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Abstract

Background: Cell cycle analysis is important for cancer research. However, available methodologies have
drawbacks including limited categorisation and reliance on fixation, staining or transformation. Multispectral analysis
of endogenous cell autofluorescence has been shown to be sensitive to changes in cell status and could be
applied to the discrimination of cell cycle without these steps.

Methods: Cells from the MIA-PaCa-2, PANC-1, and HeLa cell lines were plated on gridded dishes and imaged using
a multispectral fluorescence microscope. They were then stained for proliferating cell nuclear antigen (PCNA) and
DNA intensity as a reference standard for their cell cycle position (G1, S, G2, M). The multispectral data was split into
training and testing datasets and models were generated to discriminate between G1, S, and G2 + M phase cells. A
standard decision tree classification approach was taken, and a two-step system was generated for each line.

Results: Across cancer cell lines accuracy ranged from 68.3% (MIA-PaCa-2) to 73.3% (HeLa) for distinguishing G1
from S and G2 +M, and 69.0% (MIA-PaCa-2) to 78.0% (PANC1) for distinguishing S from G2 +M. Unmixing the
multispectral data showed that the autofluorophores NADH, FAD, and PPIX had significant differences between
phases. Similarly, the redox ratio and the ratio of protein bound to free NADH were significantly affected.

Conclusions: These results demonstrate that multispectral microscopy could be used for the non-destructive, label
free discrimination of cell cycle phase in cancer cells. They provide novel information on the mechanisms of cell-
cycle progression and control, and have practical implications for oncology research.
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Background
Dividing cells must pass through the four phases of the
cell cycle to duplicate their DNA and separate into two
daughter cells. These phases are gap 1 (G1) during
which the cell grows, increasing protein content and or-
ganelles; synthesis (S) during which nuclear DNA is rep-
licated; gap 2 (G2) a second growth phase; and then
mitosis (M) where cell division occurs. Progression

through the phases is controlled by checkpoints, most
notably at the G1-S and G2-M transitions [1].
Cell-cycle phase identification is important for the

basic investigation of the growth characteristics of cell
lines, especially in cancer research where the cellular
mechanisms of cell growth and division may offer thera-
peutic opportunities [1]. Broadly, oncotherapies target
dividing cells while sparing non-dividing cells (conse-
quently achieving a degree of neoplastic specificity).
However, some therapies are sensitive to cell cycle
phase, such as methotrexate which induces S-phase ar-
rest [2] or radiation therapy, most effective when cells
are at the G2-M transition and least effective during the
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latter stages of S-phase [3]. Consequently, the assess-
ment of cell cycle distribution in tumours may help
enable personalised therapy by informing the selection
of therapeutic strategies which they are optimally
vulnerable to.
A routine methodology for investigating the cell cycle

is staining cells with a DNA specific fluorescent probe
(i.e. DAPI or Hoechst), with or without fixation. Fluores-
cence intensity then shows whether cells are pre, post or
in the process of DNA replication allowing G1, S and
G2/M phases to be determined. Flow cytometry is then
typically used to assess distribution between the phases
at a population level, while microscopy can be applied
for the identification of individual cells [4]. Finer, more
definitive categorisation can be achieved using markers
of cell cycle phase such as proliferating cell nuclear anti-
gen (PCNA), an essential component for DNA replica-
tion [5], whose distribution pattern changes with the
phases of the cell cycle (Fig. 1) and, in combination with
measurement of DNA fluorescence intensity, distin-
guishes G1, S, G2 and M-phase cells [6]. In combination
with Ki-67 PCNA can also be used for the assessment of
cell-cycle in flow cytometry [7]. The fluorescence ubiqui-
tination cell cycle indicator (FUCCI) system uses re-
porter genes that encode fluorescing proteins that
indicate G1, G1 to S transition and S/G2/M [8]. All of
these systems have drawbacks, however, including lim-
ited ability to distinguish certain phases, removal from
culture, stain toxicity, fixation, and transformation. Add-
itionally, any reporter fluorophore used to indicate cell
cycle phase reduces the number of potential labels that
can be simultaneously used on a fluorescent microscope,
which potentially limits investigations.

Cells contain numerous endogenous fluorophores that
can be directly distinguished by their unique excitation
and emission profiles without use of exogenous labels or
indicators [9–11]. Some of these autofluorophores can
provide useful information on intracellular activity. For
example, the autofluorescent coenzymes nicotinamide
adenine dinucleotide (NAD (P) H) and flavin adenine di-
nucleotide (FAD) are, respectively, the principal electron
donors and acceptors of oxidative phosphorylation [12].
NAD (P) H has excitation maxima at 290 and 351 nm
and emission maxima at 440 and 460 nm, while FAD
has its excitation maxima at 450 nm and an emission
maxima at 535 nm [13]. Measurement of fluorescence
intensities for these excitation and emission profiles al-
lows the comparison of the relative levels of FAD and
NAD (P) H, the ratio of which (FAD/NAD (P) H,
termed the redox ratio) is a non-invasive measure of
metabolic activity which can indicate significant cellular
characteristics including neoplastic status [14], quies-
cence and apoptosis [15], metastatic potential [16], and
mesenchymal stem cell differentiation [17]. Beyond the
assessment of optical redox ratio, measurement of auto-
fluorescence has been used in the assessment of embryos
[18], neurodegeneration [9], cartilage [19] and pain
states [20].
In this project we apply a multispectral approach – ex-

citing fluorophores with light sources from 340 to 660
nm and capturing cell images in selected spectral bands
in the range from 440 to 715 nm – to collect image data
from 34 spectral channels in total (channels are defined
here as the emission signal received at a specific wave
length due to excitation from a specific wavelength. This
technology has been shown to be sensitive to changes in

Fig. 1 Confocal laser scanning images of phases of the cell cycle. HeLa nuclei, blue is DAPI green is PCNA. G1 phase is distinguished by solid
distribution of PCNA through the nucleus, S phase is distinguished by PCNA speckling through the nucleus and a nuclear border depending on
position within S-phase (mid-S displayed here) as well as increased total DNA intensity compared to G1, G2 is distinguished by solid distribution
of PCNA and twice the total DNA intensity of G1, M phase is distinguished by the exclusion of PCNA from the nucleus into the cytoplasm
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cell states and allow access to a greater range of complex
information directly reflective of intracellular activity
and composition than the conventional two-channel
measurement of NAD (P) H and FAD [9, 10, 18]. Fol-
lowing multispectral imaging, cells were stained for
DNA intensity and PCNA patterning to determine cell-
cycle phases as a reference standard. The separate im-
ages were then matched on a cellular level to categorise
the cells shown in the multispectral images to the differ-
ent phases of the cell cycle. A model was then built to
classify cell-cycle phase based on multispectral profile.
Multispectral data was also unmixed to isolate the spec-
tral signal of specific fluorophores and their variation
across the cell cycle.

Methods
This study aimed to define a multispectral signature for
the non-invasive, non-destructive identification of cell
cycle phase and investigate related changes in autofluor-
ophores concentrations. A correlational microscopy ap-
proach was taken wherein cells were first imaged on a
multispectral microscope, then fixed and stained immu-
nohistochemically for markers of cell cycle phase. The
same cells were then relocated and imaged again to pro-
vide a standard for cell cycle phase against which their
multispectral characteristics could be referenced.

Cell culture and preparation
Cells (HeLa, PANC1, and MIA-PaCa-2 purchased from
Sigma-Aldrich and passaged < 10 times from thawing)
were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) High glucose with L-glutamine (Gibco, Cata-
logue No: 11965–092) with 10% fetal calf serum (FCS;
Gibco, Catalogue No. 26140–079) and Antibiotic-
Antimycotic (Gibco, Catalogue No: 15240–062). Horse
serum (Gibco, Catalogue No: 16050–122) at 2.5% was
also included for the MIA-Pa-2 cells. Cell lines were
chosen due to their widespread use as a model line
(HeLa, a cervical cancer line) and to help elucidate the
impact of tissue origin (PANC1 and MIA-PaCa-2; both
pancreatic cancer cell lines).
Cultures were maintained in 5% CO2 at 37 °C. The de-

tachment of cells from culture surfaces was carried out
with TrypLE (Gibco, Catalogue No: 12604–021) after
washing twice with Dulbecco’s PBS without calcium or
magnesium (Sigma, Catalogue No: 14190–144). TrypLE
was inactivated by adding twice its volume of growth
media. For analysis 1 × 105 cells were plated onto 35mm
ibiTreat glass bottomed dishes with 500 μm measure-
ment grids (Ibidi, Catalogue No: 81166). Cells were
given 24 h to attach and grow, then subjected to serum
starvation (0.1% FCS) for 24 h to concentrate them in
G1 phase. This method of synchronisation was utilised
to minimise the potentially confounding impact that

small molecule inhibitors could have if used to arrest
cells at specific points in the cell cycle. Viability was con-
firmed by trypan blue staining (Gibco, Catalogu No:
15250061). They were then released by the addition of
growth media.
Imaging was performed on parallel cultures over an-

other 24 h to maximise the likelihood that data would be
captured for sufficient numbers of cells for each phase
of the cell cycle. Prior to imaging, cells were washed
twice with Dulbecco’s PBS with calcium and magnesium
(Sigma, Catalogue No: SLBS5504) to remove any traces
of serum (which contains autofluorescent molecules and
can confound assessment). Multispectral microscopy
was then carried out with cells in Hank’s balanced salt
solution (Gibco, Catalogue No: 14025–076).

Multispectral microscopy
Multispectral microscopy was carried out using a Leica™
confocal system with a 40× oil objective lens (FLUO-
TAR340). Eighteen narrow band excitation wavelengths
(excitation band ±5 nm) were selectively combined with
four filter cubes (emission band: ±20 nm) for measuring
emission to achieve 44 specific channels (Excitation
(nm)/Emission (nm): 340/440, 368/440, 373/440, 378/
440, 340/475, 368/475, 373/475, 378/475, 382/475, 388/
475, 391/475, 394/475, 405/475, 413/475, 340/593, 368/
593, 373/593, 378/593, 382/593, 388/593, 391/593, 394/
593, 405/593, 413/593, 432/593, 441/593, 455/593, 460/
593, 470/593, 491/593, 510/593, 413/715 (long-pass),
455/715 (long-pass), 660/715 (long-pass)).
Images of cells were manually segmented to define re-

gions of interest based on differential interference con-
trast images taken at the same time as the multispectral
images. To acquire the fluorescence spectral images, a
CCD camera with high quantum efficiency (ORCA-Flash
4.0 LT) with a16bit A/D converter was used. We previ-
ously reported similar multispectral imaging using a
custom-made multispectral microscopy system in the
studies [9, 10, 21].

Staining and confocal microscopy
Immunofluoresence staining for PCNA and DNA as the
reference standard to indicate cell cycle phase was car-
ried out according to a protocol adapted from Schonen-
berger et al. 2015 [6]. Cells were fixed in -20 °C
methanol for 5 min then -20 °C acetone for 1 min
followed by two washes in PBS. Fixation was carried out
within 30min of the initial multispectral image being
taken to minimise the potential impact of cell cycle pro-
gression on results. Cells were then blocked in 1%BSA
in PBS for 30 min at room temperature and exposed to
the primary anti-PCNA antibody (rabbit polyclonal
Abcam; Catalogue No: ab18197) for 2 h at room
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temperature at 1:500 in 10% normal goat serum (Gibco,
catalogue No: 1620–064).
This was followed by a further two washes in PBS and

exposure to the secondary antibody (goat polyclonal,
Alexa Fluor 488, ThermoFisher, Catalogue No: A-11008)
for 1 h at room temperature at 1:400 in 10% normal goat
serum. Cells were washed twice with PBS and counter-
stained with DAPI for 5 min at room temperature before
being imaged on a Leica SP2 confocal laser scanning
microscope (Leica, Wetzlar, Germany) in PBS. Due to
channel bleed, images for PCNA and DNA intensity
were captured sequentially. For DNA intensity images
the pinhole was opened entirely in order to capture total
fluorescence. Cell cycle phase was determined through
consideration of PCNA patterning (Fig. 1) as well as
total DNA intensity. DNA intensity was measured using
the graphics software ImageJ [22]. When phase had been
determined images taken from the confocal microscope
were compared to the differential interference contrast
images from the multispectral microscope in order to
match cell cycle phase to multispectral characteristics
(Fig. 2). Trypan blue staining indicated that after serum
starvation cell cultures retained viability (97% for HeLa,
97% for PANC1 and 99% for MIA-PaCa-2).

Multispectral data analysis
The analysis of multispectral data in this study was car-
ried out in three stages including image preparation,
classification and autofluorescence un-mixing. Image
preparation was undertaken as reported in our recent
works [21, 23] to treat image artefacts, including Pois-
son’s noise, dead or saturated pixels, background fluor-
escence and illumination curvature. In subsequent
analyses, the cells were segmented from the channel im-
ages to produce single cell images [24], and a variety of
quantitative cellular image features were extracted.
These features include mean channel intensity (e.g. cell
image mean intensity of spectral channel with excitation
340 (nm) and emission 440 (nm)) and their associated
statistical measures such as channel intensity ratio [10].
Further, features related to the histogram of the cell im-
ages such as pixels’ standard deviation and skewness in
each spectral channel, which characterized the colour
distribution of the cell images, were also considered [25].
In addition, to evaluate patterns within the cells – in-
cluding repetitiveness or granularity – textural features
of cell images such as entropy and homogeneity in each
spectral channel were employed [26] (The mathematical
definition of all features used in this study can be found

Fig. 2 a Differential interference contrast from multispectral microscope of PANC1 stained cells at 13 h, b. Example multispectral channel 25
showing autofluorescence at excitation 432 nm emission 593 nm, c. Same field of view after staining with Dapi, taken using the confocal
microscope, d. Same field of view after staining for PCNA, taken using confocal microscope. Regions of interest (cell area) were defined using (a),
cell cycle phase was determined through measurement of fluorescence intensity in (c) and PCNA pattern in (d), then matched to data from
multispectral channels including (b)
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in [10, 25, 26]). Such mathematically defined cellular
features have been reported to be biologically significant
in several studies [9, 10, 27] and they could capture
various aspects of cell spectra and patterns in the cell
images [9].
Next, depending on the classification target, indicative

features which passed an ANOVA test (P < 0.005) and
represented significant predictors were selected. The
data points were then projected onto an optimal two-
dimensional (2-D) space created by discriminative ana-
lysis [28]. This space maximizes between-group distance
while minimizing within-group variance [28] and redu-
cing the dimension of the selected feature vectors to two
canonical variables which were equal to a linear combin-
ation of the selected cellular features [29]. Finally, a clas-
sifier was employed to predict the pre-defined cell labels
[30, 31]. A linear classifier was used in this work due to
its ability to deal with sparse data. This approach classi-
fied the cells based on a linear predictor function incorp-
orating a set of weights obtained from the training
process [32].
To provide the classifier with generalisability, a cross

validation methodology was adopted [33] wherein data
points were partitioned into 10 groups. Our linear classi-
fier was developed based on 9 of these groups, and the
tenth group was used for testing and the calculation of
accuracy. Additionally, the receiver operating character-
istic (ROC) graph was derived to determine the perform-
ance of this classifier as its discrimination threshold
varied [21, 34].

Unmixing of autofluorophores
Unmixing, in which the extracted spectral characteristics
of the cells are compared to known characteristics of
specific fluorophores (e.g. FAD, NAD (P) H at typical
cellular concentrations) in order to calculate their abun-
dance, was undertaken through a linear mixing model
(LMM). This model assumes that the fluorescent signal
of each pixel is a linear combination of a small number
of endmember component spectra with respective
weights corresponding to the concentration of the mole-
cules responsible for these component spectra. These
concentrations were expressed as abundance fractions
[35–37]. The unsupervised unmixing algorithm, Robust
Dependent Component Analysis (RoDECA) was used to
identify the dominant native fluorophores and their cor-
responding abundance. RoDECA’s accuracy for isolating
the spectral signal of specific fluorophores from the
complex “noisy” cellular environment is established in
Mahbub et al. 2017 [23]. As NADH and phosphorylated
NADH have the same spectral properties they cannot be
distinguished by this methodology and are collectively
referred to as NAD (P) H.

Results
Differentiation of cell-cycle phases
Analyses were conducted at a single cell level where,
based on PCNA patterning and DNA intensity, each cell
was labelled as G1, S, or G2 +M (due to the comparative
rarity of M-phase cells). A decision tree methodology
was adopted to attain maximal separation between cell
cycle phase groups based on differences in spectral fea-
tures [38]. Accordingly, the classifications were done in
two stages: first cells not in the process of replication
were distinguished from those which were (i.e. G1 phase
cells vs S, G2 and M phase cells) as they formed the
most distinct initial cluster (area under the curve
(AUC) > 75%), then S-phase and G2 +M-phase cells
were differentiated from one another. In each step, the
data points were reflected in the discrimination space
created by corresponding canonical variables incorporat-
ing no more than 13 indicative features as shown in
Fig. 3; these spaces were different for each pair of cell
groups compared due to employing different features, as
different features were indicative for different targets. To
demonstrate the data distribution for each class, an el-
lipse has been defined for each cluster which illustrates
the standard deviation of the data points. The overlap of
the ellipses was quantified by their intersection over
union (IoU) value, which is the ratio of the area of the
two-ellipse intersection, divided by the area of their
union. IoU values range from 0 to 100% for fully sepa-
rated or overlapped ellipses, respectively.
IoU analyses showed that cell cycle phases can form

separate clusters although a degree of overlap persists
(Fig. 3). We then attempted to develop a linear classifier
[30] that would determine a cell’s phase from its multi-
spectral image. Figure 4 shows the receiver operating
characteristic (ROC) graph which was derived to deter-
mine the performance of this classifier.
Overall, the classifiers for the different cell lines

showed similar performance with average accuracies of
70.2 ± 2.2% and 72.6 ± 3.8 to classify G1 vs. S&G2 +M
and S vs. G2 +M, respectively. The average AUCs for
classifying G1 vs. S&G2 +M and G2 +M vs. S were
0.79 ± 0.28 and 0.80 ± 0.44 (Table 1). Sample size was
>100 for all cell cycle phases across all cell lines. This
approach achieved similar accuracy when an alternate
approach to cell cycle manipulation (inhibitors instead
of serum starvation) was applied (Additional file 1).
To provide comparison and context we applied a simi-

lar data analysis approach to classify cells by their tissue
of origin (i.e. pancreatic (PANC1 and MIA-PaCa-2) or
cervical (HeLa)) by spectral features as was applied to
the cell cycle data. Initially, data points from the differ-
ent cell origins were projected onto the discrimination
space generated by canonical variables (specific for this
analysis and different from all spaces illustrated in Fig. 4)
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Fig. 3 Cluster separation graphs and associated IoU values. Step 1 discrimination of G1 and S/G2 +M; a. hela cells (IoU = 31%), c. MIA-PaCa-2 (IoU = 55%),
and e. PANC1 (39%). Step 2 discrimination of S and G2 +M; b. HeLa cells (IoU = 29%), d. MIA-PaCa-2 (45%), and f. PANC1 (28%) (n> 100)

Fig. 4 ROC curve for the accuracy of discrimination between cell cycle phases for a. hela, b.MIA-PaCa-2 and c. PANC1
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and then a linear classifier was trained to predict cell ori-
gin. We emphasise that the feature subset used for cell
origin classification was allowed to be different to the
features selected for cell cycles as the subset of features
which could differentiate cell cycles effectively would not
be optimal for the discrimination of cell origin.
Of note, both pancreatic and cervical cancer formed two

clearly separated clusters (IoU = 0 as shown in Fig. 5a),
which demonstrates the strength of the spectral features
used to discriminate between these cell origins. We then
colour-coded each of the cells (Fig. 5c) based on the results
of the cell cycle staining. When compared to the clusters
formed by different phases of the cell cycle (Fig. 3) the
strength of spectral features for cell origin differentiation is
clearly much higher. The ROC obtained from linear classi-
fiers trained for the different cell origins (Fig. 5) shows very
high performance (AUC~ 1 & accuracy =97%). These

observations imply that the spectral differences between
different phases of the cell cycle, while observable (Fig. 4),
are quite weak compared to spectral differences due to dif-
ferent cell origins. To show cell cycle with cell origin classi-
fication, the different cell phases were represented on the
space discriminating cell types with different colours (Fig.
5c). This shows that the different cell cycle phases are ran-
domly distributed between the clusters and do not form
any meaningful subclusters. This is consistent with the sep-
aration of cell cycle phases occurring in a different space to
that shown in Fig. 5a, c. This example shows that spectral
differences due to different cell cycle phases may not inter-
fere with cell origin classifications.

Autofluorophore concentrations
Autofluorophore unmixing of the multispectral data was
successful in identifying NAD (P) H, protein bound

Table 1 Cell cycle classification performance

HeLa MIA-PaCa-2 PANC1 cell line

G1 vs. S&G2 +M S vs G2 +M. G1 vs. S& G2 +M S vs G2 +M. G1 vs. S& G2 +M S vs.G2 + M

Accuracy 73.3% 71.0% 68.3% 69.0% 72.3% 78.0%

AUC 0.81 0.78 0.75 0.77 0.81 0.87

Fig. 5 Discrimination of pancreatic cancer cells (MIA-PaCa-2 and PANC1) from cervical cancer cells (HeLa). a Cluster separation for pancreatic
cancer cells (red) and cervical cancer (blue) with IoU = 0. b. ROC curve for the discrimination of pancreatic and cervical cancer cells. c. Cluster
separation by cell origin with cell cycle phase indicated by colour
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NAD (P) H, FAD, and protoporphyrin IX (PPIX). The
known cell cycle phase of cells – as determined through
the DAPI and PCNA staining – was then used to calcu-
late group averages. Although there were insufficient M-
phase cells to model a multispectral signature for the
identification of this phase separate to G2, there was suf-
ficient power for group comparisons. The redox ratio
(FADH/NAD (P) H) and ratio of bound NAD (P) H to
NAD (P) H were also calculated (Fig. 6). Significant dif-
ferences in autofluorophores were observed between cell
cycle phases within cell lines, but no differences were
consistently observed across all cell lines. Bound NAD
(P) H was significantly elevated in S-phase cells com-
pared to G1-phase cells in MIA-PaCa-2 and PANC1
cells, while M-phase cells had significantly higher PPIX
than G1-phase cells in HeLa and PANC1 cells. Both the
redox ratio and the ratio of bound NAD (P) H to free
NAD (P) H were significantly higher in G1 compared to
M-phase cells in HeLa and PANC1 cells.

Discussion
This study investigated whether cell autofluorescence,
measured by multispectral microscopy, could be used to
discriminate between different phases of the cell cycle in
neoplastic cells. We found that across different cancer
cell lines accuracy ranged from 68.3% (MIA-PaCa-2) to

73.3% (HeLa) for distinguishing G1-phase cells from S
and G2 +M-phase cells, and 69.0% (MIA-PaCa-2) to
78.0% (PANC1) for distinguishing S-phase cells from
G2 +M phase cells (Fig. 3, Table 1). Unmixing of the
multispectral data found autofluorophores which had
significant differences between cell phases, including
NADH, FAD, and PPIX (Fig. 6). Similarly, the redox ra-
tio and the ratio of protein bound to free NADH were
significantly affected by the cell cycle. The multispectral
signature of cell cycle phase (Figs. 3 and 4) was a less ac-
curate classifier compared to the signature for cell origin
(Fig. 5), suggesting that strong differences between the
spectral properties of cell populations or subpopulations
are unlikely to be an artefact of differences in distribu-
tion across cell cycle phases.
Previous research on the spectral characterisation of

the cell cycle examined the spectral properties of DNA
stained cells that had been synchronised at different
phases (G1, S, and G2/M with serum starvation, aphidi-
colin and nocodazole, respectively) [39]. They reported
quantifiable spectral shifts in the DNA bound fluoro-
phores between phases with consistent variations be-
tween lines and developed spectral signatures for the
arrested cells, but did not investigate the accuracy of
these signatures for the discrimination of cell cycle
phases. Additionally, one study by Hsu et al. used

Fig. 6 Autofluorophores across cell cycle phases for HeLa, MIA-PaCa-2 and PANC1 cells. a. NAD (P) H, b. protein bound NAD (P) H, c. FAD, d.
PPIX, e. redox ratio (FAD/NAD (P) H), and f. protein bound NAD (P) H. Cell cycle phases are shown by different colours as indicated. Superscripts a
and b differ at p < 0.05 according to a Mann-Whitney U test (two-tailed test, default). n ranged from 26 to 166, 23–196 and 34–50 for the phases
within each cell line HeLa, MIA-PaCa-2 and PANC1 respectively
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multispectral Raman microscopy to investigate cytokin-
esis (the division of the cytoplasm between the two
daughter cells at the end of M-phase) in human colon
cancer cells [40]. They identified an autofluorescence
signal – proposed to be from a lipid – that was concen-
trated in the vicinity of the cytokinesis cleavage furrow,
which could potentially be used for the label-free identi-
fication of cells at the end of M-phase.
We observed that, for all cancer cell lines examined,

the multispectral signatures of S and G2 +M-phase cells
tended to cluster together, apart from the signature of
G1-phase cells. As the cell transitions through the G1-S
restriction point growth-dependent cyclin dependent
kinase (CDK) – responsible for the promotion of DNA
replication – initiates a positive feedback loop which in-
creases CDK activity and commits the cell to division,
independent of further environmental signals, through
the induction of genome-wide transcriptional changes
[41]. Although other waves of transcription occur during
the G2-M and M-G1 transitions, there is no major effect
at the S-G2 transition [41–43]. This lack of a change in
transcriptional activity, despite the completion of DNA-
synthesis and the initiation of G2-phase growth, could
be why the multispectral characteristics of G1-phase
cells formed a distinct cluster relative to S and G2 +M-
phase cells. M-phase cells were included with G2 phase
cells in our data-sets, but due to their low numbers are
not likely to have impacted this observation. Mutations
in regulatory proteins involved in the G1-S transition
are found with high frequency in cancer cells [44–46] as
overcoming this checkpoint’s control of growth is a key
step in the development of cancer. If the clustering we
have observed does relate to changes experienced by
cells on passing through this checkpoint further investi-
gation of its nature between neoplastic cell lines, and in
comparison to non-neoplastic cells, may open a novel
route for research into oncogenesis.
Cell cycle control and metabolism have a tight, bidirec-

tional relationship, with the ability of the cell to commit to
growth depending on the availability of metabolites, and
the molecular mechanisms of the cell-cycle being linked to
the regulation of metabolic networks [47]. In the present
study the redox ratio did not differ between G1 and S or
G2 phase for any of the lines (Fig. 6e) and it was increased
in G1 compared to M phase cells for HeLa and PANC1.
Similarly, in PANC1 cells the redox ratio was significantly
higher in S and G2 phase cells compared to M-phase cells.
A previous work by Datta et al. 2018 [11] made the same
finding for G1 compared to M phase cells in the HeLa cell
line (although they used the inverse formula for redox ratio
(NADH/FAD) to the definition we applied and conse-
quently report an increase in redox ratio for M phase).
They also reported the same difference between G2 and M
phase cells that we observed in the PANC1 line.

Additionally, Datta et al. 2018 [11] assessed the effect
of the cell cycle on the relative proportion of NADH
existing in a free or protein bound state in HeLa cells.
They used fluorescence-lifetime imaging which utilises
the increased lifetime of protein bound NADH to distin-
guish it from unbound NADH and found a decreased
mean lifetime of NADH – corresponding to a relative
increase in free NADH – during M-phase. Our results
did not show a significant difference in free or bound
NAD (P) H in HeLa cells during any phase (Fig. 6f).
However, the ratio of bound versus free was significantly
decreased in M phase compared to G1 suggesting in-
creased free NAD (P) H relative to bound. Differences
were non-significant for MIA-PaCa-2 cells. In contrast
M-phase PANC1 cells exhibited significantly elevated ra-
tios of bound NAD (P) H compared to free, relative to
all other cell phases.
Unmixing was also able to successfully identify the sig-

nal for protophorin IX (PPIX; Fig. 6d). Previous work in
bladder cancer cells showed a significant decrease in
PPIX in G1 cells compared to S or G2 and M phase cells
[48]. We observed no significant differences in MIA-
PaCa-2 cells, however PPIX was elevated in M-phase
cells compared to G1 in HeLa and PANC1. Additionally,
in PANC1 PPIX was significantly increased in G2 phase
compared to M, and M phase compared to S. Differ-
ences in changes in PPIX concentration between phases
of the cell cycle in different cancer cell lines could be
important as it acts as a photosensitiser in photodynamic
therapy [49].
The final models were not able to achieve full discrim-

ination between cell cycle phases in the cancer cell lines
examined. This could potentially be improved through
the use of a higher resolution camera to reduce image
noise or the excitation of autofluorescence across a lar-
ger number of channels covering a broader range of
wavelengths. However, high genomic and transcriptomic
heterogeneity exists within neoplastic cell lines [50, 51]
and appears to be exacerbated with expansion [51]. As
such, between-cell variation independent of cell cycle
phase is likely to have confounded discrimination. If this
was the case the use of multispectral microscopy to as-
sess cell cycle phase would be expected to be more ac-
curate in more recently cultured cancer cell lines,
tumour biopsies and, if attempted, in vivo tumour im-
aging – although in the latter case increased biological
variability and the added complexity of 3D structures
will present further challenges and require significant
technological advances in terms of automated image
smoothing and the algorithmic discrimination of regions
of interest (i.e. discrimination of connective tissue from
organ). If realised, however, this advance would be of
considerable therapeutic value for cancer diagnostics
and characterisation.
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The developed models, although validated in separate
testing data-sets to those used to train them, can only be
considered to apply to the cell line they were created for,
and we found them to not be generalizable. These specific
models achieved moderate success, but if a more
generalizable model was attempted – through the use of
multiple cell lines in its training – the loss of ‘custom tai-
loring’ of the model to cell line makes it unlikely that a
useful level of discrimination could be achieved under the
same conditions. Finally, although a high enough number
of cells were imaged and correlated for the creation of
both training and testing data-sets, too few M-phase cells
were captured for them to be considered separately to G2-
phase cells. This is not a major disadvantage for this sys-
tem as it still matches the level of discrimination of the
most frequently used methods of cell cycle phase investi-
gation, with the advantages of being able to be carried out
in live, plated cells without use of reporters or stains. How-
ever, further work with larger data-sets could overcome
this problem, and the separation of M-phase from G2-
phase could improve overall discrimination, as if they are
multispectrally distinct – and the G2-M transition tran-
scription wave [41] suggests that this should be the case –
their combination could be complicating discrimination.

Conclusions
This study has shown that the multispectral measure-
ment of cell endogenous autofluorescence is able to
discriminate live cancer cells’ stages in the cell cycle
without detachment, labelling or transformation – repre-
senting considerable advantages over traditional ap-
proaches including FLOW cytometry and fluorescence
microscopy. This finding represents a first potential step
towards minimally invasive assessment of cell division –
a useful characteristic for treatment planning. Signatures
of cell autofluorophores were successfully unmixed and
showed significant differences between cell-cycle phases,
however these differences were not consistent between
cell lines and suggest that the creation of a generalisable,
reliable signature of cell cycle phases that can be applied
across cancer cell lines may be complicated. As well as
having practical applications for cancer cell research,
these results provide novel information on the mecha-
nisms and characteristics of the phases of the cell cycle.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-019-6463-x.

Additional file 1. Cell cycle differentiation in cells exposed to cell cycle
inhibitors.

Abbreviations
AUC: Area under the curve; CDK: Cyclin dependant kinase;
DMEM: Dulbecco’s modified Eagle’s medium; FAD: Flavin adenine

dinucleotide; FCS: Fetal calf serum; IoU: Intersection over union; LMM: Linear
mixed modelling; NAD (P) H: Nicotinamide adenine dinucleotide;
PCNA: Proliferating cell nuclear antigen; PPIX: Protoporphyrin; ROC: Receiver
operating characteristic; RoDECA: Robust Dependent Component Analysis

Acknowledgments
Not applicable.

Authors’ contributions
JMC made a substantial contribution to the design of the work, the acquisition
and interpretation of the data and drafted the work. AH made a substantial
contribution to the analysis and interpretation of the data and substantially
revised the draft; SM made a substantial contribution to the analysis and
interpretation of the data and substantially revised the draft, MG made a
substantial contribution to the conception and design of the work; AA made a
substantial contribution to the conception and design of the work, SP made a
substantial contribution to the design of the work, SG made a substantial
contribution to the design of the work and interpretation of the data, EG made
a substantial contribution to the conception and design of the work, the
interpretation of the data and substantially revised the draft. All authors
approved the submitted version of this manuscript and agree both to be
personally accountable for the author’s own contribution and to ensure that
questions related to the accuracy or integrity of any part of the work even
one’s in which the author was not personally involved, are appropriately
investigated, resolved, and the resolution documented in the literature.

Funding
This work was partially supported by Australian Research Council
DP170101863 and CE140100003. Funding bodies did not play any role in the
design of the study, or collection, analysis or interpretation of data, or in
writing the manuscript.

Availability of data and materials
The datasets used during the current study are available from the
corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Physics and Astronomy, Macquarie University, North Ryde,
New South Wales 2109, Australia. 2ARC Centre of Excellence for Nanoscale
BioPhotonics, Macquarie University, North Ryde, New South Wales 2109,
Australia. 3ARC Centre of Excellence in Nanoscale Biophotonics, The
University of New South Wales, Sydney, New South Wales 2052, Australia.
4Graduate School of Biomedical Engineering, The University of New South
Wales, Sydney, New South Wales 2052, Australia. 5School of Engineering,
Faculty of Science and Engineering, Macquarie University, 2109, North Ryde,
NSW 2109, Australia. 6Quantitative Pty Ltd, Mt Victoria, New South Wales
2786, Australia. 7Mesenchymal Stem Cell Laboratory, Adelaide Medical
School, Faculty of Health and Medical Sciences, University of Adelaide,
Adelaide, South Australia 5000, Australia. 8South Australian Health and
Medical Research Institute, Adelaide, South Australia 5000, Australia.

Received: 30 July 2019 Accepted: 15 December 2019

References
1. Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the

eukaryotic kingdom. Trends Cell Biol. 2013;23(7):345–56.
2. Tsurusawa M, Niwa M, Katano N, Fujimoto T. Methotrexate cytotoxicity as

related to irreversible S phase arrest in mouse L1210 leukemia cells. Jpn J
Cancer Res. 1990;81(1):85–90.

3. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to
radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(4):928–42.

Campbell et al. BMC Cancer         (2019) 19:1242 Page 10 of 11

https://doi.org/10.1186/s12885-019-6463-x
https://doi.org/10.1186/s12885-019-6463-x


4. Ferro A, Mestre T, Carneiro P, Sahumbaiev I, Seruca R, Sanches JM. Blue
intensity matters for cell cycle profiling in fluorescence DAPI-stained images.
Lab Investig. 2017;97(5):615–25.

5. Kelman Z. PCNA: structure, functions and interactions. Oncogene. 1997;
14(6):629–40.

6. Schonenberger F, Deutzmann A, Ferrando-May E, Merhof D. Discrimination
of cell cycle phases in PCNA-immunolabeled cells. BMC Bioinformatics.
2015;16:180.

7. Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone
marrow stromal stem cells by cDNA microarray analysis. Bone. 2001;29(6):
532–9.

8. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H,
et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle
progression. Cell. 2008;132(3):487–98.

9. Gosnell ME, Anwer AG, Cassano JC, Sue CM, Goldys EM. Functional
hyperspectral imaging captures subtle details of cell metabolism in olfactory
neurosphere cells, disease-specific models of neurodegenerative disorders.
Biochim Biophys Acta. 2016;1863(1):56–63.

10. Gosnell ME, Anwer AG, Mahbub SB, Menon Perinchery S, Inglis DW,
Adhikary PP, et al. Quantitative non-invasive cell characterisation and
discrimination based on multispectral autofluorescence features. Sci Rep.
2016;6:23453.

11. Datta R, Zhaoqi L, Allison L, Vander Heiden M, Skala MC. Cell division is
coupled to the optical redox ratio (conference presentation). San Francisco:
SPIE BiOS; 2018.

12. Bartolome F, Abramov AY. Measurement of mitochondrial NADH and FAD
autofluorescence in live cells. Methods Mol Biol. 2015;1264:263–70.

13. Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic
tissues. Neoplasia. 2000;2(1–2):89–117.

14. Ostrander JH, McMahon CM, Lem S, Millon SR, Brown JQ, Seewaldt VL, et al.
Optical redox ratio differentiates breast cancer cell lines based on estrogen
receptor status. Cancer Res. 2010;70(11):4759–66.

15. Heaster TM, Walsh AJ, Zhao Y, Hiebert SW, Skala MC. Autofluorescence
imaging identifies tumor cell-cycle status on a single-cell level. J
Biophotonics. 2018;11(1):1.

16. Alhallak K, Rebello LG, Muldoon TJ, Quinn KP, Rajaram N. Optical redox ratio
identifies metastatic potential-dependent changes in breast cancer cell
metabolism. Biomed Opt Express. 2016;7(11):4364–74.

17. Quinn KP, Sridharan GV, Hayden RS, Kaplan DL, Lee K, Georgakoudi I.
Quantitative metabolic imaging using endogenous fluorescence to detect
stem cell differentiation. Sci Rep. 2013;3:3432.

18. Sutton-McDowall ML, Gosnell M, Anwer AG, White M, Purdey M, Abell AD,
et al. Hyperspectral microscopy can detect metabolic heterogeneity within
bovine post-compaction embryos incubated under two oxygen
concentrations (7% versus 20%). Hum Reprod. 2017;32(10):2016–25.

19. Mahbub SB, Gosnell ME, Anwer AG, Goldys EM, editors. Label-free
unsupervised hyperspectral analysis for regenerative treatments on various
cartilage layers (Conference Presentation). Imaging, Manipulation, and
Analysis of Biomolecules, Cells, and Tissues XVI; 2018: International Society
for Optics and Photonics.

20. Staikopoulos V, Gosnell ME, Anwer AG, Mustafa S, Hutchinson MR, Goldys EM,
editors. Hyperspectral imaging of endogenous fluorescent metabolic
molecules to identify pain states in central nervous system tissue. Australasia:
SPIE BioPhotonics; 2016. International Society for Optics and Photonics

21. Habibalahi A, Bala C, Allende A, Anwer AG, Goldys EMJTOS. Novel
automated non invasive detection of ocular surface squamous neoplasia
using multispectral autofluorescence imaging. 2019.

22. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of
image analysis. Nat Methods. 2012;9(7):671.

23. Mahbub SB, Plöschner M, Gosnell ME, Anwer AG, Goldys EM. Statistically
strong label-free quantitative identification of native fluorophores in a
biological sample. Sci Rep. 2017;7(1):2045–322 15792%@.

24. Wang D, Bodovitz S. Single cell analysis: the new frontier in ‘omics. Trends
Biotechnol. 2010;28(6):0167–7799 281–90%@.

25. El Aziz MA, Selim IM, Xiong S. Automatic detection of galaxy type from
datasets of galaxies image based on image retrieval approach. Sci Rep.
2017;7(1):2045–322 4463%@.

26. Zhu H, Chu B, Zhang C, Liu F, Jiang L, He Y. Hyperspectral imaging for
presymptomatic detection of tobacco disease with successive projections
algorithm and machine-learning classifiers. Sci Rep. 2017;7(1):2045–322
4125%@.

27. Gosnel M. Unlocking the potential of spectral imaging for the
characterization of cells and stem cells population. Thesis, Macquarei
University. 2013.

28. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal
components: a new method for the analysis of genetically structured
populations. BMC Genet. 2010;11(1):1471–2156 94%@.

29. Naganathan GK, Grimes LM, Subbiah J, Calkins CR, Samal A, Meyer GE.
Visible/near-infrared hyperspectral imaging for beef tenderness prediction.
Comput Electron Agric. 2008;64(2):0168–1699 225–33%@.

30. Vapnik V. The nature of statistical learning theory: springer science &
business media; 2013.

31. Habibalahi A, Allende A, Bala C, Anwer AG, Mukhopadhyay S, Goldys EMJIA.
Optimized Autofluorescence Spectral Signature for Non-Invasive Diagnostics of
Ocular Surface Squamous Neoplasia (OSSN). EEE Access. 2019;7:141343–51.

32. Gosnell ME, Polikarpov DM, Goldys EM, Zvyagin AV, Gillatt DA, editors.
Computer-assisted cystoscopy diagnosis of bladder cancer. 2018: Elsevier.

33. Refaeilzadeh P, Tang L, Liu H. Cross-validation. Encyclopedia of database
systems: Springer; 2009. p. 532–8.

34. Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve
for multiple class classification problems. Mach Learn. 2001;45(2):0885–6125
171–86%@.

35. Keshava N, Mustard JF. Spectral unmixing. Signal Process Mag IEEE. 2002;
19(1):44–57.

36. Keshava N, Kerekes JP, Manolakis DG, Shaw GA, editors. Algorithm
taxonomy for hyperspectral unmixing. 2000.

37. Keshava N. A survey of spectral unmixing algorithms. Lincoln Lab J. 2003;
14(1):55–78.

38. Loh WY. Classification and regression trees. Wiley Interdiscip Rev. 2011;1(1):
1942–4795 14–23%@.

39. Dicker DT, Lerner JM, El-Deiry WS. Hyperspectral image analysis of live cells
in various cell cycle stages. Cell Cycle. 2007;6(20):2563–70.

40. Hsu JF, Hsieh PY, Hsu HY, Shigeto S. When cells divide: label-free
multimodal spectral imaging for exploratory molecular investigation of
living cells during cytokinesis. Sci Rep. 2015;5:17541.

41. Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription
during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14(8):518–28.

42. Bahler J. Cell-cycle control of gene expression in budding and fission yeast.
Annu Rev Genet. 2005;39:69–94.

43. Fukuoka M, Uehara A, Niki K, Goto S, Kato D, Utsugi T, et al. Identification of
preferentially reactivated genes during early G1 phase using nascent mRNA
as an index of transcriptional activity. Biochem Biophys Res Commun. 2013;
430(3):1005–10.

44. Massague J. G1 cell-cycle control and cancer. Nature. 2004;432(7015):298–306.
45. Platz A, Sevigny P, Norberg T, Ring P, Lagerlof B, Ringborg U. Genes

involved in cell cycle G1 checkpoint control are frequently mutated in
human melanoma metastases. Br J Cancer. 1996;74(6):936–41.

46. Soto JL, Cabrera CM, Serrano S, Lopez-Nevot MA. Mutation analysis of genes
that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and
CDKN2B. BMC Cancer. 2005;5:36.

47. Kaplon J, van Dam L, Peeper D. Two-way communication between the
metabolic and cell cycle machineries: the molecular basis. Cell Cycle. 2015;
14(13):2022–32.

48. Wyld L, Smith O, Lawry J, Reed MW, Brown NJ. Cell cycle phase influences
tumour cell sensitivity to aminolaevulinic acid-induced photodynamic
therapy in vitro. Br J Cancer. 1998;78(1):50–5.

49. Kou J, Dou D, Yang L. Porphyrin photosensitizers in photodynamic therapy
and its applications. Oncotarget. 2017;8(46):81591–603.

50. Isaka T, Nestor AL, Takada T, Allison DC. Chromosomal variations within
aneuploid cancer lines. J Histochem Cytochem. 2003;51(10):1343–53.

51. Frattini A, Fabbri M, Valli R, De Paoli E, Montalbano G, Gribaldo L, et al. High
variability of genomic instability and gene expression profiling in different
HeLa clones. Sci Rep. 2015;5:15377.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Campbell et al. BMC Cancer         (2019) 19:1242 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Cell culture and preparation
	Multispectral microscopy
	Staining and confocal microscopy
	Multispectral data analysis
	Unmixing of autofluorophores

	Results
	Differentiation of cell-cycle phases
	Autofluorophore concentrations

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

