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Abstract

Background: In biomedical research, network inference algorithms are typically used to infer complex association
patterns between biological entities, such as between genes or proteins, using data from a population. This resulting
aggregate network, in essence, averages over the networks of those individuals in the population. LIONESS (Linear
Interpolation to Obtain Network Estimates for Single Samples) is a method that can be used together with a network
inference algorithm to extract networks for individual samples in a population. The method’s key characteristic is that,
by modeling networks for individual samples in a data set, it can capture network heterogeneity in a population.
LIONESS was originally made available as a function within the PANDA (Passing Attributes between Networks for Data
Assimilation) regulatory network reconstruction framework. However, the LIONESS algorithm is generalizable and can
be used to model single sample networks based on a wide range of network inference algorithms.

Results: In this software article, we describe lionessR, an R implementation of LIONESS that can be applied to any
network inference method in R that outputs a complete, weighted adjacency matrix. As an example, we provide a
vignette of an application of lionessR to model single sample networks based on correlated gene expression in a bone
cancer dataset. We show how the tool can be used to identify differential patterns of correlation between two groups
of patients.

Conclusions: We developed lionessR, an open source R package to model single sample networks. We show how
lionessR can be used to inform us on potential precision medicine applications in cancer. The lionessR package is a
user-friendly tool to perform such analyses. The package, which includes a vignette describing the application, is
freely available at: https://github.com/kuijjerlab/lionessR and at: http://bioconductor.org/packages/lionessR.
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Background
Modeling and analyzing biological networks has become
an invaluable tool in the analysis of genomic data. While
gene expression profiles give us a snapshot of the state
of a cell or tissue, network inference algorithms give an
estimate of the extent to which genes or gene products
interact [1]. Many network inference methods exist [2],
most of which require multiple samples and population-
level data to infer an “aggregate” condition-specific net-
work [3–8]. These methods first construct a supervised
model which then can be applied to single sample data
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[9–11]; however, they do not directly model networks for
individual samples in a population.
We recently developed LIONESS, or Linear Interpola-

tion to Obtain Network Estimates for Single Samples [12],
as a way of using population-level networks to estimate
the corresponding network in each individual sample.
LIONESS is based on the idea that each sample has its
own network and that each edge in an aggregate net-
work is the “average” (a linear combination) of that edge’s
weight across these individual sample networks. LIONESS
starts by modeling an aggregate network on an entire pop-
ulation and then removes one sample and rebuilds the
network. This is similar to leave-one-out cross-validation
approaches [13]. However, LIONESS then compares the
network with and without an individual sample, and uses
a linear equation to estimate the network for the withheld
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sample. Thus, by sequentially leaving out each sample in a
population, one can use LIONESS to estimate a network
specific to each sample.
The LIONESS equation can be written as:

e(q)ij = N
(
e(α)
ij − e(α−q)

ij

)
+ e(α−q)

ij (1)

where e(α)
ij is the weight of an edge between nodes i and

j in a network modeled on all (N) samples and e(α−q)
ij is the

weight of that edge in a network modeled on all samples
except the sample of interest (q).
Specifically, LIONESS subtracts edge weights, e(α−q)

ij ,
which are derived from a network modeled on all sam-
ples except the sample of interest (q), from edge weights,
e(α)
ij , obtained from the network modeled on all samples;
these differences represent the contribution of sample q
to the aggregate network. With increasing numbers of
samples in the aggregate network model, these contri-
butions become smaller. LIONESS therefore scales these
edge weight differences by multiplying them by N, the
number of samples that were used to model the aggre-
gate network. Finally, to estimate the single sample edge
weights, e(q)ij , LIONESS adds the scaled edge weight dif-

ferences, N
(
e(α)
ij − e(α−q)

ij

)
, to the edge weights obtained

from the network modeled without the sample of inter-
est, e(α−q)

ij . For more details on how we derived the
LIONESS equation, please see the Supplemental Informa-
tion section published in Kuijjer et al. [12].
LIONESS network estimation is included as an option

to use with the PANDA network inference algorithm [7]
in our Python tool PyPanda [14]. However, the LIONESS
approach is not limited tomodeling single sample PANDA
networks—it can be used tomodel single sample networks
based on a wide range of network inference algorithms.
We developed lionessR, a user-friendly R implementation
of LIONESS. The lionessR package can be used to esti-
mate single sample networks for general networkmethods
used in network and cancer biology, including Pearson
correlation.

Implementation
We developed the lionessR package in R using CRAN
packages devtools and roxygen2. The package depends
on R version >= 3.0.2 and imports the CRAN library
stats. The package is available as open-source code at
https://github.com/kuijjerlab/lionessR and can be
installed with devtools. Instructions for installation are
given on the package’s GitHub site. In addition, an R pack-
age is available on Bioconductor at http://bioconductor.
org/packages/lionessR.
Within the lionessR package, the lioness() function

applies LIONESS (Eq. 1) to the output of a network infer-
ence algorithm, as defined by the function netFun().

The default network inference algorithm in netFun()
is Pearson correlation, which builds correlation networks
by returning an adjacency matrix of Pearson correla-
tion coefficients. We included Pearson correlation as the
default function, as correlation has been and continues
to be widely used in many network applications [1, 2, 6,
7] and because correlation networks can be modeled on
a wide variety of data types. However, netFun() can
be substituted with any other uni- or bipartite network
inference algorithm that returns a complete, weighted
adjacency matrix. The lioness() function returns an R
data frame that includes weights for all edges in each of
the sample-specific networks.
The computation time of lionessR depends on the

network reconstruction algorithm used in netFun().
lionessR calculates one aggregate network model based
on all N samples, as well as N aggregate network models
based on all samples except the sample of interest; there-
fore its computation time is O(N) times the computation
time of modeling a “standard” aggregate network mod-
eled with netFun(). For example, when using the default
function netFun() (Pearson correlation) in lionessR on
expression data of M genes, it takes O(N · M2) to com-
pute all sample specific networks (if we assume arithmetic
operations run in constant time).
The package comes with a vignette that shows how

to model networks with lionessR and gives an exam-
ple of how to analyze single sample lionessR networks.
The vignette depends on the CRAN packages igraph
and reshape2 and the Bioconductor package limma. The
package also includes an example dataset in the object
OSdata, which includes expression data for pre-operative
osteosarcoma biopsies from 53 high-grade osteosarcoma
patients, as well as information on whether patients devel-
oped metastases within five years since diagnosis of the
primary tumor. These data were obtained from the Gene
Expression Omnibus (GEO, accession GSE42352), and
included samples with at least 70% tumor content and via-
bility, for which RNA was profiled on Illumina human-6
v2.0 microarray beadchips and pre-processed using Bio-
conductor package lumi [15], as previously described [16].
The example data are used in the vignette to model single
sample networks for the 53 patients based on correla-
tion networks. The workflow of modeling these individual
patient networks and of analyzing them in the context of
metastasis-free survival is given in the Results section
below.

Results
Application of lionessR to a bone cancer dataset
As an example, we performed an analysis applying
lioness() to a gene expression dataset from 53
high-grade osteosarcoma biopsies [16] (Gene Expres-
sion Omnibus accession number GSE42352), which is
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included with the package. High-grade osteosarcoma
is an aggressive primary bone tumor that has peak
incidence in adolescents and young adults. About 45% of
patients develop metastases, and most metastatic patients
eventually die from the disease [17]. We performed a dif-
ferential correlation network analysis comparing short-
versus long-termmetastasis-free survival (MFS) to under-
stand co-regulation differences between the groups and to
search for potential therapeutic targets.
For this demonstration, we separated patients into two

groups based on those who developed metastases within
five years (n = 19) and those who did not (n = 34).
These were the same groups analyzed by Buddingh et al.
[18] to compare gene expression levels between short-
and long-term MFS. To decrease the runtime of our tuto-
rial application, we limited our analysis to the 500 most
variable genes based on the standard deviation. We used
lioness() to model 53 single sample networks based
on Pearson correlation, one for each individual in the
population, using the entire population to estimate the
background network, with the code:
cormat <- lioness(dat, netFun),
where dat is the input expression data and cormat the
lioness output.

Comparative analysis of single sample bone cancer
networks modeled with lionessR
We asked whether there were differences in network edge
weights between the short- and long-term MFS groups.
As the aggregate network model in this demonstration is
Pearson correlation, a large edge weight in a single sample
network indicates that adding that sample increases the
Pearson correlation of the aggregate network, while a low
edge weight means that addition of the sample decreases
the aggregate network’s correlation coefficient for that
edge. To reduce the number of statistical tests on these
networks (

(500
2

) = 124750 potential edges), we modeled
two condition-specific networks and selected those edges
that had an edge weight difference of at least 0.5 between
these two networks. We then performed a LIMMA anal-
ysis [19] to identify those edges whose weights differed
significantly between the groups. In parallel, we also used
LIMMA to test for significant differences in gene expres-
sion levels between groups. We visualized the 50 most
significantly perturbed edges (all nominal p < 0.001,
FDR < 0.15) in a network diagram (Fig. 1).
We identified multiple significant differential connec-

tions to genes encoding for extracellular matrix proteins,
including BGLAP. BGLAP encodes for osteocalcin, a pro-
tein secreted by osteoblasts to regulate bone remodeling.
BGLAPwas connected to both amatrixmetalloproteinase
(MMP11), involved in breakdown of extracellular matrix,
and to genes involved in the immune system—GZMA and
HLA-DQB1. GZMA encodes for Granzyme A, a T-cell

and natural killer cell-specific protease, while HLA-DQB1
is a Matrix Histocompatibility Complex (MHC) Class II
gene involved in antigen presentation. All of the edges
connected to BGLAP had a moderate to strong nega-
tive correlation (range R =[−0.75,−0.61]) in the samples
with better MFS, whereas these edges had a weak posi-
tive correlation (range R =[ 0.22, 0.26]) in the poor MFS
group.
Interestingly, BGLAP was not differentially expressed

between these groups (log fold change (logFC)= 0.23,
p = 0.68). This indicates that these processes are tightly
regulated in tumors of patients with long-term survival
and that loss of this regulation is associated with worse
outcome. It also suggests a link between matrix remod-
eling and recruitment of immune cells, which could indi-
cate that bone remodeling in osteosarcoma may result
in the recruitment of immune cells to clear up the can-
cer, confirming previous findings of osteoclast [20] and
macrophage [18] association with MFS in osteosarcoma.
In addition, we identified a highly connected gene, or

network “hub,” among the nodes connected to the top 50
edges—STAT1, or Signal Transducer And Activator Of
Transcription 1. STAT1 is a transcription factor and thus
potentially differentially regulates the target genes with
which it is correlated. In fact, all of the edges connected
to STAT1 had a moderate to strong negative correlation
(range R =[−0.84,−0.42], median R = −0.67) in the
samples with better MFS, whereas these edges had a weak
to moderate positive correlation (range R =[ 0.14, 0.42],
median R = 0.30) in the poor MFS group. This sug-
gests that STAT1 may repress expression of these genes
in patients with long-term MFS. However, this repression
is lost in patients with short-term MFS. It has been pre-
viously shown that in tumors with good prognosis, high
STAT1 expression inhibits bone formation [21]. The tar-
get genes we identified that connect to STAT1 (Figure 1)
were enriched for being annotated to the Gene Ontology
term “ossification,” (Fisher’s exact test odds ratio=5.76, p-
value=0.0056), which is consistent with this result. These
genes included SOST, SP7, IBSP, IFITM5, and TMEM119.
More importantly, STAT1 is a transcription factor

in the interferon signaling pathway—a pathway known
to be involved in osteosarcoma, and for which tar-
geted treatment options are available [22]. This indi-
cates that individual patient correlation network analy-
sis with lionessR can pinpoint potential candidates for
personalized medicine. Importantly, STAT1 is not dif-
ferentially expressed itself (logFC= 0.44, p = 0.19)
and neither are many of its target genes. Thus, we
would not have been able to obtain this result by
analyzing differential expression alone, without placing
these genes into a framework of a network. In fact, we
previously identified differential gene regulation in the
absence of differential expression by analyzing LIONESS
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Fig. 1 Significant differential network edges associated with osteosarcoma survival. Network visualization of the 50 edges with the most significant
differences in their estimated correlation based on a LIMMA analysis comparing single sample edge weights between patients with poor and better
MFS. Edges are colored based on whether they have higher weights in patients with poor (red) or better (blue) MFS. Thicker edges represent higher
fold changes. Absolute edge fold changes range from [ 0.75, 1.28]. Nodes (genes) are colored based on the t-statistic from a differential expression
analysis. Nodes with absolute t-statistic < 1.5 are shown in white, nodes in red/blue have higher expression in patients with poor/better MFS,
respectively

networks modeled based on the PANDA [7] network
reconstruction framework, which suggested a potential
mechanism for sexual dimorphism in colorectal patients
[23]. The current example in osteosarcoma highlights the
potential of lionessR in modeling networks for individual
cancer patients based on other network inference
approaches.

Conclusions
Precision medicine uses data about the state of individ-
ual genes to match each patient to the therapies that are
most likely to be efficacious for them. However, evenwhen
therapies target a specific gene mutation, we know that
many patients who carry a particular mutation, or whose
gene expression signatures correspond to known response
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biomarkers, do not always respond to targeted treatment.
Clearly, to improve precision medicine, we need to better
understand the complex relationships that exist between
different genes and gene products in individual samples.
Networks are a natural way to represent these complex
interactions, but methods to infer networks generally
“average” over the members of a population. Using net-
works in precision medicine requires methods that allow
inference of network models specific to each individual,
reflecting the heterogeneity in the population.
LIONESS represents a method that can fill the gap

between methods that infer networks using population
data and the need for methods that can model networks
specific to each individual. LIONESS estimates individual
sample networks by using linear interpolation iteratively,
extracting a network for each member of a population
[12]. LIONESS essentially measures how removing a sin-
gle individual from a population changes the aggregate
network, and uses those changes to identify the most
likely network for that individual. The lionessR package
allows users to apply this method in combination with
different network inference algorithms, including Pearson
correlation.
As an example, we modeled single sample networks

based on the 500 genes with the highest variability in
expression in an osteosarcoma dataset. We divided this
dataset into two groups—patients with either short-term
or long-term MFS. Comparing these two collections of
networks using a LIMMA analysis, we identified STAT1 to
be significantly co-expressed with a set of “target” genes in
biopsies of patients with poor survival. This set of genes
was highly associated with biological processes important
in osteosarcoma. In addition, STAT1 is part of a biolog-
ical pathway for which targeted treatment is available.
This example highlights how single sample correlation
network analysis can be used to inform us on potential
precision medicine applications. The lionessR package is a
user-friendly tool to perform such analyses.

Availability and requirements
Project name: lionessR
Project homepage: https://github.com/kuijjerlab/lionessR
Operating system(s): Platform independent
Programming language: R
Other requirements: The vignette walkthrough requires
the following R packages: devtools, igraph, reshape2,
limma
License: CC-BY-4.0
Any restrictions to use by non-academics: None
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