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Abstract

Background: Breast cancer clinical management requires the assessment of hormone receptors (estrogen (ER) and
progesterone receptor (PR)), human epidermal growth factor receptor 2 (HER2) and cellular proliferation index Ki67,
by immunohistochemistry (IHC), in order to choose and guide therapy according to tumor biology. Many studies
have reported contradictory results regarding changes in the biomarker profile after neoadjuvant therapy (NAT).
Given its clinical implications for the disease management, we aimed to analyze changes in ER, PR, HER2, and Ki67
expression in paired core-needle biopsies and surgical samples in breast cancer patients that had either been
treated or not with NAT.

Methods: We included 139 patients with confirmed diagnosis of invasive ductal breast carcinoma from the
Colombian National Cancer Institute. Variation in biomarker profile were assessed according to NAT administration
(NAT and no-NAT treated cases) and NAT scheme (hormonal, cytotoxic, cytotoxic + trastuzumab, combined). Chi-
squared and Wilcoxon signed-rank test were used to identify changes in biomarker status and percentage
expression, respectively, in the corresponding groups.

Results: We did not find any significant variations in biomarker status or expression values in the no-NAT group. In
cases previously treated with NAT, we did find a statistically significant decrease in Ki67 (p < 0.001) and PR (p =
0.02605) expression. When changes were evaluated according to NAT scheme, we found a significant decrease in
both Ki67 status (p = 0.02977) and its expression values (p < 0.001) in cases that received the cytotoxic treatment.

Conclusions: Our results suggest that PR and Ki67 expression can be altered by NAT administration, whereas cases
not previously treated with NAT do not present IHC biomarker profile variations. The re-evaluation of these two
biomarkers after NAT could provide valuable information regarding treatment response and prognosis for breast
cancer patients.
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Background
Breast cancer is the malignancy with the highest inci-
dence (46.3 per 100.000) and mortality rates (13.0 per
100.000) in women worldwide. According to the Surveil-
lance, Epidemiology and End Results Program (SEER), in
2018 breast cancer accounted for 15.3% of all new

cancer cases and 6.7% of all cancer deaths in the United
States (US) [1, 2].
Neoadjuvant therapy (NAT) has become an important

strategy to reduce tumor size in locally advanced breast
cancer and facilitate breast conservative surgery, along
with monitoring treatment response and eliminating
possible micrometastasis [3–5]. In order to choose an
appropriate NAT scheme according to tumor biology, a
preoperative evaluation on core-needle biopsies from the
primary tumor is performed, where histological type and
grade are assessed. Additionally, immunohistochemistry
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(IHC) of biomarkers, such as: hormone receptors (estro-
gen receptor (ER) and progesterone receptor (PR)), hu-
man epidermal growth factor receptor 2 (HER2) and the
cellular proliferation index (Ki67), is also analyzed to
guide the therapy and predict survival [4, 6, 7].
These biomarkers have been used as surrogates for

breast cancer classification into four main intrinsic sub-
types: luminal A, luminal B, HER2-enriched and triple
negative (TN) [8]. Both, luminal A and luminal B tumors
express ER, therefore these patients are candidates for
hormone therapy with ER modulators or aromatase in-
hibitors [8–11], whilst HER2-enriched and TN subtypes
lack the expression of hormone receptors, therefore are
mainly treated with biological therapy agents such as
trastuzumab or pertuzumab, and cytotoxic chemother-
apy, respectively [5, 11, 12].
Standard clinical recommendations indicate the assess-

ment of ER, PR, HER2 and Ki67 by IHC in biopsy sam-
ples [13, 14]. Nevertheless, many retrospective studies
have reported changes in biomarker expression in surgi-
cal specimens after NAT administration [15–21]. The
main changes correspond to discordances in hormone
receptors and HER2 status [22], along with decreases in
the percentage of expression, especially for PR and Ki67
[23–26]. Most of these studies end up suggesting the
need to re-evaluate its expression, justifying its import-
ance not only to assess tumor response to treatment but
to adjust therapy according to these changes [3, 27].
However, other studies show that these changes are not
statistically significant [28] and suggest that the re-
evaluation of biomarker expression after NAT might not
be necessary, especially for health care institutions with
limited resources, as it is the case for many hospitals in
Latin-America, including Colombia [29].
Given the prognostic value of biomarkers expression

and its important role for deciding treatment scheme,
the aim of this study was to compare the IHC expression
of ER, PR, HER2, and Ki67 in core-needle biopsies and
surgical excision specimens in NAT-treated and non-
treated breast cancer samples from patients diagnosed in
the Colombian National Cancer Institute (NCI), in order
to evaluate NAT effect on biomarker expression profile.

Methods
Clinical samples and data collection
This is a retrospective study that included 139 breast
cancer patients diagnosed with invasive ductal carcin-
oma (IDC) at the Colombian NCI between 2013 and
2014. Patients were included if they met the following
eligibility criteria: 1) histologically confirmed diagnosis
of IDC, 2) availability of formalin-fixed paraffin-
embedded (FFPE) tissue blocks from mastectomies or
breast-conserving surgeries that contained at least 10%
of tumor content, 3) availability of IHC slides from core-

needle biopsies, and 4) paired IHC biomarker informa-
tion on biopsy and surgical specimens. Patients with in
situ breast carcinoma were excluded. A single patholo-
gist confirmed the histological diagnosis and re-
evaluated the expression of the IHC markers from each
patient.
This study was approved by the Colombian NCI ethics

committee, and according to the Colombian laws, it was
considered that no informed consent was required.
Pathology reports were reviewed to obtain information

regarding histopathological diagnosis, nodal status, sur-
gical margins, invasion and histological grade. Treatment
information was retrieved from clinical records. NAT-
treated patients were categorized based on their neoad-
juvant scheme in four groups: 1) hormonal, which in-
cludes letrozole and/or exemestane, 2) cytotoxic, which
includes AC (doxorubicin and cyclophosphamide), tax-
anes and/or platinums, 3) cytotoxic + trastuzumab,
which includes the same therapeutic agents from the
cytotoxic scheme plus trastuzumab, and 4) combined,
which includes both hormonal and cytotoxic therapeutic
agents.

Immunohistochemistry
IHC for ER, PR, HER2 and Ki67 expression was per-
formed on 3 μm-thick sections from a single FFPE
with the highest tumor representation. Staining was
carried out using the Roche Benchmark XT auto-
mated slide preparation system (Roche Ltd.,
Switzerland). Positive and negative controls were in-
cluded and DAB (3,3′ diaminobenzidine) was used as
chromogen.
A single pathologist analyzed biomarker expression

from surgery blocks and re-evaluated the IHC slides
from core-needle biopsies. Hormone receptors (ER
and PR) and Ki67 expression values were calculated
as the percentage of positive nuclear staining in the
IHC slide evaluated. Status of hormone receptors
was considered positive when they exceeded 1% of
nuclear staining in tumor cells. HER2 was defined
as: positive (3+) for complete and intense circumfer-
ential membrane within > 10% of tumor cells; am-
biguous (2+) for incomplete and/or weak/moderate
circumferential membrane staining within > 10% of
tumor cells, or complete membrane staining but
within ≤10% of tumor cells; negative (1+) for incom-
plete faint membrane staining within > 10% of tumor
cells; and negative (0+) for absence of staining, ac-
cording to the recommendations of the American
Society of Clinical Oncology (ASCO)/College of
American Pathologists (CAP) guideline [30]. For ana-
lysis purposes, Ki67 was categorized as high (≥20%)
or low (< 20%) expression.
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Statistical analysis
We analyzed changes in biomarker status in paired sam-
ples from biopsy and surgical specimens, according to
NAT administration, using Chi-squared test for categor-
ical variables. Changes in biomarker expression, as con-
tinuous variables, were evaluated using the Wilcoxon
signed-rank test for paired samples. All analyses were
conducted using R software (version 1.2.5033). Differ-
ences were considered statistically significant if p < 0.05.

Results
Clinical-pathological characteristics
Clinical-pathological characteristics of patients included
in this study are presented in Table 1. All tumors were
classified as IDC, of which the majority presented a clin-
ical stage of III (49.6%) and a Scarff-Bloom-Richardson
score of II (59.7%). Sixty-four patients (46%) had positive
invasion, from which 38 (45.2%) corresponded to
lympho-vascular type. One hundred thirteen (81.3%) of
the patients included had axillary lymph node dissection,
from which 67 (59.3%) had lymph node involvement.
Seventy-eight patients (56.1%) received NAT based
mainly in cytotoxic chemotherapy (71.8%).

Biomarker status in core-needle biopsy and surgical
excisional specimens
Results from biomarker status in core-needle biopsy
showed that most cases were ER positive (80.6%), PR
positive (73.4%), HER2 negative (77.0%) and had a high
Ki67 proliferation index (≥20%) (66.2%). Biomarker sta-
tus in surgical specimens presented a similar distribu-
tion, where most cases were also ER positive (79.1%), PR
positive (71.2%), HER2 negative (71.9%) and had a high
Ki67 proliferation index (53.3%). In order to assess the
impact of NAT treatment in biomarker status and its ex-
pression values, we performed an analysis in paired sam-
ples stratified by NAT administration.

Changes in biomarker status and expression in the no-
NAT group
Biomarker status
We compared the biomarker status between core-needle
biopsy and the surgical specimen in sixty-one cases
(43.9%) that did not receive NAT. We neither find statis-
tically significant changes for ER/PR status (p = 1) nor
for Ki67 (p = 0.5796) (Table 2). Even though these are
cases that did not receive any type of treatment before
surgery that could have affected their tumor biology,
interestingly, we observed two cases that changed from
PR positive status in biopsy to negative in the surgical
specimen; other two cases went from negative status in
the biopsy to positive in the surgical specimen for the
same biomarker. On the other hand, although not statis-
tically significant, we also observed variations in Ki67

status. From thirty-seven cases with a high Ki67 expres-
sion (≥20%) in the biopsy, thirty-two remained in this
category, while 4 cases changed its status from high to
low Ki67 expression (< 20%) (See Supplementary Table 1,
Additional file 1).
For HER2 status, we did not find statistically signifi-

cant changes in paired samples (p = 0.416). However, we

Table 1 Clinical-pathological characteristics of patients at
diagnosis

N (%)

Clinical stage

I (I, Ia, Ib) 11 (7.9)

II (IIa, IIb) 57 (41.0)

III (IIIa, IIIb, IIIc) 69 (49.6)

IV 2 (1.4)

Scarff-Bloom Richardson

I 10 (7.2)

II 83 (59.7)

III 46 (33.1)

Invasion

Yes 64 (46.0)

No 55 (39.6)

Unknown 20 (14.4)

Type of invasion

Lympho-vascular 38 (45.2)

Dermal 6 (7.1)

Lympho-vascular and perineural 9 (10.7)

Dermal lymphatic 5 (6.0)

Perineural 4 (4.8)

Dermal lymphatic and perineural 1 (1.2)

Dermal and perineural 1 (1.2)

Unknown 20 (23.8)

Axillary lymph node dissection

Yes 113 (81.3)

No 26 (18.7)

Involvement of lymph nodes

Yes 67 (59.3)

No 46 (40.7)

NAT administration

Yes 78 (56.1)

No 61 (43.9)

Type of NAT scheme

Hormonal 6 (7.7)

Cytotoxic 56 (71.8)

Cytotoxic + trastuzumab 11 (14.1)

Combined (hormonal+ cytotoxic) 5 (6.4)

NAT Neoadjuvant therapy
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did observe a modification in the HER2 classification for
some cases not previously treated with NAT. Even
though an ambiguous status does not correspond to an
actual HER2 classification, fluorescence in situ
hybridization (FISH) confirmatory results were not avail-
able for all cases within this category. Among cases that
presented a gain of positive HER2 status, two changed
from negative to positive and one changed from ambigu-
ous to positive. Additionally, five cases changed from
negative to ambiguous status; from these cases, FISH
confirmatory results were available for two of them, with
negative result for HER2 amplification in the surgical
specimen. The remaining three cases did not have FISH
confirmatory results at the surgical sample.
On the other hand, among cases that presented loss of

HER2 status, one case changed from positive to ambigu-
ous and another changed from ambiguous to negative
status. Both cases had HER2 negative amplification con-
firmatory results at the surgical sample (Table 3).

Biomarker expression
We also compared ER, PR and Ki67 expression values
between paired specimens. Median values were 100, 70

and 27.5%, respectively, in core-needle biopsies. After
surgery, expression values did not show statistically sig-
nificant changes for any of the three biomarkers (100, 70
and 20%, respectively) (Fig. 1).

Changes in biomarker status and expression in the NAT
group
Biomarker status
Seventy-eight cases (56.1%) received NAT. Tumor size
measured before and after therapy were compared in
these patients. The mean tumor size before NAT were
51.9 mm, and after treatment it significantly decreased
to 29.3 mm (p < 0.01).
We did not find any statistically significant changes in

ER nor PR status in paired samples in the NAT group
(Table 2). Nevertheless, as expected, we observed some
cases that did present a modification in their hormone
receptor status after NAT. We observed changes from
positive to negative status for ER in two cases, one of
which also showed loss of PR expression. Four additional
cases also changed their PR status from positive to nega-
tive. On the other hand, we observed gain of PR status
in two cases.

Table 2 Biomarker status in cases that did and did not receive NAT, in biopsy and surgical specimens

No-NAT group NAT group

(N = 61) (N = 78)

Categories Biopsy Surgery p value Biopsy Surgery p value

Estrogen Receptor Positive 46 (75.4) 46 (75.4) 1 66 (84.6) 64 (82.1) 0.8299

Negative 15 (24.6) 15 (24.6) 12 (15.4) 14 (17.9)

Progesterone Receptor Positive 42 (68.9) 42 (68.9) 1 60 (76.9) 57 (73.1) 0.7115

Negative 19 (31.1) 19 (31.1) 18 (23.1) 21 (26.9)

HER2 Positive 9 (14.8) 11 (18.0) 0.4165 10 (12.8) 9 (11.5) 0.6616

Negative 47 (77.0) 41 (67.2) 60 (76.9) 59 (75.6)

Ambiguous 5 (8.2) 9 (14.8) 7 (9.0) 10 (12.8)

Ki67 status Low (< 20%) 21 (34.4) 23 (37.7) 0.5796 19 (24.4) 41 (52.6) < 0.001

High (≥20%) 37 (60.7) 37 (60.7) 55 (70.5) 37 (47.4)

Unknown 3 (4.9) 1 (1.6) 4 (5.1) 0 (0.0)

NAT Neoadjuvant therapy

Table 3 HER2 classification changes in the NAT and no-NAT group from paired biopsy and surgical specimens

Surgery
Biopsy

Negative Ambiguous Positive p value No. cases with loss of HER2 No. cases with gain of HER2

No-NAT group (N = 61) Negative 40 5 2 0.4165 2 8

Ambiguous 1 3 1

Positive 0 1 8

NAT group (N = 78) Negative 55 4 1 0.6616 4 5

Ambiguous 2 5 0

Positive 2 0 8

Unkown 0 1 0

NAT Neoadjuvant therapy
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Evaluation of Ki67 status showed statistically signifi-
cant changes between paired biopsy and surgical speci-
men (p < 0.001) (Table 2). From fifty-five cases with a
high Ki67 expression (≥20%) in the biopsy, thirty-five
remained in this category, while twenty cases changed
its status from high to low Ki67 expression (< 20%) (See
Supplementary Table 1, Additional file 1).
Regarding HER2 status, no statistically significant

changes between biopsy and surgical sample were ob-
served (p = 0.662), nonetheless, a small number of cases
showed changes in HER2 status. Among positive HER2
tumors at biopsy, two cases changed to negative status,
and similarly, among cases with ambiguous HER2 status
at diagnosis, two cases changed to negative. Lastly, from
60 cases initially defined as HER2 negative in the biopsy,
four turned to ambiguous and one case to positive status
(Table 3).
Changes in biomarkers status according to NAT

scheme was also analyzed. We only found statistically
significant variations in Ki67 status between biopsy and
surgical specimens in cases treated with the cytotoxic
scheme (p = 0.02977) (See Supplementary Table 2, Add-
itional file 1). Other findings, although not statistically
significant, include a trend for hormone receptors and
Ki67 status loss after treatment with the cytotoxic (ER
positive: 83.9% vs. 82.1%; PR positive: 76.8% vs. 73.2%)
and cytotoxic + trastuzumab schemes (ER positive:
72.7% vs. 63.6%; PR positive: 72.7% vs. 54.5%, High Ki67:
81.8% vs. 54.5%). Interestingly, cases previously treated
with cytotoxic therapy presented a trend for a gain of
HER2 positive and ambiguous status (HER2 positive: 0%
vs 1.8%; HER2 ambiguous: 8.9% vs. 12.5%), whereas in
the cytotoxic + trastuzumab scheme group, HER2
showed a tendency for loss of positive status (HER2
positive: 90.9% vs 72.7%).

Biomarker expression
The ER, PR and Ki67 median expression values in core-
needle biopsy were 100, 80 and 30%, respectively. After
surgery, PR and Ki67 expression significantly decreased

to 65% (p = 0.01466) and 15% (p < 0.001), respectively,
whilst ER showed no statistically significant variation
(Fig. 2). Additionally, we analyzed changes of biomarker
expression according to the NAT scheme, and only
found a statistically significant decrease for Ki67 expres-
sion in cases that received cytotoxic treatment (p <
0.001). Even though not statistically significant, we still
could observe a trend for a lower PR expression values
in surgical samples for all treatment schemes groups
(Hormonal: 100% vs. 80%, Cytotoxic: 80% vs. 70%, Cyto-
toxic + trastuzumab: 40% vs. 20%, Combined: 90% vs.
20%) (See Supplementary Table 3, Additional file 1).

Discussion
In the current study, we aimed to analyze changes in
IHC biomarker status and expression in paired biopsy
and surgical samples in breast cancer cases treated and
non-treated with NAT, given that changes in biomarker
expression may have several clinical implications for dis-
ease outcome in breast cancer patients [31–33]. It may
also affect adjuvant therapy regimen, as variation in
breast cancer intrinsic subtype after NAT could lead to
the addition or discontinuation of therapy schemes [16,
34].
It has been well described that NAT treatment affects

Ki67 index, as it targets mainly cycling cells and major
cell proliferation pathways [35]. We observed a signifi-
cant decrease in tumor size and in Ki67 expression
values only in the NAT-treated group. Despite the fact
that we did not analyze differences in outcome accord-
ing to these changes, a decrease in Ki67 expression after
NAT has been associated with a good clinical-
pathological response, better disease-free survival and
overall survival [36, 37], whereas no reduction in Ki67
expression after NAT have been associated with a sig-
nificantly higher risk of breast cancer recurrence and
death [38]. Interesting results reported by Dowsett et al.
[35] show that Ki67 expression values after 2 weeks of
NAT were more useful as prognostic markers for predic-
tion of recurrence-free survival than baseline Ki67

Fig. 1 Changes of biomarker expression in biopsy and surgical samples, in the no-NAT group. Points indicate the median value for each measure.
ER: Estrogen receptor; PR: Progesterone receptor
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expression before NAT. Our results showing a signifi-
cant decrease in Ki67 expression after NAT, along with
previously reported results, highlight the utility of asses-
sing this biomarker in the surgical specimen after NAT,
for prognosis and patients’ clinical outcomes evaluation.
It has been well reported that chemotherapy may have

several effects on tumor biology, which could potentially
alter biomarker expression [3, 39]. We found a statisti-
cally significant decrease in PR expression values be-
tween biopsy and surgical specimens after NAT, which
is consistent with other reports where the PR, along with
the Ki67 index, are the most commonly altered bio-
markers after NAT administration [7, 15, 16, 31]. Con-
trary to what has been reported for Ki67, PR expression
loss has been associated with worse tumor characteris-
tics [15] and poor clinical outcomes [23, 32, 40]. It has
also been shown that loss of PR expression may be an
indicator of a decrease of hormone sensitivity in tumor
cells, activation of alternate proliferation pathways such
as PI3K/AKT/mTOR [41, 42], and also, the induction of
a non-functional ER state which could lead to a dimin-
ished response to endocrine therapy, specifically in ER-
positive/PR-negative tumors [18, 43].
Loss of ER expression has also been associated with

bad clinical outcomes as it affects tumor response to
endocrine therapy [44]. Nevertheless, as we reported
here, variation in ER expression after NAT is much less
frequent than for PR. We did not observe statistically
significant changes in ER status nor its expression in nei-
ther of the NAT treated or not-treated cases, although
we did observe two cases with status loss in the NAT-
treated group. These results suggest that analyzing ER
after NAT administration may not be as useful as a
prognostic marker, as it could be PR and Ki67 status
evaluation.
On the other hand, gain of hormone receptor expres-

sion after NAT is associated with significantly better
outcomes, compared with patients with unchanged hor-
mone receptor expression [45, 46]. It has even been

shown that the improvement on survival rates for pa-
tients with ER and PR expression gain is dependent on
the magnitude of change [47], however, gain of hormone
receptor expression is much less frequently reported [22,
31, 32]. In our study, no gain in ER status was observed
in neither of the NAT-treated nor non-treated cases,
whilst for PR, we observed gain of status in only two
cases from the NAT-treated group. Overall, these results
suggest that the gain of hormone receptor may not be
frequent enough for its implementation to assess treat-
ment response and disease outcomes.
HER2 status variation between biopsy and surgical

samples are reported to be less frequent than for hor-
mone receptors and Ki67 index [32, 48]. We did not find
statistically significant changes in HER2 biomarker status
neither in the NAT-treated nor non-treated cases. Some
reports have found important changes in HER2 expres-
sion, which seem to be driven not just by NAT, but by
specific types of therapeutic agents [33, 40, 49]. Ignatov
et al. [25] reported that trastuzumab administration was
associated with a decrease in HER2 expression in 47.3%
of cases, and interestingly, when pertuzumab was added
to the trastuzumab-NAT scheme, the decrease in HER2
expression rise to 63.2%. In our data, when we assessed
HER2 variations according to type of NAT regimen, no
statistically significant changes were found in neither of
the NAT-schemes groups, including the cytotoxic +
trastuzumab group. Despite our results not being statis-
tically significant, we did observe some cases in the cyto-
toxic + trastuzumab scheme group with a decrease in
HER2 status. Hypotheses regarding HER2 downregula-
tion after treatment includes the internalization in endo-
somal compartments and lysosomal degradation of
HER2 receptor induced by anti-HER2 agents (pertuzu-
mab, trastuzumab) [50]. Nonetheless, as have been
shown, ERBB2 amplification when evaluated by FISH re-
mains stable after NAT treatment [51].
Undoubtedly, cancer treatments may alter in some de-

gree tumor gene expression [52], leading to possible

Fig. 2 Changes of biomarker expression in biopsy and surgical samples in the NAT group. Points indicate the median value in each measure. ER:
Estrogen receptor; PR: Progesterone receptor

Rey-Vargas et al. BMC Cancer          (2020) 20:675 Page 6 of 9



modification of the IHC biomarker profile. However,
tumor heterogeneity is also an important factor to take
into account when considering changes in biomarker ex-
pression between tumor samples, especially when
changes are observed in non-previously NAT treated
cases [53], as we reported here. Tumor heterogeneity in
breast cancer has been observed in multiple studies [17,
54–56]. Rye et al. [56] evaluated tumor heterogeneity of
ER and HER2 expression within individual breast tumors
at different time points, and reported the presence of
tumor cells within the same sample with both HER2+/
ER+ and HER2+/ER- expression profile, reveling a high
rate of cell-to-cell variation. Tumor heterogeneity may
have several clinical implications for patient’s outcome.
For example, a heterogeneous expression of HER2 copy
number in tumors have been reported to be associated
with higher risks of relapse and breast cancer death [56].
Such findings are expected given that this kind of intra-
tumoral heterogeneity is often the result of clonal evolu-
tion, which is highly correlated with metastatic events
[57, 58].
External factors different from tumor heterogeneity

may also account for changes in biomarkers expression
between biopsy and surgical samples in cases not previ-
ously treated with NAT [17, 51, 54]. Among these are
technical preparation of the IHC stain, fixation times,
and inter- and intra-observer variability [17]. It has also
been reported that this variability could be a result of
the so-called dilution effect, which refers to a decrease
of biomarker expression with increasing number of
available tumor cells to evaluate at the surgical sample
[59]. As have been shown before, larger tumors from
surgical excision procedures are more likely to present
variations of biomarkers expression between biopsy and
surgical samples [15, 55]. This may indicate that at the
initial biopsy only a small portion of a tumor is sampled
for its evaluation, therefore large tumors could end up
being poorly represented and present with IHC profile
variations.
Our study certainly had limitations, mainly regarding

the small sample size, which limited the statistical power
of the analyses, especially when NAT-treated cases were
grouped according to the therapy scheme. Small sample
size in the hormonal, cytotoxic + trastuzumab and com-
bined NAT-scheme groups may not have allowed us to
observe statistically significant expression changes be-
tween biopsy and surgical samples. Additionally, all cases
were recruited from a single institution and only patho-
logical, but not clinical information was collected. How-
ever, our results regarding changes of biomarker
expression in NAT-treated and non-treated cases are
mostly consistent with what has been reported previ-
ously in other studies [17, 51, 54]. On the other hand,
we did not have FISH confirmatory amplification results

for some cases with HER2 ambiguous result by IHC,
which did not allow us to give a more precise classifica-
tion of these cases. Additionally, it is important to high-
light that, unlike most studies evaluating changes of IHC
biomarker expression after NAT treatment, we included
a group of cases not previously treated with NAT in our
analysis, which allowed us to determine if NAT adminis-
tration could in fact induce changes in the IHC bio-
marker profile.

Conclusions
Overall, our results confirmed that NAT administration
may cause changes in IHC biomarker profile, mainly in
Ki67 and PR expression, and that patients not previously
treated with NAT do not present significant changes in
biomarker expression. Since it is not cost-effective for
the health care system to reassess the expression of each
biomarker, for every patient after NAT, we suggest that
only PR and Ki67 biomarkers should be reassessed after
NAT treatment, as it has been shown that changes in
these two may have prognosis implications for breast
cancer patients. The implementation of the PR and Ki67
biomarkers as prognosis tools, along with other clinical
variables such as tumor stage and nodal status [60, 61],
could provide enough information about treatment re-
sponse and it could be used by physicians to readjust
therapy.
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