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Abstract

Background: Hepatocellular carcinoma (HCC) is one of the major causes of tumor death; thus, the identification of
markers related to its diagnosis and prognosis is critical. Previous studies have revealed that epithelial-to-mesenchymal
transition (EMT) is involved in tumor invasion and metastasis, and the forkhead box protein C2 (FOXC2) has been shown
to promote tumor cell proliferation, invasion, and EMT. In the present study, we examined the clinicopathological
significance of FOXC2 and EMT-related markers in clinical HCC specimens and identified factors related to the diagnosis
and prognosis of HCC.

Methods: The expression of FOXC2 and EMT-related markers was evaluated by immunohistochemistry in 84 cases of
hepatocellular carcinoma.

Results: A high expression of FOXC2 was observed in 26 of 84 cases, and expression was significantly correlated with
background liver cirrhosis, poor tumor differentiation, high serum AFP, and elevated cell proliferation markers. In addition,
this high expression was related to the induction of the Cadherin switch and vimentin expression and was an independent
predictor for poor prognosis.

Conclusion: The high expression of FOXC2 in HCC is correlated with tumor malignancy and poor prognosis, suggesting
that FOXC2 may be an important prognostic factor for HCC.
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Background
Hepatocellular carcinoma (HCC) is a cancer with a poor
prognosis [1]. Recently, advances in molecular target ther-
apies towards advanced HCC have significantly improved
the prognosis of patients with HCC [2]. However, patients
with HCC with metastasis or refractory disease often
require more effective and intensive therapeutic strategies.
Therefore, to improve the prognosis of patients with

HCC, novel therapeutic targets related to the malignant
potential of HCC need to be identified.
Epithelial-to-mesenchymal transition (EMT) is an

important cellular process which related to a develop-
mental switch from an epithelial to a mesenchymal
phenotypes [3, 4]. This process is essential for the
embryonic development, moreover, EMT is also thought
one of the vital molecular mechanisms inducing tumor
invasion and metastasis. TGF-β is a pleiotropic factor
that has a physiological function in regulating cell prolif-
eration, differentiation, development, wound healing,
and angiogenesis [5, 6]. In addition, TGF-β induces
EMT, which has been well established as an important
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mechanism of cancer progression. Several down-stream
transcription factors of TGF-β, such as the basic
helix-loop-helix protein Twist, the zinc-finger proteins
Snail and Slug, the E-box-binding protein ZEB1, and the
forkhead box protein C2 (FOXC2), have been reported
to induce EMT through the repression of E-cadherin
expression, thereby playing pivotal roles in tumor metas-
tasis [4, 7].
Functionally, FOXC2, also known as mesenchyme

forkhead 1, is known as an important regulator of
lymphangiogenesis [8], and FOXC2-knockout mice dis-
play a lymphedema-distichiasis syndrome [9]. FOXC2 was
previously reported to function as an EMT-related gene
during not only tumor progression but also organ repair
[7, 10]. We previously reported the significance of FOXC2
expression in patients with esophageal cancer and cholan-
giocarcinoma, and a high expression of FOXC2 in tumor
tissues was found to be related to cancer progression and
a poor prognosis [11, 12]. These data were consistent with
other cancers, including breast, colorectal, nasopharyn-
geal, esophageal, lung, ovarian, cholangiocarcinoma, and
osteosarcoma [11–17]. Yang et al. have shown that the
up-regulation of FOXC2 is associated with tumor size,
vascular invasion, advanced TNM stage, promoting prolif-
eration, and invasion in HCC [18]. However, few studies
have examined the expressional relationship of FOXC2
and other EMT-related genes in HCC.
The purpose of this study was to clarify the clinical

significance of FOXC2 and the relationship between
FOXC2 and EMT-related proteins, such as E-cadherin,
N-cadherin, and vimentin, in HCC. For this purpose, we
carried out immunohistochemistry analysis to evaluate
the relationships between FOXC2 expression, clinico-
pathological factors, and EMT-related proteins in clinical
HCC samples.

Methods
Patient and samples
Eighty four patients with HCC who had undergone surgical
resections at Gunma University Hospital between 1996 and
2014 were included in the study. The ages of the patients
ranged from 48 to 89 years old. The tumor stage was classi-
fied according to the 6th Japanese tumor-node-metastasis
(TNM) classification of Liver Cancer Study Group of Japan.
Written informed consent for the collection of specimens
was obtained from all participating patients with HCC, and
the study protocol was approved by the local Ethics
Committee.

Tissue microarrays (TMAs)
Clinical formalin-fixed, paraffin-embedded (FFPE) samples
were stored in the archives of the Clinical Department of
Pathology, Gunma University Hospital. After reviewing the
H&E-stained slides, two representative tumor area were

marked on FFPE tissue blocks. These tumor areas were
extracted as tissue core by using a cylinder. The diameter
of tissue core was 2.0 mm. A manual arraying instrument
(Beecher Instruments, Silver Spring, MD, USA) was used
to assemble the paraffin blocks into TMAs, as previously
described [19].

Immunohistochemistry (IHC)
A 4-μm section was cut from paraffin blocks of samples.
Each mounted sections were deparaffinized, rehydrated,
and incubated with fresh 0.3% hydrogen peroxide in
methanol for 30 min at room temperature to block
endogenous peroxidase activity. The sections were then
heated in boiled 10 mM citrate buffer (pH 6.0) at 98 °C
for 30 min. Nonspecific binding sites were blocked by
incubating with 0.25% Casein/1% BSA for 30 min at
room temperature. Anti-FOXC2 primary monoclonal
antibody (Abnova, Taipei, Taiwan) was used at a dilution
of 1:100 at 4 °C overnight, as previously described [12].
The sections were washed in PBS, and the primary anti-
body was visualized using the Histofine Simple Stain
MAX-PO (Multi) Kit (Nichirei, Tokyo, Japan) according
to the instruction manual. The chromogen 3,3-diamino-
benzidine tetrahydrochloride (Dojindo Laboratories,
Kumamoto, Japan) was applied as a 0.02% solution
containing 0.005% H2O2 in 50 mM Tris-HCl buffer
(pH 7.6). The sections were lightly counterstained with
Mayer’s haematoxylin and mounted. Negative controls
were established by omitting the primary antibody.
Other IHC was performed using the following primary
anti-bodies: anti-E-cadherin (36; Ventana Medical
Systems, Tucson, AZ, USA), anti-N-cadherin (6G11,
Dako, Glostrup, Dermark), anti-Vimentin (V9, Dako),
anti-ZEB1 (D91854, Atlas Antibodies, Stockholm,
Sweden) and anti-Ki67 (30–9, Ventana).

Immunohistochemical evaluation
The immunohistochemical FOXC2 expression was
evaluated independently by two observers. A staining
was primarily cytoplasmic in positive cases. The inten-
sity of FOXC2 staining was scored as 0, 1+, 2+, and 3+.
Grade 0, 1+, and 2+ staining was considered to be nega-
tive for FOXC2 expression, while grades 3 was considered
to be positive. E-cadherin was evaluated by proportion
score and intensity score. The proportion score are as
follows: Score 0: < 10%; Score 1: 10–40%; and Score 2: >
40%. The intensity score are follows: Score 0: negative;
Score 1: weak; Score 2: intermediate; and Score 3: strong.
Finally, the two scores are combined, and a total score of
3 or more is regarded as positive. The expression of
N-cadherin were defined as negative if membrane staining
was detected in < 20% of tumor cells. Then we defined
Cadherin switch as the samples showing both E-cadherin
negative and N-cadherin positive. The expression of
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Vimentin in the cytoplasm of > 1% of tumor cells was
defined as positive, regardless of staining intensity. The
expression of ZEB1 in the nuclei of > 1% of tumor cells
was defined as positive. The Ki67 labeling index was eval-
uated as the percentage of positive tumor cell nuclei based
of > 500 tumor cells, regardless of staining intensity. The
percentage > 1% was considered as high Ki67 labeling
index. The IHC slides were evaluated by two independent
pathologists in a blind manner.

Statistical analysis
We used EZR (Saitama Medical Center Jichi Medical Uni-
versity; http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/
statmed.html) for statistical analysis. The χ2 test and Fish-
er’s exact test were used to evaluate associations between
clinicopathologic characteristics and FOXC2 expression
intensities. To calculate and analyze overall survival and
disease-free survival, we used the Kaplan–Meier method
and the Log-rank test. Independent prognostic factors
were tested by Univariate and multivariate analyses, which

were based on the Cox proportional hazards regression
model. A statistically significant p-value was considered to
be less than 0.05.

Results
Immunohistochemical staining of FOXC2 in HCC tissues
The expression of FOXC2 was evaluated in 84 HCC
samples by immunohistochemistry. Cytoplasmic staining
of FOXC2 was primarily observed (Fig. 1a). In total, 26
of 84 HCC samples (31%) were considered high for
FOXC2 expression, whereas 58 HCC samples (69%)
were considered low for FOXC2 expression.

Expression of FOXC2 in HCC tissues and its correlation
with clinicopathological factors
Correlations between FOXC2 expression in HCC samples
and patient age, gender, liver cirrhosis, T classification,
differentiation, tumor size, pattern of tumor growth,
Fc-inf, IM, Vv, Vp, Va, serum AFP level, serum PIVKAII
level, and the Ki-67 labeling index are shown in Table 1.

Fig. 1 Immunohistochemical analysis of FOXC2, E-cadherin, N-cadherin, and Ki-67 in representative HCC tissues from an identical patient. a High
FOXC2 expression in an HCC tissue; b Low E-cadherin expression in an HCC tissue; c High N-cadherin expression in an HCC tissue; d High Ki-67
expression in an HCC tissue. Scale bar, 200 μm

Shimoda et al. BMC Cancer  (2018) 18:597 Page 3 of 7

http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmed.html
http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmed.html


High FOXC2 expression was correlated with liver cirrho-
sis (P = 0.0296), poor differentiation (P = 0.0302), high
serum AFP levels (P = 0.00078), and the Ki-67 labeling
index (P = 0.0348).

Relationship between FOXC2 expression and EMT-related
markers
We examined the relationship between FOXC2 expression
and IHC staining of the EMT-related markers E-cadherin,
N-cadherin, vimentin, and ZEB1. High FOXC2 expression
had a strong association with the induction of the Cad-
herin switch and a high expression of vimentin (Table 2;
P = 0.0414 and P = 0.0273) (Fig. 1).

Prognostic significance of FOXC2 expression in HCC
Disease-free survival rates (DFS) and the overall survival
rates (OS) of patients with HCC are shown in Fig. 2.
Patients with high FOXC2 expression had significantly
poorer prognoses than patients with low expression in
both DFS (P = 0.0022) and OS (P = 0.031). For OS,
FOXC2 expression was a prognostic factor for poor
survival in a univariate analysis (Table 3; RR 2.14, 95%
CI 1.05–4.34, P = 0.035). Additionally, the pattern of
tumor growth, T classification, and portal vein invasion
were also prognostic factors in the univariate analysis. In
the multivariate analysis, FOXC2 expression was an
independent prognostic factor for poor survival (Table 3;
RR 2.21, 95% CI 1.06–4.57, P = 0.033).

Discussion
In the present study, we demonstrated that a high expres-
sion of the EMT inducer, FOXC2, in primary HCC sam-
ples is associated with liver cirrhosis, malignant potential,
high serum AFP, and poor prognosis. Moreover, FOXC2

Table 1 Clinicopathological characteristics of patients with
hepatocellular carcinoma (HCC) according to forkhead box
protein C2 (FOXC2) expression

Parameters FOXC2 P value

Low expression
n = 58 (%)

High expression
n = 26 (%)

Age (years)

< 65 18 (31.0) 6 (23.1) 0.603

≥ 65 40 (69.0) 20 (76.9)

Gender

Male 46 (79.3) 19 (73.1) 0.578

Female 12 (20.7) 7 (26.9)

Liver cirrhosis

Negative 40 (69.0) 11 (42.3) 0.0296a

Positive 18 (31.0) 15 (57.7)

T classification

1 5 (8.6) 3 (11.6) 0.333

2 20 (34.5) 5 (19.2)

3 28 (48.3) 13 (50.0)

4 5 (8.6) 5 (19.2)

Differentiation

Well or Moderate 57 (98.3) 22 (84.7) 0.0302a

Poor 1 (1.7) 4 (15.3)

Tumor size (mm)

≤ 20 5 (8.6) 4 (18.2) 0.449

> 20 53 (91.4) 22 (81.8)

Pattern of tumor
growth

Eg 49 (84.5) 18 (55.6) 0.143

Ig 9 (15.5) 8 (44.4)

Fc-Inf

Negative 37 (63.8) 11 (42.3) 0.0948

Positive 21 (36.2) 15 (57.7)

IM

Negative 50 (86.2) 20 (76.9) 0.347

Positive 8 (13.8) 6 (23.1)

Vv

Negative 46 (79.3) 22 (81.8) 0.766

Positive 12 (20.7) 4 (18.2)

Vp

Negative 38 (65.5) 17 (65.4) 1

Positive 20 (34.5) 9 (34.6)

Va

Negative 55 (94.8) 25 (96.2) 1

Positive 3 (5.2) 1 (3.8)

AFP level (ng/ml)
(n = 73)

Table 1 Clinicopathological characteristics of patients with
hepatocellular carcinoma (HCC) according to forkhead box
protein C2 (FOXC2) expression (Continued)

Parameters FOXC2 P value

Low expression
n = 58 (%)

High expression
n = 26 (%)

Normal (≤10) 27 (55.1) 3 (12.5) 0.000777a

High (> 10) 22 (44.9) 21 (87.5)

PIVKA II level (AU/ml)
(n = 69)

Normal (≤40) 19 (39.6) 11 (52.4) 0.43

High (> 40) 29 (60.4) 10 (47.6)

Ki67 labeling index

< 1% 21 (36.2) 3 (11.5) 0.0348a

≥ 1% 37 (63.8) 23 (88.5)
aStatistical significance is indicated by P < 0.05. Eg (expansive growth);
Boundary between cancer and surrounding liver tissue is clear. Ig (infiltrative
growth); Boundary between cancer and surrounding liver tissue is unclear
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accumulation was related to the induction of the Cadherin
switch and increased expression of the mesenchymal
marker vimentin.
Yang et al. have indicated that high expression of

FOXC2 is related to tumor size, vascular invasion,
advanced TNM stage, and promoting proliferation and
invasion in HCC [18]. They focused on AKT-mediated
MMP-2 and MMP-9 to explain FOXC2-related cancer
aggressiveness. Conversely, by focusing on a correlation
between high FOXC2 and Cadherin switch, we showed

that high expression of FOXC2 in clinical HCC samples is
involved in EMT-related tumor aggressiveness.
High expression levels of FOXC2 in HCC were signifi-

cantly associated with the low expression of E-cadherin/
high N-cadherin, termed the Cadherin switch, and accu-
mulation of the mesenchymal marker vimentin. FOXC2
has been reported to be an important EMT inducer via
TGF-β signaling in several cancers [7, 17, 20, 21]. More-
over, FOXC2 can induce the expression of cancer-related
genes, including AKT, GSK3β, and Snail [22]. The activa-
tion of the AKT-GSK3β-Snail signaling pathway in colon
cancer has been previously reported to induce EMT. From
these observations, it is suggested that suppression by
targeting FOXC2 may be important to overcome EMT in
patients with clinical HCC.
High expression of FOXC2 in HCC was significantly

associated with the progression of cirrhosis in the back-
ground liver. Hepatic cirrhosis is known to be induced
by viral infection, alcohol, fatty liver, and non-alcoholic
steatohepatitis [23, 24]. At that time, it was reported that
the activation of the TGF-β/Smad signal is likely an
important key regulator, and TGF-β inhibitors suppress
hepatic fibrosis [25]. In breast cancer cell lines, FOXC 2
is known to be induced by the activation of TGF-β
signaling [7]. These data suggest that TGF-β signaling
may be one of the main FOXC2 regulation mechanisms
and that hepatic cirrhosis, induced by TGF-β signaling,
may cause HCC expressing high FOXC2 with aggressive
phenotypes.
In the present study, we clarified the positive correlation

between FOXC2 expression and Ki-67 accumulation. Cui
et al. previously reported that FOXC2 can facilitate the
proliferation ability in pancreatic cancer via the activation
of β-catenin/TCF signaling, which is well known as a pro-
liferation regulator in cancer cells [26]. Moreover, FOXC2

Table 2 The relationship of FOXC2 expression and EMT-related
markers in 84 HCC samples

Parameters FOXC2 P value

Low expression
n = 58 (%)

High expression
n = 26 (%)

E-cadherin

Negative 23 (39.7) 13 (50) 0.476

Positive 35 (60.3) 13 (50)

N-cadherin

Negative 31 (53.4) 16 (61.5) 0.635

Positive 27 (46.6) 10 (38.5)

Cadherin switch

Negative 53 (91.4) 19 (73.1) 0.0414a

Positive 5 (8.6) 7 (26.9)

Vimentin

Negative 58 (100) 23 (88.5) 0.0273a

Positive 0 (0) 3 (11.5)

ZEB1

Negative 32 (55.2) 16 (61.3) 0.639

Positive 26 (44.8) 10 (38.7)
aStatistical significance is indicated by P < 0.05

a b

Fig. 2 Relationship between postoperative survival and FOXC2 expression in 84 patients with HCC. Kaplan–Meier curves of the low expression of
FOXC2 and high expression of FOXC2 groups are shown. a A high expression of FOXC2 indicated a poor prognosis for the disease-free survival
rate (P = 0.0022). b A high expression of FOXC2 indicated a poor prognosis for the overall survival rate (P = 0.031)
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has been known to promote cell proliferation through the
activation of MAPK and AKT pathways [27]. Moreover,
we previously reported that FOXC2 suppression by RNA
interference induces anti-proliferative activity in esopha-
geal cancer cells and cholangiocarcinoma cells [11, 12].
Thus, FOXC2 may be an important regulator in cancer
proliferation in not only HCC but also other cancers.
Many studies have reported that FOXC2 is related to

chemotherapeutic resistance in several cancers [28–31].
Indeed, FOXC2 suppression may inhibit EMT induction
and multidrug resistance in basal-like breast cancer and
nasopharyngeal cancer [30, 32]. On the other hand, Zang
et al. clarified that FOXC2 accumulation, induced by long
non-coding RNA FOXC2-AS1, can increase the expres-
sion of the multidrug-related gene ATP binding cassette
subfamily B member 1 (ABCB1) [33]. As mentioned
above, FOXC2 appears to be related to cancer aggressive-
ness, including proliferative marker accumulation and
EMT induction/Cadherin switch in HCC. Targeting
FOXC2 may be effective to overcome aggressive pheno-
types and therapeutic resistance in HCC.
Interestingly, Yu et al. reported a new FOXC2-targeting

strategy using the natural compound resveratrol, which is
known as a beneficial compound found in red wine, which
suppressed FOXC2 expression in lung cancer cells via
miR-520 h suppression [34]. Actually, resveratrol has been
reported to suppress the viability of HCC cells [35–37];
therefore, the administration of resveratrol in patients
with clinical HCC may be a good therapeutic candidate to
overcome HCC aggressiveness via targeting FOXC2.

Conclusions
In conclusion, we have shown that FOXC2 expression in
HCC is associated with several factors, including poor sur-
vival, poor differentiation, serum AFP levels, proliferation

marker Ki67 expression, and the Cadherin switch. High
FOXC2 expression levels may be a powerful marker of
aggressive phenotypes and poor survival in patients
with HCC.
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