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Abstract

Background: Genomic initiatives such as The Cancer Genome Atlas (TCGA) contain data from -omics profiling of
thousands of tumor samples, which may be used to decipher cancer signaling, and related alterations. Managing
and analyzing data from large-scale projects, such as TCGA, is a demanding task. It is difficult to dissect the high
complexity hidden in genomic data and to account for inter-tumor heterogeneity adequately.

Methods: In this study, we used a robust statistical framework along with the integration of diverse bioinformatic
tools to analyze next-generation sequencing data from more than 1000 patients from two different lung cancer
subtypes, i.e., the lung adenocarcinoma (LUAD) and the squamous cell carcinoma (LUSC).

Results: We used the gene expression data to identify co-expression modules and differentially expressed genes to
discriminate between LUAD and LUSC. We identified a group of genes which could act as specific oncogenes or
tumor suppressor genes in one of the two lung cancer types, along with two dual role genes. Our results have
been validated against other transcriptomics data of lung cancer patients.

Conclusions: Our integrative approach allowed us to identify two key features: a substantial up-regulation of genes
involved in O-glycosylation of mucins in LUAD, and a compromised immune response in LUSC. The immune-profile
associated with LUSC might be linked to the activation of three oncogenic pathways, which promote the evasion
of the antitumor immune response. Collectively, our results provide new future directions for the design of target
therapies in lung cancer.

Keywords: Lung adenocarcinoma, Lung squamous cell carcinoma, Differential expression analysis, RNA-Seq,
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Background
Lung cancer is one of the most aggressive cancers, with
a five-year overall survival of 10–15% [1]. Lung cancer
can be classified into small cell lung cancer (SCLC) and
non-SCLC (NSCLC), which account for 15 and 85% of
all lung cancers, respectively. The main subtypes of
NSCLC are divided into adenocarcinoma (LUAD) and
squamous cell carcinoma (LUSC). Lung cancer is a

highly heterogeneous cancer type with multiple histo-
logic subtypes and molecular phenotypes [2, 3].
Since 2015, the classification of lung tumors has

been defined by cytology and histology [1, 4]. Despite
the staining strategy to separate lung tumors into dif-
ferent classes, cases that are ambiguous at the immu-
nohistochemical level are often reported and difficult
to resolve. A proper differentiation between LUAD
and LUSC determines eligibility for certain types of
therapeutic strategies [5]. For example, some drugs
are contraindicated for one of the two lung cancer
types, such as Bevacizumab (Avastin) in LUSC [6]. It
thus becomes crucial to discriminate among the two
lung cancer types in a precise way.
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Microarray technologies have been used to identify
differentially expressed genes in lung cancer samples
helping to pinpoint critical markers [7–10]. For example,
Naval et al. identified a prognostic gene-expression sig-
nature of 11 genes, which was subsequently validated in
several independent NSCLC gene expression datasets
[9]. This pioneering study established the prognostic im-
pact of changes in gene-expression for NSCLC patients.
However, the markers identified in the study do not dif-
ferentiate between LUAD and LUSC.
Gene or microRNA markers may be used, in

principle, to distinguish between these two types of
cancer [11–14]. In this context, single markers are un-
likely to be sufficiently robust to discriminate between
cancer subtypes due to the intrinsic heterogeneity of
tumors. New methods have been developed for robust
analyses of co-expression signatures in gene expres-
sion data [15–17]. Co-expressed modules are groups
of genes that not only show high correlations of ex-
pression; they also encompass important information
on the heterogeneity of phenotypes, cancer progres-
sion, or response to treatment [18–24]. We speculated
that the integration of differential expression and co-
expression analyses could be beneficial for the com-
parison of cancer (sub)types.
The Cancer Genome Atlas (TCGA) is a large genomic

initiative in which more than 10 000 patients were profiled
using six different platforms to identify cancer-related sig-
natures [25–27]. TCGA provides a unique resource which
can be re-analyzed for the discovery of cancer-related alter-
ations or new biomarkers specific to certain cancer (sub)-
types. Among the next-generation sequencing (NGS)
platforms available, RNA-Seq is a reliable approach for
quantification of changes at the transcriptional level [28].
Lung cancer datasets for LUAD [29] and LUSC [30] are
available in TCGA and account for more than 1000 sam-
ples overall. In parallel, the Recount2 initiative [31], which
integrates GTEX (Genotype-Tissue Expression Project)
[32] and TCGA, has recently allowed for an increase of
healthy tissue samples for the comparison with tumor sam-
ples. Thus, the LUAD and LUSC TCGA datasets offer a
suitable starting point for the identification of gene expres-
sion signatures that could discriminate between the two
lung cancer types in terms of classification, diagnosis, and
prognosis, along with to shed light on the underlying mo-
lecular mechanisms. These two TCGA datasets have been
used either to identify general cancer signatures [10, 33–39]
or to pinpoint signatures specific to only one of the lung
cancer types [40–42].
Cline and colleagues [39] recently showed that there is

a subset of 19 samples in the TCGA LUSC cohort that
feature a LUAD-like gene expression profile. They la-
beled these samples ‘discordant LUSC’. Discordant
LUSC samples are borderline for subtype classification,

and the similarity with LUAD is also modest. These
findings were supported by the analyses on an alterna-
tive pre-processing of the TCGA datasets [38]. As such,
it is essential to account for this information in the re-
analysis of the TCGA lung cancer data to avoid mislead-
ing conclusions.
We aimed to closely compare LUAD and LUSC

TCGA datasets using a robust statistical and bioinfor-
matic framework (Fig. 1). In particular, we: i) identified a
group of genes that are differentially expressed between
LUAD and LUSC when compared to the normal sam-
ples; ii) assessed changes in the gene expression signa-
ture over cancer stages; iii) identified modules of
differently co-expressed genes in the two lung cancer
types and alterations in their transcriptional regulation;
iv) predicted potential oncogenes, tumor suppressors or
dual role genes for each type and, iv) evaluated if any of
the LUAD- or LUSC-specific candidate genes had a
prognostic potential. Overall, our study resulted in a
subset of genes and pathways that could be used to dis-
criminate among the two cancer types. Moreover, we
identified candidate genes which are suitable for further
functional/structural studies since they are poorly under-
stood and potentially important as lung cancer markers
or targets. Our data also provide a useful guide for fu-
ture cellular studies using cancer cell lines, which re-
flects the LUAD or LUSC types.

Methods
Pre-processing of RNA-Seq data from the Cancer genome
Atlas (TCGA)
We downloaded and pre-processed level 3 legacy RNA-Seq
data (RSEM count) for LUAD and LUSC with the GDCqu-
ery of the TCGAbiolinks Bioconductor/R package [43, 44].
The RNA-Seq data have been produced using the Illumina
HiSeq 2000 mRNA sequencing platform.
We downloaded the data in October 2016 from the

Genomic Data Common (GDC) Portal (https://portal.
gdc.cancer.gov). An overview of the analyzed samples is
reported in Fig. 1. We removed the 19 ‘discordant LUSC’
samples before analysis [38], along with samples with
low tumor purity (< 60%) using a consensus measure-
ment of tumor purity [45].
We then employed the TCGAbiolinks [43] function

GDCprepare to obtain a Summarized Experiment ob-
ject [46]. We removed outlier samples with the
TCGAanalyze_Preprocessing function of TCGAbio-
links using a Spearman correlation cutoff of 0.6. We
normalized the datasets for GC-content [47] and li-
brary size using the TCGAanalyze_Normalization.
Lastly, we filtered the normalized RNA-Seq data for
low counts across samples using the function
TCGAanalyze_Filtering. This step removed all tran-
scripts with mean across all the samples less than
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0.25 quantile of the mean. The pre-processed and
processed datasets are available through our Github
repository, along with the script to generate them
(https://github.com/ELELAB/LUAD_LUSC_TCGA_
comparison).

Differential expression analyses of TCGA datasets
Differential expression analyses have been carried out using
edgeR [48] and limma [49]. The analyses were performed
using three different pipelines. One pipeline was based on
limma-voom and the other two were edgeR-based. One of

Fig. 1 The workflow illustrates the steps used in our study. We used the R/CRAN package DiagrammeR v.1.0.1 to illustrate the workflow
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the two edgeR-based pipelines was implemented in the
TCGAanalyze_DEA function which was incorporated into
the first release of the TCGAbiolinks package (called edgeR-
TCGAb in this study for sake of clarity).
We applied the voom transformation to RNA-Seq data

analysis with limma [50] to estimate precision weights
for each count, before performing the differential expres-
sion analysis. In edgeR pipelines, we used the GLM
(Generalized Linear Models) approach. Both the limma
and edgeR pipelines allowed to include an experimental
design with multiple factors.
In the limma and edgeR pipelines, the design matrix

includes: conditions (tumor vs normal), the patient in-
formation when a paired dataset was used, and batches
for the other datasets (unpaired and all). We corrected
for the TSS (Tissue Source Site; the center where the
samples are collected) as source of batch effect in the
edgeR and limma-voom DEA pipelines. In contrast,
edgeR-TCGAb implemented a simple function for DEA
which did not account either for batch corrections or
patient information. In all the DEA analyses, we defined
as a cutoff a log fold change (logFC) > = 1 or < = − 1 to
retain significant DE genes, along with a False Discovery
Rate (FDR) cutoff of 0.01.
During the analyses, we tested two variations of the

limma-voom DEA pipeline: I) using the same design
matrix for voom and lmFit functions and ii) using the
entire voom object in the steps following the voom trans-
formation and not only the log2-transformed data.
These adjustments provide a more correct approach to
DEA but did not make any difference on our final con-
clusions. The corresponding scripts are also reported in
our Github repository.
The overlap between the DE genes identified by each

pipeline and for each different curation of the dataset
was evaluated with the UpSetR package [50].

Curation and differential expression analyses of unified
GTEx and TCGA LUAD and LUSC datasets
We used the unified dataset integrating the GTEx [32]
cohort of healthy samples and TCGA data as provided
by the Recount2 protocol [31]. We employed the
TCGAquery_Recount2 function of TCGAbiolinks v2.8
to query the GTEx and TCGA unified dataset for lung
cancer [51]. We filtered the data for tumor purity with
a threshold of 60% as we did for the TCGA dataset
and removed the LUSC discordant samples.
Since recount2 barcodes were updated to the Universally

Unique Identifier (UUID), we convert them to filtered
TCGA barcodes with the TCGAAutils package, so that we
could apply the pre-processing steps with TCGAbiolinks.
The mapping between the TCGA barcodes and the new
UUIDs was obtained by extracting the GDC case identifiers.
We analyzed 374, 355 and, 393 samples for GTEx, LUAD

and, LUSC, respectively in the unified datasets. After the fil-
tering steps and preparation of the unified datasets for
LUAD and LUSC, only protein-coding genes were retained
using the biomaRt Bioconductor/R package [52–54]. We
carried out GC-content normalization and quantile
filtering as described above. We converted the
ENSEMBL identifiers into gene names through the
information in the SummarizedExperiment object.
The DEA was carried out with the limma-voom
method according to the pipeline described in the
previous section.

Analysis of the tumor microenvironment
To appreciate the differences between LUAD and LUSC
immune landscapes, we estimated the abundance of popu-
lations of tissue-infiltrating immune cells using the R pack-
age MCP-counter [67]. We used the MCPcounter.estimate
function to estimate the abundance of immune cell popula-
tions (T cells, cytotoxic lymphocytes, B cell and, monocytic
lineage, myeloid dendritic cells, neutrophils) and non-
immune stromal populations (endothelial cells and
fibroblasts) for each sample. In particular, the gene matrix
obtained after the pre-processing steps was used as input
for the analysis.
For each cell population, we divided the samples

into four groups (see Github repository): i) very-low
(population from 0 to the minimum value of the dis-
tribution); ii) low (from the minimum to the first
quartile); iii) medium (from the first to the third
quartile); and iv) high (from the third quartile to the
maximum value) abundance. We incorporated this
information into the design matrix for DEA with
edgeR to identify the DE genes for each cell popula-
tion and each lung cancer type in comparison with
the normal samples. These different sets of DEAs
were compared to the consensus DEA for the selec-
tion of the candidate genes and to assess the robust-
ness of the pathway-enrichment and GO-enrichment
analyses (see Pathway enrichment analyses Section).

Soft-clustering analysis
We performed gene clustering for the LUAD and LUSC
datasets paired and all according to the normal tumor
(NT) and four clinical stages of cancer, i.e., stages I, II,
III, and IV using the Mfuzz package version 2.36.0 [55].
Mfuzz uses a fuzzy c-means algorithm based on the it-
erative optimization of an objective function to minimize
the variation of objects within the clusters. The fuzzy c-
means algorithm is robust to noise and avoids a priori
pre-filtering of genes [56]. We assessed the longitudinal
evolution of the mean of expression in the LUAD and
LUSC clusters in the normal samples and along the four
stages of tumor progression.
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The dataset with all the samples were used for the
soft-clustering analyses and a consensus matrix con-
taining all the gene expression for LUAD and LUSC
was built. We collected all barcodes corresponding to
NT samples using the TCGAbiolinks function TCGA-
query_SampleTypes for each lung subtype to identify
NT samples in the gene matrices. We mapped the
tumor samples to their stages from the LUAD and
LUSC clinical datasets using their barcodes. We fil-
tered out the samples with “not reported” stage status.
We computed the mean gene expression value per
tumor stage and NT for LUAD and LUSC. We defined
a maximum number of clusters equal to six for the
fuzzy c-means clustering. The centroid clustering step
results from a weighted sum of all cluster members
and shows the overall gene expression pattern in each
cluster. The membership values indicate how well a
gene is represented by its cluster. Low values illustrate
a poor representation of the gene by the cluster cen-
troid. Large values point to a high correlation of the
expression of the gene with the cluster centroid. In
each cluster, genes are represented with color lines
corresponding to their cluster membership m > 0.56.
We selected this cutoff empirically to be stricter than
the default value of 0.5. The membership values are
color-encoded in the plots generated by mfuzz.plot.

Pathway enrichment analyses
We used the ReactomePA version 1.18.1 R/Biconductor
package to perform the Reactome-based Pathway Analysis
[57]. We employed the enrichPathway function of
ReactomePA to retrieve the enriched pathways in the DE
gene set or in the list of genes from the soft clustering.
We used the entire gene matrix after pre-processing as a
background. An adjusted p-value cutoff of 0.05 was set,
and the analysis was done by separating the up- and
down-regulated genes for each dataset (all and paired)
and lung cancer subtype. In addition, all the gene symbols
were converted to their corresponding ENTREZ IDs pro-
vided by the SummarizedExperiment object (GDCprepare
function output). We used clusterProfile [58] to illustrate
the results of the pathway enrichment analyses.

Gene ontology enrichment analysis
To identify biological functions in LUAD and LUSC DE
gene sets, we carried out a Gene Ontology (GO) classifi-
cation, which included the following categories: bio-
logical process, cellular component and molecular
functions [59].
We performed GO functional enrichment analysis for

the DE gene set using the topGo R/Bioconductor pack-
age. We provided both DE and background genes lists
separating up- and down-regulated genes. We used the
same background used in the Pathway enrichment

analyses. The GO results for the biological processes
were represented in circular plots with the GOplot R
package [60].

Co-expression network analyses
We used the LUAD and LUSC datasets upon filter-
ing and after voom transformation (see Differential
expression analyses of TCGA datasets section) to
carry out modular co-expression analyses with the
CEMiTool Bioconductor/R package [15] using the
protocol suggested by the developers. We performed
pathway enrichment analyses and protein-protein
network analyses with the pre-built functions of
CEMiTools. As a reference for protein-protein
interactions, we used the Interologous Interaction
Database I2D version 2.9. [61].

Survival analysis
We performed a survival analysis using the survival R
package version 2.41–3. We used Cox regression [62] to
estimate differences in survival between patients with
low and high expression levels of our candidate genes.
For each cancer type, tumor samples were extracted and
separated by gene expression levels according to lower
and upper percentile (25th and 75th, respectively). If the
gene expression level of a specific gene in a certain sam-
ple was lower than the 25th percentile, the correspond-
ing sample was labeled as low. Samples with the gene
expression level greater than the 75th percentile were la-
beled as high. In cases of tumor duplicates (i.e., tumor
samples from the same patient), we used the mean for
the analysis. The clinical data were downloaded using
the GDCquery_clinical function of TCGAbiolinks. We
used only barcodes for which information regarding the
last follow-up or death time of the patient was available.
Cox regression analyses were performed using the coxph

function. Cox regression allows to account for additional
explanatory variables, such as age at diagnosis, gender,
and tumor stage. Before performing Cox regression, we
tested the proportional assumption using the cox.zph
function, and we retained only the genes which satisfy this
test (11 and 13 genes for LUAD and LUSC, respectively).
The p-values of each variable were corrected using the
Benjamini and Hochberg (BH) method [63].

In silico validation of the candidate genes on
independent cohorts
To validate our candidate genes, we selected two micro-
array studies that include both LUAD and LUSC sam-
ples. The first study contains 139 and 21 samples for
LUAD and LUSC, respectively [64]. The second dataset
(GEO accession number: GSE33532) is composed of ten
and four samples for LUAD and LUSC, respectively [65].
At first, the probe sets were converted to gene names
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using the gconvert function of the gProfileR package ver-
sion 0.6.6 [66] and the non-converted probes were re-
moved. Since multiple probe sets can identify the same
gene, we collapsed them to obtain unique matches with
the collapseRows function implemented in the WGCNA
package version 1.63 [16]. We performed hierarchical
clustering with the complete method and euclidean dis-
tance and visualized the results as heatmap with the
heatmap.2 function in the gplots package version 3.0.1.

Results
Curation and description of the datasets used in the
study
The datasets for our analyses were curated to remove
the LUSC discordant samples, along with samples with a
low tumor purity and outlier samples with correlation
lower than 0.6. The number of samples and genes
retained for the analyses are reported in Fig. 1.
We performed differential expression analyses (DEAs)

to identify a subset of differentially expressed genes in
the two TCGA lung cancer datasets LUAD and LUSC
tumor primary (TP) with respect to the normal (NT)
samples. A clear consensus on the best DEA approaches
for RNA-Seq data does not exist yet. Different DEA
methods could provide different results [49, 68–71]. We
employed three pipelines for DEA of LUAD and LUSC
and generated a consensus list of DE genes (see Method
section).
In addition, we curated three different datasets (paired,

unpaired, and all) for each cancer type and the results
are discussed in the Additional file 1: Text S1. A com-
parison of the DE genes obtained from the analysis of
each of the three datasets allowed us to evaluate the im-
pact of the different curations in terms of sample size or
sample pairs.

The usage of a too simplistic design in the DEA protocol
has marked effects on the DEA results
At first, we assessed the influence of using different defi-
nitions of the dataset for DEA analyses. We compared
the results of DEA carried out with a certain method,
i.e., limma or edgeR or edgeR-TCGAb, on the three dif-
ferent datasets (paired, all, and unpaired) for each of the
two cancer types (LUAD and LUSC) (Figs. 1 and 2, and
Additional file 1: Text S1). In our LUAD analyses, we
used the paired dataset with 32 tumor and 27 normal
samples, along with the all dataset with 324 tumor and
59 normal samples. For LUSC, the paired dataset con-
tained 35 tumor and 35 normal samples, and the dataset
all 356 tumor and 51 normal samples. In both cases, the
paired datasets were small subsets of the corresponding
full datasets. According to the comparison described in
Additional file 1: Text S1, we focused on the dataset

with all the normal and tumor samples for the following
analyses.
Limma resulted in the most stringent approach for

up-regulated genes (Additional file 5: Table S1,
Fig. 2a-c). Inversely, limma provided a large number
of down-regulated gene (more than 300), which were
not identified by the edgeR pipelines (Fig. 2b-d).
EdgeR-TCGAb featured a subset of up-regulated genes

which were not identified by the other two methods
(Fig. 2a-c). In the case of paired samples, this behavior
can be explained by the fact that the edgeR-TCGAb pipe-
line does not correct for patient-specific effects, which
are likely more important when the normal and tumor
samples are matched. Moreover, edgeR-TCGAb DEA
pipeline does not include batch corrections, which we
included within the design matrix in the other two DEA
pipelines. We had a closer look at the 820 and 619 up-
regulated genes identified only by the edgeR-TCGAb
pipeline in LUAD and LUSC (Additional file 2: Figure
S1). Most of the discordant genes have either logFCs
close to or below 1 or FDR values close to 0.01.
Moreover, edgeR-TCGAb tends to overestimate the
logFC values. We also noticed that there was a small
number of cases in which edgeR-TCGAb assigned an op-
posite directionality, i.e., the genes were down-regulated
according to the other two methods. Specifically, this set
of genes included: DUOXA2, IGFALS and, KLK14 in
LUAD, as well as EDN3, GFI1B, MYH15, PEG3, and
PENK in LUSC. We searched for each of the non-
congruent genes in the IGDB.NSCLC database [72],
which is a collection of genes that are altered in NSCLC.
We did not consider hits for which the probe sets were
reported with mapping problems or the fold change was
lower than 2. We observed that only MYH15 was up-
regulated in one of the LUSC studies at IGDB.NSCLC,
while the other genes listed above were down-regulated,
supporting the edgeR and limma results from our study.
The results of our analyses, thus, raised concerns about

the accuracy of the original TCGAbiolinks DEA pipeline
with edgeR (edgeR-TCGAb) especially when paired sam-
ples are analyzed, highlighting a need for a different DEA
design within the R/Bioconductor package. This design
should include functions for proper batch corrections and
corrections for patient-specific effects, which we recently
implemented in TCGAbiolinks [51]. Overall, 60–80% of
the DE genes are in common among the three DEA
methods, suggesting that their integration may allow for
the removal of genes with borderline results to define a
robust signature of LUAD- and LUSC-specific genes.

Identification of LUAD- and LUSC-specific differentially
expressed genes
We selected the datasets containing all the samples to
maximize the sample size. As an additional control of

Lucchetta et al. BMC Cancer          (2019) 19:824 Page 6 of 20



our analyses, we carried out DEA on the LUAD and
LUSC unified datasets from the recent Recount2 initia-
tive [31]. In the Recount2 platform, TCGA data were in-
tegrated with the normal GTEX [32] samples. This
integration increases the pool of available normal sam-
ples for the comparison for a total of 374 healthy sam-
ples. Moreover, Recount2 provides a genuine source of
healthy tissue samples to compare with lung tumors,
e.g., not only the normal adjacent tissues that are avail-
able in the TCGA. The list of DE genes for LUAD and
LUSC for the unified datasets are reported in our
GitHub repository.
We employed a consensus approach, in which we

defined as DE genes in LUAD and LUSC only those
found by all the three DEA approaches (i.e., the inter-
sects in each of the overlap diagrams similar to the
ones reported in Fig. 2). We then compared the up-
and down-regulated genes in LUAD with the ones of
LUSC. To identify gene signatures that can differenti-
ate between the two lung cancer types, it is not suffi-
cient that the genes are differentially expressed with

respect to the normal samples. One also needs to ver-
ify that they are not up (or down) regulated in both
the cancer types.
We retained 337 and 1451 genes up-regulated, as well

as 165 and 956 down-regulated genes in LUAD and
LUSC, respectively (reported in our Github repository).
To verify that some of the differences observed for

LUAD and LUSC DE genes did not come from differ-
ences in the composition of the tumor microenviron-
ment between the two cancer types, we carried out
additional 18 DEAs. In these DEA, we corrected for
the populations of the different cellular infiltrations,
which have been estimated using a deconvolution
method (see Analysis of the tumor microenvironment
section and Github repository for the lists of DE
genes in different comparisons).
Interestingly, we identified a small subset of genes

which were up-regulated in LUAD but down-regulated
in LUSC (MUC5B, HABP2, MUC21, and KCNK5) or
vice-versa (CSTA, P2RY1, and ANXA8) in all or the ma-
jority of the DEA comparisons.

A B

C D

Fig. 2 Comparison of DEA results with different DEA protocols. For sake of clarity, we reported the up-regulated genes (a,c) and down-regulated
genes in (b,d) in LUAD (a,b) and LUSC (c,d), respectively (see https://github.com/ELELAB/LUAD_LUSC_TCGA_comparison for the whole set of
results). The analyses have performed with the R/CRAN package UpSetR v.1.3.3
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We performed pathway enrichment analysis for the
up- and down-regulated unique genes of LUAD and
LUSC from the consensus DEA comparison, along with
for each of the DEA analyses correcting for infiltration
from other cellular populations. We only retained the
genes and pathways common to the different DEA cal-
culations. The analyses revealed that pathways related to
O-linked glycosylation of mucins was enriched for the
up-regulated genes of LUAD and down-regulated genes
of LUSC, respectively (Table 1). This suggests that the
proteins involved in this pathway could play an import-
ant role in discriminating between the two lung cancer
types. Of particular interest is a group of mucins
(MUC5B, MUC15, MUC16, and MUC21), along with
enzymes involved in their modifications. Additionally,
we noticed that genes involved in the complement sys-
tem (C3, C5, CD55, and CFI) were down-regulated in
LUSC. GO-enrichment analysis on LUAD DE genes also
confirmed the importance of up-regulation of processes
related to O-linked glycosylation, along with cellular ad-
hesion (Additional file 3: Figure S2).

Clustering of genes in LUAD and LUSC across tumor
stages
We aimed to identify a subset of specific and interrelated
genes which, as an ensemble, could be more effective
than single markers in discriminating between LUAD
and LUSC. For this purpose, DEA alone is not sufficient.
We, therefore, analyzed the molecular signatures both
using soft-clustering approaches over the stages of
tumor progression and implementing weighted co-
expression analyses.
We applied a soft-clustering approach [55, 56] to sep-

arate LUAD and LUSC genes into clusters based on
their changes in gene expression in different tumor

stages [73], allowing us to identify six clusters with dif-
ferent signatures (Fig. 3a-c).
Clusters 2 and 5 of LUAD (Fig. 3a), along with clusters

1 and 5 of LUSC (Fig. 3c) revealed a general up-
regulation of genes along all stages. The two up-
regulated clusters of genes in LUAD showed enrichment
in transcriptional regulation of p53, cellular response to
stress and, mitosis. In LUSC, mitosis was also up-
regulated, together with other processes here among
translation, cell cycle, ER, Golgi and COPI transports
(Fig. 3b and d). In contrast, clusters 1 and 6 of LUAD
(Fig. 3a), and clusters 2 and 6 of LUSC (Fig. 3c) featured
a general down-regulation when the four tumor stages
were compared to the normal samples, with no clear en-
richment in biological pathways.
We extracted the genes that showed a trajectory of

up-regulation across stages in one cancer type and
down-regulation in the other, similarly to what we previ-
ously did for the DEA results. We identified a group of
46 genes which were up-regulated in LUAD but down-
regulated in LUSC. 72 genes were down-regulated in
LUAD and up-regulated in LUSC. The soft-clustering
comparison provided an additional list of gene candi-
dates of which MUC5B, CSTA, P2RY1 and, NTRK2
were shared between the soft-clustering and the DEA.
Clusters 3 of both LUAD and LUSC (Fig. 3a and c)

featured a signature in which the genes were up-
regulated at the early stages, but they decreased again at
late stages (i.e. stage IV). Clusters 4 showed the opposite
trend, i.e. a down-regulation at early stages but increase
at late stages (Fig. 3a and c). These patterns may be indi-
cative of dual-role genes [74]. The enriched processes
were different for these genes in LUAD and LUSC. The
dual-role of LUAD was associated with extracellular
matrix organization, whereas in LUSC with mRNA spli-
cing and mRNA processing (Fig. 3b and d). Expression

Table 1 Pathway enrichment analysis with ReactomePA. Only the results relevant to the comparison of O-glycosylation, immune
response and complement pathways are reported. For the full list of results, one could refer to our Github repository for the project.
We reported only the pathways and genes identified by the initial consensus DEA and the DE genes from the DEA comparisons
accounting for the tumor microenvironment. The range of FDR values identified for that pathway from the different enrichment
analyses are reported as a reference

Pathway ID Description FDR Gene IDs

913709 O-linked glycosylation of mucins 0.007–0.04 LUAD (up): B3GNT6/MUC16/MUC21/MUC5B

913709 O-linked glycosylation of mucins 0.01–0.07 LUSC (down): B3GNT7/B3GNT8/GALNT10/
GALNT5/MUC1/MUC15/MUC21/MUC5B/
ST6GALNAC4

977068 Termination of O-glycan biosynthesis 0.01–0.07 LUAD (up):MUC16/MUC21/MUC5B

5173105 O-linked glycosylation 0.01–0.05 LUAD (up): B3GNT6/ MUC16/MUC21/ MUC5B

5173105 O-linked glycosylation 0.01–0.03 LUSC (down): B3GNT7/B3GNT8/GALNT10/
GALNT5/MUC1/MUC15/
MUC21/MUC5B/ST6GALNAC4/THBS1

977606 Regulation of Complement cascade 0.0002–0.06 LUSC (down):C3/C5/CD55/CFI

166658 Complement cascade 0.0008–0.06 LUSC (down): C3/C5/CD55/CFI
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of dual-role genes may, for example, be unwanted by
cancer cells in early tumor stages, whereas the same
genes become essential at later stages of tumorigenesis,
providing the cancer cells with a functional advantage or
resistance to chemotherapy [37].

Prediction of oncogenes and tumor suppressor genes in
LUAD and LUSC
Genes that are up- or down-regulated and are also
known to be oncogenes or tumor suppressors, respect-
ively, are of great interest in cancer.
We, therefore, carried out a prediction of potential

tumor suppressor genes (TSGs) and oncogenes (OGs)
using Moonlight [37], which employs gene expression

signatures and biological pathways to identify potential
TSGs and OGs. This analysis was used to integrate and
expand the information available on TSGs and OGs
through the curated data from TSGene (TSGDB) [75],
ONGene [76], and COSMIC [77].
At first, we were interested in evaluating which of the

up- and down-regulated genes that discriminate between
LUAD and LUSC are known or predicted to be OGs
(up-regulated genes) or TSGs (down-regulated genes).
We thus identified 24 potential TSGs and 146 OCGs

for LUAD, while we obtained 22 TSGs and 456 OCGs
for LUSC with Moonlight. The details and the full list of
genes are reported in our GitHub repository. Only 31
predicted OCGs and no TSGs were common between

A B

C D

Fig. 3 Soft-clustering across lung cancer stages of tumor progression. Each cluster describes an expression pattern in the dataset through the
four stages of cancer i.e. stages I, II, III and IV. Blue and purple lines correspond to genes with high cluster membership value (i.e., m > 0.56). a
Table with the genes belonging to each cluster and their m value is reported in our Github repository. The LUAD (a) and LUSC (c) clusters are
showed along with the corresponding dotplots (b and d, respectively) for the top enriched pathways for each cluster. In the dotplots, the plots
are colored according to the p-values from blue (high p-values and low enrichment) to red (low p-values and high enrichment). The cluster plots
have been generated with the R/Bioconductor package Mfuzz version 2.36.0
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LUAD and LUSC. Intriguingly, IL6 and KRT23 were
predicted as OCGs in LUAD but TSGs in LUSC,
highlighting that these genes could deserve attention in
future studies. IL6 is of interest because of its role in the
immune response and the complement system [78] and
its down-regulation in LUSC. We recently identified IL6
as the only down-regulated cytokine in breast cancer
samples using cytokine assays [79]. Future studies on
naïve tumor samples or LUSC and LUAD cellular
models, where the IL6 gene can be modulated by over-
expression or silencing, could shed light on its role
within the two lung cancer types [80].

Co-expression signatures in LUAD and LUSC
As stated above, we sought gene expression signatures
to discriminate between LUAD and LUSC types, or in-
teresting targets for each cancer type. For this reason,
we also carried out a gene co-expression analysis to
identify different modular gene co-expression networks
in LUAD and LUSC.
In LUSC, we identified six modules (Fig. 4a). M1 was

enriched in proteins for organization and assembly of
the cell and gap junctions, including gap junction pro-
teins, like the up-regulated hub proteins GJB5, keratin
type II proteins and protein channels activated by
chloride. M2 was enriched in proteins for glutathione
conjugation and response to redox stress, such as the
up-regulated hub proteins sulfiredoxin-1 protein and
the oxidative stress-induced growth inhibitor OSGIN1.
M3 included extracellular matrix organization and
collagen-related proteins. M4 was enriched in inter-
feron signaling, cytokine signaling in immune response,
with a down-regulation of HLA genes. M5 was no asso-
ciated with any annotated cellular pathway, whereas
M6 was enriched in proteins that regulate the comple-
ment cascade.
We identified four modules in LUAD (Fig. 4b): M1

which was enriched in extracellular matrix organization
proteins and regulation of complement cascade; M2,
which was enriched in interferon and cytokine signaling
and, M3 which included collagen-related genes and pro-
teins for extracellular matrix organization. Notably, M3
was the only module that included hubs which were
conserved among LUAD and LUSC. M4 of LUAD had
no significant associations with any known pathway.
We noticed that some of the modules of LUAD and

LUSC were enriched for the same processes.
Nevertheless, a pairwise comparison of each of them
suggested that, in most of the cases, the number of
overlapping genes in the LUAD and LUSC modules is
only a minor fraction. This could suggest that the genes
triggering the same pathways had different co-
expression signatures in the two cancer types. Pathway-
enrichment analyses on DE genes or on the soft-

clustering genes also pointed to a down-regulation of
proteins involved in the complement cascade (Table 1)
and genes related to the immune response in the LUSC
samples (Fig. 3d), enforcing the notion of a compro-
mised immune response in LUSC.
Moreover, the M1 and M2 of LUSC were enriched in

pathways that have not been found for the LUAD co-
expression modules, i.e., pathways related to cellular
junctions (M1) and glutathione (M2).
For further analyses, we retained only truly unique

genes for LUAD or LUSC within each module. For each
module, we extracted the known transcription factors
and their targets using the TRRUST database as a source
of information [81]. We identified a network of tran-
scription factors and their targets for modules 1 and 2 of
LUAD, as well as 1, 2,3, and 4 or LUSC (Fig. 5). Out of
these, LEF1 was of interest since it can activate NRCAM.
The two genes are not only co-expressed in the same
LUSC module but also up-regulated in LUSC only. In
module 1 of LUSC, we noticed the presence of the up-
regulated CSTA, which is transcriptionally regulated by
the FOS transcription factor, along with TP63 and its
target gene ZNF750. In module 1 of LUAD, we identi-
fied an interesting network between the up-regulated
gene AGR2 and its transcription factor FOXA1, along
with the activator SPDEF.

Selection of candidate genes and their pathways
We collectively considered the results of the analyses de-
scribed above with the final goal of proposing a subset
of LUAD and LUSC-specific genes for further studies. In
particular, we decided to retain only the genes that sat-
isfy the following criteria: i) genes that are up- or down-
regulated in a specific cancer type and the opposite in
the other cancer type according to the DEA analyses
and/or soft-clustering analyses, and ii) genes that belong
to the co-expression modules and are genuinely unique
for LUAD or LUSC. For each of these genes, we also an-
notated information on their potential as oncogenes,
tumor suppressors or dual role genes; known associa-
tions with cancer according to the repository of disease-
gene associations from text mining of the literature DIS-
EASES [82]. Specifically, we verified if they matched with
known oncogenes or tumor suppressors through ana-
lyses of the COSMIC TGs and OCGs collection [77],
TSGDB [75], ONGene [76] or prediction with the Moon-
lightR workflow [37]. For dual role genes, we integrated
as a reference for our study the curation from TSGDB
[75], COSMIC [77] and the recently predicted ‘double-
agent’ genes, namely Proto-Oncogenes with Tumor-
Suppressor Functions (POTSF) [74]. This integrative ref-
erence annotation for dual role genes is reported in
Additional file 6: Table S2 and in the Github repository
for a total of 152 genes, of which only 14 were all
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reported in all the three studies. The summary of each
of the candidate genes and their annotations is reported
in Table 2 and each candidate gene discussed in detail in
the Discussion section.

Association of the gene signatures with patient survival
Next, we aimed to evaluate if any of the candidate genes
had a potential prognostic impact. We carried out sur-
vival analyses using a Cox proportional hazard regres-
sion with all the candidate genes. We accounted for

different explanatory variables, including the clinical
stages, age, and sex of the patients.
We assessed if a difference in the gene expression level

(high or low) of the candidate genes could affect the sur-
vival rate of the patients. The unique genes with FDR
values lower than 0.05 were ITGA6 and FABP5 in
LUAD and ICA1 in LUSC (Additional file 7: Table S3).
In details, these genes have an FDR associated with the
‘group_low’ less than 0.05. In particular, the hazard ratio
(the exp. (coef)) is around 0.4 for the three genes. This

A B

Fig. 4 Co-expression modules and their network in LUSC (a) and LUAD (b). The modules which collect genes and pathways that differentiate
LUSC from LUAD are shown in the figure. The analyses have been carried out with the R/Bioconductor package CEMITools version 3.10
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means that a patient who has a high level of expression
of one of the three genes is 0.4 times as likely to die at
any time than a patient with a low level of expression of
the same gene. Therefore, the risk associated with high
gene expression of ITGA6, FABP5 (in LUAD) or ICA1
(in LUSC) is low, resulting in a better prognosis for
these patients.

Analysis of the candidate genes on independent datasets
To further strengthen our results, we validated the
most interesting markers using two independent data-
sets, where LUAD and LUSC samples were profiled
by transcriptomics techniques with the same experi-
mental setup.
For this analysis, we retained the candidate genes

reported in Table 2 for which LUAD’s and LUSC’s
upper and lower quartiles were sufficiently separated
when compared for the same gene so that they may
suggest a potential value as a marker for classification
of the two lung cancer types. We then extracted the
ones for which gene quantification was available in
the validation datasets, and we used unsupervised
clustering to verify if they could separate LUAD and
LUSC. The results are reported in Fig. 6 and
Additional file 4: Figure S3. We could not validate
the clustering potential of mucins (except for
MUC5B) since the probes for these genes were not
available upon the probe set collapse step. MUC5B,
HAPBP2, SPDEF, ICA1, FZD7, CHST7, SLC2A9,

ACOX2, KCNK5, ARSE, P2RY1, CSTA, ALDOC, and
ANXA8 seem to retain the capability of separating
the two lung cancer types. Of note, KCNK5 had been
previously proposed in another study [10].

Discussion
Candidate genes in lung cancer and other cancer types
We performed a literature search to see if any of the
candidate genes (Table 2) had been reported in can-
cer studies. Mucins will be discussed more in de-
tail below. We discussed below the most interesting
results.
The hyaluronan binding protein 2 (HABP2) is an

extracellular serine protease, which is up-regulated
in LUAD and down-regulated in LUSC has been as-
sociated with lung cancer [83]. In lung cancer, the
up-regulation of hyaluronan in the extracellular
matrix regulate the activity of HABP2 and its regula-
tion of cancer progression has been shown in LUAD,
in agreement with our results [83]. Our data and the
previous findings suggest that HABP2 may be a valu-
able target to study for diagnostic and therapeutic
purposes.
KCNK5 is a two-pore potassium channel and be-

longs to the K2P family, i.e., a channel which facili-
tates the extracellular leak of potassium ions [84].
We found this gene to be up-regulated in LUAD
and down-regulated in LUSC. Overexpression of
members of the K2P family was associated with
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Fig. 5 Network of transcription factors and their target genes in the co-expressed module 1 of LUAD (a) or LUSC (b). The data have been plotted
using Cytoscape version 3.3.0
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different cancer types [84] with some exceptions,
such as KCNK4 which was down-regulated. Our re-
sults suggest that KCNK5 may be used to classify
the two lung cancer types under investigation and
that this gene is not necessarily only down-regulated
in cancer.
Cystatins, such as CSTA, are cysteine protease in-

hibitors that regulate different physiological pro-
cesses [85]. Proteins of this superfamily are classified
as tumor suppressors by TSGDB. CSTA is down-
regulated in LUAD and up-regulated in LUSC, in
our study. CSTA deregulation has been associated
with different cancer types [85], and specifically

breast cancer. Breast tumors with positive CSTA ex-
pression are associated with poor patient outcome
[85]. The study on the potential of CSTA as a prog-
nostic marker in LUSC deserves further investiga-
tion, along with its regulation by the FOS
transcription factor (Fig. 5).
The purinergic receptor P2Y1 (P2RY1) was down-

regulated in LUAD but up-regulated in LUSC, ac-
cording to our study and also identified as a possible
LUSC oncogene by Moonlight. Of note, its levels can
be regulated by the miR-34b-3p microRNA in blad-
der cancer [86]. Low levels of P2RY1 contribute to
the repression of chemoresistance in a concerted

Table 2 Candidate genes to discriminate between LUAD and LUSC in terms of gene expression levels, functions or prognosis

GENE DEA Mfuzz cluster CEMiTool Module DISEASES OG TSG

MUC5B Up (LUAD)
Down (LUSC)

Cl6(LUAD)
Cl2(LUSC)

M1(LUAD) None None None

HABP2 Up (LUAD)
Down (LUSC)

Cl3(LUAD)
Cl4(LUSC)

M1(LUAD) 3.8 None None

MUC21 Up (LUAD)
Down (LUSC)

Cl2(LUSC) M1(LUAD) 4.0 None None

KCNK5 Up (LUAD)
Down (LUSC)

Cl3(LUAD)
Cl2(LUSC)

M1(LUAD) None None None

ICA1 Up (LUAD)
Down (LUSC)a

Cl6(LUAD)
Cl2(LUSC)

M1(LUSC) 1.9 None None

CSTA Down (LUAD)
Up (LUSC)

Cl4(LUAD)
Cl1(LUSC)

M1(LUSC) 3.5 None TSGDB (CST5, CST6)

P2RY1 Down (LUAD)
Up (LUSC)

Cl4(LUAD)
Cl1(LUSC)

M1(LUSC) 2.2 Moonlight (LUSC, P2RY14)
COSMIC(P2RY8)

None

ANXA8 Down (LUAD)
Up (LUSC)

Cl5(LUSC) M1(LUSC) 2.4 None TSGDB (ANXA1, ANXA7)

FZD7 Up (LUSC) Cl4(LUAD)
Cl1(LUSC)

M2(LUSC) 3.7 ONGENE (FZD2)
Moonlight (LUSC, FZD4)

None

ITGA6 Up (LUSC)c Cl4(LUAD)
Cl1(LUSC)

M1(LUAD) 4.2 ONGENE (ITGA3)
Moonlight (LUSC, ITGA8)

TSGDB (ITGA5,ITGA7, ITGAV)

CHST7 Up (LUSC)b Cl4(LUAD)
Cl1(LUSC)

M2(LUSC) 1.6 None TSGDB (CHST10)

ACOX2 Down (LUSC) Cl2(LUSC) M1(LUAD) 2.2 None None

ALDOC Up (LUSC) Cl1(LUSC) M1(LUAD) 3.9 None None

AQP5 Down (LUSC) Cl4(LUSC) M1(LUAD) None None None

ARSE Up (LUAD)a

Down (LUSC)
Cl2(LUSC) M1(LUAD) None None None

FABP5 Down (LUAD)
Up (LUSC)

Cl4(LUAD)
Cl5(LUSC)

M1(LUSC) None MoonlightL (LUAD,FABP7) TSGDB (FABP3)

SLC2A9 Down (LUAD)a Cl4(DOWN)
Cl5(LUSC)

M1(LUSC) None None None

NRCAM Down (LUAD)a

Up (LUSC)
Cl1(LUSC) M2(LUSC) 2.6 Moonlight (LUSC, OCG) TSGDB

AGR2 Up (LUAD)
Down (LUSC)b

Cl3(LUAD) M1(LUAD) 4.1 None None

SPDEF Up (LUAD)
Down (LUSC)b

Cl1(LUAD)
Cl2(LUSC)

M1(LUAD) 3.6 None None

‘N.S.’ indicates not significant results. The DISEASES Z-score are provided in the table. a, b, and c indicate a significant DE when the unified recount, the TCGA pair
dataset or both are used. We did not find any predicted dual-role genes for any of the candidate genes
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action with CCND2 [86] and, in light of our results,
it may be an interesting target in LUSC.
Annexin A8 (ANXA8) is down-regulated in LUAD

and up-regulated in LUSC, according to our study has
been classified as tumor suppressors in TSGDB, sug-
gesting that a similar role in LUAD would benefit of
further investigation. At the best of our knowledge,
the role of ANXA8 in calcium fluctuation-mediated
HIF-1α transcriptional activation and cell viability has
been studied only in pancreatic cancer [87].
Frizzled-7 (FZD7) is up-regulated in LUSC, and it

is a protein associated with the WNT signaling path-
way [88] - a usual suspect in cancer. WNT proteins
are secreted glycoproteins, which bind an extracellu-
lar cysteine-rich domain of the Frizzled receptor
family. FZD7 has been showed as up-regulated in a
variety of cancer types including colorectal cancer,
hepatocellular carcinoma, and certain breast cancer
subtypes [89]. Our data link FZD7 to LUSC. Other
genes of the family are classified as possible onco-
genes in our study, and the up-regulation of FZD7
would be worth further studies in LUSC since FZD7
is a known pharmacological target. Small peptides or
molecules have been reported to inhibit its activity
and, as a consequence, suppress the β-catenin-
dependent tumor growth [89].
Integrin alpha 6 (ITGA6) is also up-regulated in

LUSC in our study and other members of the ITGA
family classified either as oncogenes or tumor sup-
pressors (Table 2). Integrins mediate interactions with
the extracellular matrix but also drive intracellular

communication from the tumor microenvironment
leading to migration and invasion. In this context,
ITGA6 has been linked to cancer stemness and inva-
siveness in breast cancer through a HIF-dependent
mechanism [90]. Its HIF-dependent up-regulation
could be worth exploring in LUSC as well, especially
in connection to the link between stemness and re-
sistance to cancer therapy [91].
AQP5 is down-regulated in LUSC and is an aquaporin

protein, i.e., a water channel [92]. AQP5 has been reported
with a role in invasion in lung cancer, an effect mediated at
the protein level and connected with its phosphorylation
[92]. The fact that we observed it down-regulated in LUSC,
thus, does not imply that its protein level and the protein
activity will be affected in this lung cancer type.
FABP5 is a fatty acid-binding protein, which we found

down-regulated in LUAD and up-regulated in LUSC.
Other FABP proteins have been classified as tumor
suppressors or oncogenes, according to our analyses
(Table 2), suggesting a complex context-dependent role
in cancer. FAB5 has been linked with tumor cell growth,
metastasis, and, in certain cases, poor prognosis in other
cancer types [93–95]. Therefore, it would be a valuable
future direction to explore its role as a marker discrim-
inating LUAD and LUSC in lung cancer tissues.
NRCAM is a neuron-glia-related cell adhesion molecule

which is mostly expressed in neurons. Recently, it was also
linked to other tissues and cancer types, such as lung
adenocarcinoma [96] or thyroid [97]. Our findings are con-
sistent with its down-regulation in LUAD, due to overex-
pression of CDH2 [96]. On the other hand, NRCAM is
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Fig. 6 In silico validation of the candidate genes using other transcriptomics data for lung cancer. The figure shows the groups of candidate
genes that were able to separate LUAD and LUSC samples selected by the two microarray studies used for validation. Panel a is related to the
first study (see also Additional file 4: Figure S3), panel b to the second dataset (see In silico validation of the candidate genes on independent
cohorts section for more details). The figure has been generated with R/CRAN package gplots version 3.0.1.1
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clearly up-regulated in LUSC, entailing a promising marker
to discriminate the two lung cancer types.
Another interesting candidate is AGR2, which has

been associated with lung cancer, as a prognostic marker
[98–100]. Our results point to an up-regulation of
AGR2 in LUAD, consistently with the findings in litera-
ture and down-regulation in LUSC.

Genes involved in O-glycosylation of mucins are
differentially regulated in different lung cancer types
Our analyses pinpointed a differential regulation of
different genes involved in the O-glycosylation of mucins.
These genes are up-regulated in LUAD and down-
regulated in LUSC.
Mucins are heavily glycosylated proteins where gly-

cosylation is relevant to their function. Under normal
conditions, mucins serve as a protective barrier for
epithelial lung cells [101]. When dysregulated, these
proteins promote cancer progression and metastasis
[102]. During cancer progression, mucins can alone
or in combination with different tyrosine kinase re-
ceptors mediate cell signals for growth and survival of
cancer cells. Expression of certain mucins, such as
MUC1 or MUC4, have been associated with lung
cancer in other studies, and associated with poor
prognosis for some patients [102]. Due to this key
role in oncogenesis, mucins are emerging as attractive
targets for novel therapeutic approaches to treat lung
cancer [102].
Our results suggest that both membrane-bound

(e.g., MUC21) and secreted mucins (e.g., MUC5B)
contributes to the differences between LUAD and
LUSC.
Tumors which overexpress MUC5B have been

linked to tendencies for relapse and/or metastasize
postoperatively in comparison to non-expressing tu-
mors [103]. This finding suggests that LUAD pa-
tients could suffer from these events more often
than the ones with a LUSC subtype. MUC5B, which
we found up-regulated in LUAD and down-regulated
in LUSC (Table 2), has also been associated with an
aggressive profile in breast cancer. This gene could
be targeted to slow down tumor growth and metas-
tasis [104]. Moreover, MUC5B silencing was shown
to reduce chemo-resistance of breast tumor cells
[105], suggesting this as an interesting target also for
LUAD, where we found MUC5B as one of the up-
regulated genes. Mucin expression and its link to
chemotherapy resistance has been reported even
more broadly in cancer [106].
Mucins are amenable drug targets, as attested by

MUC1 which can be targeted by immunotherapy
thanks to the availability of T-cell specific antigenic
epitopes. Vaccines have been proposed, along with

aptamer-based drugs (for a review [102]). Despite
several studies on mucins in lung cancer, these have
only scraped the surface of a complex and intricate
interplay where also the interactions between the dif-
ferent mucins can add an extra level of undisclosed
complexity. Our results suggest that more studies fo-
cusing specifically on MUC5B and MUC21 are
needed. The opposite behavior of these two genes in
LUAD and LUSC and the overexpression in LUAD
suggest the possibility of exploiting them (or the en-
zymes regulating mucin glycosylation) as drug
targets for LUAD-specific therapy.

LUSC and the activation of oncogenic pathways for evasion
of antitumor activity
Generally, an enhanced immune response in cancer
can be exploited for therapeutic purposes [107]. We
here observed that LUSC seems to be immune-
compromised with a signature of down-regulation of
the complement cascade and other key genes for im-
mune response. Our results nicely fit within the
overall difference in tumor immune landscape in
LUAD and LUSC [108]. To further verify that the
differences do not come from differences in the
composition of the tumor microenvironment be-
tween the two cancer types, we also carried out an
exhaustive set of differential expression analyses, cor-
recting for the population of the different cellular
infiltrations.
Recently, five main oncogenic pathways have been

reported [109] that are associated with the evasion of
antitumor immunotherapy. The activation of these
pathways relies on the dysregulation or mutations of
usual suspects in cancer such as p53, cMYC, and the
β-catenin/WNT. These genes are the upstream
regulators of the evasion pathways and act through a
well-orchestrated cascade of other more specific
deregulated set of genes (Fig. 7). The oncogenic path-
ways for evasion of immune response in tumor cells
have the ultimate effect of impairing the induction or
execution of a local antitumor immune response,
which also explains the resistance to certain therapies.
We compared the driver up- or down-regulated genes
associated to each of these oncogenic pathways [109]
with the up- and down-regulated genes in LUSC
found in our study. We observed that three evasion
pathways (colored in Fig. 7) would be the most suit-
able candidates to explore further for LUSC, in the
direction of the design of new tailored therapies.

Conclusions
This study allowed to shed new light on the differ-
ences between two lung cancer types, i.e., LUAD and
LUSC. In addition, we here provided a solid
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biostatistics and bioinformatics framework for the in-
terpretation of gene expression data. Our data high-
light the importance of a careful assessment of
protocols for differential expression analyses since
too simplistic approaches without the proper infor-
mation in the design matrix can result in discordant
signatures.
We predicted two potential dual role genes (IL6 and

KRT23) in LUAD and LUSC. Our analyses also showed

that LUAD and LUSC differentiate for the biological pro-
cesses that are altered. Specifically, LUAD features an up-
regulation of genes involved in the O-linked glycosylation
of mucins, where MUC5B and MUC21 has the potential
for target therapy against LUAD. On the other hand, LUSC
seems to be associated with a down-regulation of the com-
plement cascade genes and more generally the innate im-
mune response. These events might be triggered, in LUSC,
by the activation of three key oncogenic pathways,

Fig. 7 Illustration of the three oncogenic pathways to evade tumor immune response, which could be activated in LUSC. The pathways that are
colored in the figure are the ones where the driving down- and up-regulated genes have been found deregulated also in our dataset of DE
genes in LUSC. The illustration has been generated with Adobe Photoshop CC 2014
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stimulated by p53, cMYC and β-catenin that impair the in-
duction of execution of a local antitumor immune re-
sponse. Future studies on the role of these pathways in
LUSC may provide interesting opportunities for drug treat-
ments tailored to this challenging lung cancer type.
We also identified and validated in silico a gene set that

could be explored to classify LUAD and LUSC in cancer
patient samples. Some of the candidate genes and path-
ways identified in our study are usual suspects in lung
cancer or other cancer types, attesting the validity of our
approaches. Moreover, other candidate genes have been
poorly investigated, and they could entail novel mecha-
nisms in LUAD and LUSC, deserving attention in future
investigations.
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