triple-negative
cancers) with CCND1 gene amplification might be sensi-
tive to CDK4/6 inhibitors [36]. Meanwhile, erdafitinib
and cetuximab might be effective for cases K30 and K32
in which the metastatic lesions contained FGFR and
EGFR amplifications [37, 38]. Case K30 and K32, which
had decreased ATM might be sensitive to topotecan or
the poly-(ADP-ribose) polymerase inhibitor olaparib
[39]. CDKN2A or RB1 downregulation could be target of
palbociclib [40].
The present study with only 93 genes analyzed showed

actionable mutations or CNVs in 73% (8/11) of recur-
rent/metastatic breast cancer lesions. This is comparable
to the findings of previous studies including MSK-IMPA

CT (61%), the study by Vasan et al. (84%), and the study
by Muller et al. (45%) [12, 13, 41].
The major limitations of the present study are its small

scale and subtype bias, for which problems with DNA
availability are responsible. Patients with luminal breast
cancer often show late recurrence/metastasis, such as up
to 18 years after diagnosis in our series. The primary
tumor blocks of such cases are too old and rarely main-
tain sufficient DNA quality. In contrast, triple-negative
breast cancer usually recurs shortly after surgery. An-
other limitation is the determination of the cutoff level
for CNV. The relationship between drug sensitivity and
CNV remains to be elucidated. Moreover, additional im-
munohistochemistry might be helpful for cases with al-
tered CNVs of EGFR or FGFR. We could detect the

Fig. 2 Case K22. a Normal breast tissue, b primary breast invasive lobular carcinoma showing loose trabecular growth with CDH1
p.Q264*mutation, and c pleural effusion containing metastatic cancer cells with CDH1 p.Q264*, ERBB2 p.S310F, CBFB p.X27_splice and TP53
p.R248Q mutations

Fig. 3 CNV seems to be higher in distant metastasis than in local recurrence, but the difference was not significant (P = 0.091, Mann–Whitney
U test)
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somatic driver mutations or germline mutations in five
triple-negative cancers; however, the genes covered by
the QIAseq Human Breast Cancer Panel might be inad-
equate for analysis of triple-negative breast cancers be-
cause these cancers are known to have highly variable
mutations [42].

Conclusion
Our targeted NGS assay using the QIAseq Human
Breast Cancer Panel showed that recurrent/metastatic
breast cancer lesions sometimes gained additional
mutation and CNV. This method assists the identifi-
cation of drug-targetable mutations and changes in
CNV levels. The performance of an expanded study
including an analysis of drug sensitivity is to be
encouraged.
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