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Abstract

Background: Emerging evidence suggests molecular and phenotypic association between treatment resistance
and epithelial-mesenchymal transition (EMT) in cancer. Compared with the well-defined molecular events of miR-
200a in EMT, the role of miR-200a in therapy resistance remains to be elucidated.

Methods: Breast cancer cells transfected with mimic or inhibitor for miR-200a was assayed for chemoresistance in
vitro. miR-200a expression was assessed by quantitative real-time PCR (gRT-PCR) in breast cancer patients treated
with preoperative chemotherapy. Luciferase assays, cell proliferation assay were performed to identify the targets of
miR-200a and the mechanism by which it promotes treatment resistance. Survival analysis was used to evaluate the
prognosis value of miR-200a.

Results: In this study, our results showed ectopic expression of miR-200a promotes chemoresistance in breast cancer
cell lines to several chemotherapeutic agents, whereas inhibition of miR-200a enhances gemcitabine chemosensitivity
in resistance cancer cells. We found overexpression of miR-200a was closely associated with poor response to
preoperative chemotherapy and poor prognosis in breast cancer patients. Furthermore, knockdown of YAP1
and TP53INP1 phenocopied the effects of miR-200a overexpression, and confirmed that TP53INP1 is a novel
target of miR-200a. Remarkably, TP53INP1 expression is inversely correlated with miR-200a expression in Breast
cancer cell lines. Taken together, these clinical and experimental results demonstrate that miR-200a is a
determinant of chemoresistance of breast cancer.

Conclusions: Upregulated miR-200a enhances treatment resistance via antagonizing TP53INPT and YAPT in
breast cancer.
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Background

Breast cancer is one of the leading causes of cancer death
among women. Although Exciting progress has been made
with the chemotherapy of breast cancer, the development
of chemoresistance remains a major obstacle to successful
treatment of breast cancer [1]. A better understanding of
the mechanism of chemoresistance in breast cancer is
needed to offer more effective treatment and improve
prognosis.
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Accumulating evidence indicates that altered miRNA
expression, such as miR-193a, miR-504 and miR-125b
had been implicated in the response of tumor cells to
chemotherapy and affected the sensitivity of cancer cells
to treatment [2-4]. miR-200a is known to suppress
Epithelial mesenchymal transition (EMT) [5-7]. Tumors
undergoing EMT has been shown to resist conventional
chemotherapy [8, 9]. The molecular events of miR-200a
linking EMT are becoming well defined, while the role
of miR-200a in therapy resistance remains unclear.

Our previous study has shown overexpression of
miR-200a promotes anoikis resistance and metastasis
in human breast cancer. In present study, we found
TP53INP1 as a novel target of miR-200a. We show
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that TP53INP1 and YAP1 are direct targets of miR-
200a that contribute to the ability of miR-200a to
promote chemoresistance. In summary, we combined
the results to establish a role for miR-200a in
chemoresistance.

Materials and methods

Cell lines and breast tumor specimens

The cell lines MDA-MB-231 (HTB-26™), MDA-MB-436
(HTB-130™), MDA-MB-453 (HTB-131"), MDA-MB-468
(HTB-132™), BT-549 (HTB-122™), ZR-75-1 (CRL-1500™),
ZR-75-30 (CRL-1504™), T47D (HTB-133 ™), MCEF-7
(HTB-22™), SK-BR-3 (HTB-30™) and MCF-10A (CRL-
10317™) were obtained from American Type Culture
Collection (ATCC) and maintained in complete growth
medium according to the ATCC-recommended culture
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conditions. HBL-100 was obtained from the Shanghai
Cell Bank Type Culture Collection Committee
(CBTCCC, Shanghai, China) and cultured in DMEM
(Gibco, Gaithersburg, MD, USA) supplemented with
10% fetal bovine serum (FBS) (Gibco). Mycoplasma
testing was routinely conducted by HD Biosciences. All
cells were stored in liquid nitrogen and used for no
more than 6 months after being thawed.

Patients with locally advanced breast cancer (>5 c¢cm
in diameter or with clinically palpable axillary adeno-
pathy) received preoperative chemotherapy, weekly
paclitaxel (80 mg/m2) and carboplatin (AUC=2). All
human breast cancer specimens were obtained from
patients who were diagnosed with breast cancer and
underwent surgery at the Shanghai Cancer Center
during 2003-2009 (7 =110). All specimens contained
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Fig. 1 miR-200a promoted chemoresistance in breast cancer cell lines. a MDA-MB-231 cells that had been transfected with the miR-200a mimic
or the miR-Ctrl were treated with 5 uM cis-platin and stained with TUNEL-TMR red, phalloidin-FITC for actin and DAPI for the cell nucleus. b The
confocal TUNEL analysis showed that the miR-200a-transfected MDA-MB-231 cells had lower levels of apoptosis than the miR-Ctrl-transfected
MDA-MB-231 cells. ¢ Apoptosis was evaluated in ZR-75-30 cells after treating with cis-platin and staining with Annexin-V at 48 h. The flow
cytometry profile depicts Annexin-V-FITC staining on the x-axis and PI staining on the y-axis. The number represents the percentage of early
apoptotic cells in each condition, and (d) Mean + SEM of apoptotic cells from three different experiments. e After cis-platin treatment, the
transfected cells were lysed for western blotting. The protein levels of cleaved caspase-3 were normalized to GAPDH
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over 90% tumor cells and were stored in liquid nitro-
gen until analysis. The study was approved by the
Ethics Committee of the Cancer Hosipital, Fudan
University and each patient gave written informed
consent to participation in this research.

siRNA, miRNA, plasmid construction, transfection, and
luciferase assays

Specific siRNAs and scrambled siRNA were purchased
from Genepharma, and miR-200a mimics, antago-
miRNA, and negative controls were obtained from
Ribobio. MicroRNA-200a represents miR-200a-5p in
the current study. Transfection of siRNA were same
as previously described [10]. The negative controls
had no detectable effects in human cell lines or
tissues (Additional file 1: Table S1).
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The 3-UTR of human TP53INP1 mRNA was
cloned into the Xhol/Notl sites of the psiCHECK2
vector (Promega) using the In-Fusion® Advantage PCR
Cloning Kit (Clontech). Luciferase assays were con-
ducted as we previously reported [10]. The primers
are listed in Additional file 1: Table S1.

Immunoblotting

Immunoblotting was performed using a standard
method [10]. Primary antibodies used were: anti-p73,
anti-cleaved caspase-3, and anti-Bim (Epitomics); anti-
Noxa (AbD Serotec); anti-YAP1, anti-Bax, and anti-
GAPDH (Proteintech); and anti-TP53INP1 (Prosci).
Secondary  antibodies used were horseradish
peroxidase-conjugated anti-rabbit and anti-mouse IgG
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Fig. 2 Ectopic expression of miR-200a promoted chemoresistance in breast cancer cell lines to multiple agents. Inhibition ratio of miR-200a and
miR-Ctrl transfected MDA-MB-231 (a) and ZR-75-30 (b) after treating with chemo drugs 72 h. The drug concentrations were gemcitabine 5 uM,
cis-platin 5 uM, and paclitaxel 60 nM, respectively. And the lysates were collected from MDA-MB-231(c) and ZR-75-30 (d) cells transfected with
miR-200a and miR-Ctrl to analyze the activation of Caspases-3 and -7 using the Caspase GLO assay system. Data are mean + SD of triplicate
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(Proteintech). Quantity One software (BioRad) was (Invitrogen), according to the manufacturer’s instruc-

used to quantify protein expression. tions. cDNA was synthesized from total RNA using a
specific stem-loop RT primer (50 nM) with the ReverTra
RNA extraction and quantification of miRNAs Ace’qPCR RT Kit (Toyobo). The primers for miR-200a

The tissues were homogenized with Polytron PT100. and U6 detection assays were purchased from Ribobio.
Total RNA was extracted using the Trizol reagent Real-time PCR was performed using the SYBR® Green
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Fig. 3 Overexpression of miR-200a induced chemoresistance was mediated through TP53INP1 and YAP1. a The Cytoscape map shows the intersection
between the miR-200a predicted targets and the p53/p73 interacting proteins. b Sequence alignment of human miR-200a within the 3-UTRs of
TP53INP1. The seed sequence of miR-200a matches the 3-UTRs of TP53INP1. Mutations within the 3-UTRs of TP53INP1 in the mutant luciferase
reporter constructs are as shown. The psiCHECK2-TP53INP1 vector was used for the luciferase assays. € 293 T cells were transfected with the indicated
plasmids and oligonucleotide. Firefly luciferase activity was normalized with Renilla luciferase activity. Relative luciferase activities are presented. Data
represent three independent experiments in triplicate. d The expression of TP53INP1, YAP1 and p73 were evaluated using western blotting on samples
from pMR-miR-200a and pMR-miR-Ctrl transfected MDA-MB-231 cells. GAPDH was used as a control. Downstream effectors of p73, including BAX,
PUMA, and Bim, were also detected by western blotting. The data were derived from three replicated experiments. *p < 0.05
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Real-time PCR Master Mix (Toyobo) and conducted on
the 7900HT Fast Real-Time PCR System (Applied
Biosystems). The relative amount of miRNA or mRNA
in each sample was calculated using the comparative CT
method as described in our previous study [10].

Establishment of gemcitabine resistant cell line

MDA-MB-231 cells were selected using 1 uM gemcita-
bine for 24 h, and then they were washed with PBS and
recultured in drug-free medium. The treated cells were
pulsed with 1 pM gemcitabine during periods of
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exponential growth. This cycle of treatment was re-
peated six times. The cell lines were cultured in 7 uM
gemcitabine to generate gemcitabine-resistant sublines.
Prior to the start of the experiments, the MDA-MB-231
GR cells were cultured in a gemcitabine-free medium.

TUNEL assays

Synthetic miR-200a- and miR-control-transfected cells
were plated onto poly-lysine-treated cover clips in six-
well plates. Then, cells were treated with 5 pM cis-platin
for 24 h. Apoptosis was detected using the in situ cell
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Fig. 4 Inhibition of miR-200a restored the sensitivity to chemotherapy. a The gemcitabine-resistant MDA-MB-231 cells showed greater resistance
to gemcitabine and a lower growth inhibition ratio. b The miR-200a level is increased in gemcitabine-resistant cells. ¢, d miR-200a inhibitor en-
hanced the sensitivity of gemcitabine-resistant cells to gemcitabine. Data are presented as mean + SD from at least three separate experiments.
*p < 0.05; **p < 0.01
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death detection kit with TMR red (Roche). Phalloidin-
TRITC (10 pg/ml) (Sigma) was used to stain for actin,
and DAPI was used to stain the nucleus. Confocal
microscopy was then used to analyze the results.

Proliferation assays

Cells were plated in 96-well plates. Following a 12-h
culture, drugs were added. Each condition was repeated
in triplicate, and untreated cells served as controls. After
treatment for 72 h, 10 pl per well of WST-8 (Dojindo)
was added to analyze cell viability. After culturing for
3 h, the absorbance at 450 nm was recorded using a 96-
well plate reader. The growth inhibition ratio was calcu-
lated as follows: (%) = (OD. control well — OD. treated
well) / OD. control well ¥*100%.

miRNA targets prediction

The following online software programs were used: Tar-
getScan 5.2, and BioGRID 3.1 [11, 12]. The predicted
targets of miR-200a, including the p53 family members
as well as binding proteins that may regulate the p53
pathway were exported into Cytoscape and analyzed for
evidence of intersection [13].

Statistical analysis

The results of at least 3 experiments are expressed as
the mean + SD. An ANOVA and the Student’s t test
were used to compare values between the test and
control samples. Fisher’s exact x2 test was used for
categorical patient variables. Statistical significance was
represented as P values <0.05. The optimal cut-off value
for miR-200a expression was calculated by a X-tile pro-
gram [14]. All statistical calculations were performed
using STATA software.

Results

miR-200a plays a role in chemoresistance of breast cancer
cells

In our previous studies, it has been shown that
MDA-MB-231 and ZR-75-30 had low levels of miR-
200a. To further examine the role of miR-200a in
chemosensitivity, MDA-MB-231 and ZR-75-30 cells
were transfected with miR-200a mimics, respectively.
The transfected cells were treated with 5 uM cis-
platin for apoptosis assays. First, the confocal TUNEL
analysis showed that the miR-200a-transfected MDA-
MB-231 cells had lower levels of apoptosis than the
miR-Ctrl-transfected MDA-MB-231 cells (Fig. 1la, b,
and p < 0.05). Second, Annexin V/PI staining showed
that ZR-75-30-miR-200a mimic cells were resistant to
cis-platin-induced apoptosis. In contrast, the ZR-75-
30-miR-Ctrl cells were sensitive to cis-platin-induced
apoptosis (Fig. 1c, d, and p = 0.009). Third, cleavage
of Caspase-3 was suppressed in both miR-200a mimic
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transfected cells compared with the miR-Ctrl trans-
fected cells (Fig. le). Together, these data suggest that
miR-200a plays a role in chemoresistance.

miR-200a expression promotes chemoresistance in breast
cancer cell lines

To examine the effects of miR-200a on chemosensitivity,
we stably expressed miR-200a in the human breast can-
cer cell lines MDA-MB-231 and ZR-75-30. After treating
with paclitaxel, cis-platin and gemcitabine, cells viability
and Caspase 3/7 activity of stably miR-200a and scram-
ble transfected cells were tested. In the cells viability
assay, miR-200a overexpression significantly decreases
the inhibitory effect of these chemotherapeutic agents.

Table 1 The relationship between miR-200a expression and
clinicopathologic parameters in patients with breast cancer
received preoperative chemotherapy

Clinicopathologic Number Median expression of P

parameters of cases  miR-200a (normalized Cy)?

Agey 0.731
<40 13 10.60 + 2.870
> 40 59 1036 + 2.939

Histological type 0.892
DCIS 3 1063 = 1572
IDC 69 10.39 + 2.959

Menstrual status 0.272
Menstrual 38 1005 + 2514
Menopause 34 1081 £ 3.285

TNM stage 0918
Il 28 1045 + 3.601
Il 44 1038 + 2412

Tumor size 0.839
T +T2 32 1048 + 2.639
T3+ T4 40 10.34 + 3.138

Chemotherapy response 0.0021
PD+SD 22 8.958 + 2.586
PR 50 11.04 + 2.835

ER 0277
Negative 27 9.920 + 2.648
Positive 45 10.69 + 3.045

PR 0.501
Negative 23 10.06 + 2.166
Positive 49 10.56 + 3.206

Her2 0.515
Negative 52 10.54 + 3.049
Positive 20 10.04 + 2.541

All cases 72 1040 £ 2.908

2 normalized C;y = Cy miR-200a - C; U6
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Furthermore, caspase3/7 activity assays showed that ex-
pression of miR-200a renders MDA-MB-231 and ZR-75-
30 cells resistant to paclitaxel, cis-platin and gemcitabine
induced apoptosis (Fig. 2a and b). On the other hand,
scramble transfected cells were sensitive to apoptosis in-
duced by these chemotherapy drugs (Fig. 2c and d).
These results demonstrate a critical role for miR-200a in
the chemoresistance of breast cancer cells.

Overexpression of miR-200a induced chemoresistance
was mediated through TP53INP1 and YAP1

To elucidate the mechanism behind the chemoresistance
induced by miR-200a, we used the BioGRID and Tar-
getScan databases (http://www.targetscan.org/) to search
for potential targets of miR-200a [12]. Cytoscape was
used to find intersection between predicted miR-200a
targets and p53 family binding proteins responsible for
the regulation of p53, p63 and p73 (Fig. 3a, Additional
file 1: Table S2) [13]. We found that TP53INP1 and
YAP1 are involved in p73-mediated apoptosis pathway
and have a high degree of complementarity with the
seed region of miR-200a (Fig. 3b). To confirm whether
miR-200a also directly regulates the expression of
TP53INP1, the 3" UTR region of the TP53INP1 was
cloned downstream of the luciferase open reading frame
to construct the reporter plasmid psiCHECK2-3'UTR-
TP53INP1-luc (Fig. 3b). Transient transfection of 293 T
cells with the reporters and a miR-200a mimic led to sig-
nificantly decreased reporter activity compared to the
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transfection of control oligonucleotides. Importantly, the
miR-200 mimic did not decrease the luciferase activity
of a mutant construct that contained substitutions at
three nucleotides within the miR-200a binding site (Fig.
3c). These results indicate that miR-200a downregulates
TP53INP1 expression by directly targeting its 3° UTR.

TP53INP1 and YAP1 are involved in the DNA damage-
induced p73-mediated apoptosis. We further detected the
expression proapoptotic proteins puma, Bax, bim and noxa
in miR-200a transfected cell lines. Unexpectedly, in miR-
200a transfected MDA-MB-231, the p73 pathway
expression levels of YAP1 and TP53INP1 were low, which
resulted in the transcriptional repression of the pro-
apoptosis target genes puma, Bax, bim and noxa (Fig. 3d).
No significant difference was detected in expression of p73
in mRNA level (Additional file 2: Fig. S1). These data sug-
gest that miR-200a confer insensitivity to drug-induced
apoptosis by antagonizing YAP1 and TP53INP1 expression.

In the next series of studies, we established the
gemcitabine-resistant cell line (GR), MDA-MB-231 GR
(Fig. 4a). qRT-PCR and western blot confirmed a signifi-
cantly higher miR-200a expression in gemcitabine-
resistant cell lines than in its parent cells (5.5-fold
change of mRNA level in MDA-MB-231) (Fig. 4b). The
treatment resistance of the MDA-MB-231 GR cell line
was reversed by transfecting with the antagomiR-200a
(Fig. 4c). Taken together, these data indicate that miR-
200a is a determinant of chemosensitivity in breast
cancer cells.
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Overexpression of miR-200a was associated with poor re-  chemotherapy treated breast cancer tissues were
sponse to preoperative chemotherapy and poor progno- quantified by qRT-PCR. In Table 1, we compared the
sis in patients with breast cancer relationship between miR-200a expression and clinico-

To further define the clinical relevance of miR-200a and  pathologic characters of patients received preoperative
chemoresistance, the miR-200a expression patterns were  chemotherapy followed by surgery. Chemotherapy re-
also observed in human primary chemoresistance cancer  sponse evaluation was following the RECIST guideline
tissues. The expression of miR-200a in preoperative (version 1.1) [15].
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Significantly, the expression of miR-200a correlated in-
versely and significantly with the response to chemother-
apy (Table 1; Fig. 5a; p = 0.0021). Furthermore, a survival
analysis was performed to calculate the disease-free sur-
vival (DES) for breast cancer patients (n =110). The re-
sults showed that overexpression of miR-200a correlated
significantly with shorter disease free survival duration
of patients with breast cancer. (Fig. 5b). These results
suggest the involvement of miR-200a overexpression in
chemoresistance and poor prognosis.

Knockdown of TP53INP1 and YAP1 phenocopied effects
of overexpression of miR-200a

To further identify the association between TP53INP1
and miR-200a in breast cancer, the expression of miR-
200a and TP53INP1 were examined in various breast
cancer cell lines (Fig. 6a and b). A reverse correlation
was observed between miR-200a expression and
TP53INP1 expression. The cells overexpressing miR-
200a had a lower level of TP53INP1 expression (R=
-0.780, p=0.0279, n=12) (Fig. 6¢). This data further
indicated the functional link between miR-200a and
TP53INP1 in breast cancer. Moreover, silencing
TP53INP1 and YAP1 can partly reproduce treatment re-
sistance of miR-200a overexpression (Fig. 6d and e).
These results implied that, enforced expression of miR-
200a in breast cancer cell lines conferred chemoresis-
tance via targeting YAP1 and TP53INP1.

Discussion

Despite recent advances in chemotherapy, the develop-
ment of resistance to chemotherapy remains a major
clinical issue. In this study, we demonstrate that miR-
200a plays an important role in chemoresistance. The
results indicated that high expression of miR-200a was
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closely associated with poor response to preoperative
chemotherapy. In addition, the effects of miR-200a on
chemoresistance were mediated through antagonizing
TP53INP1 and YAP1. These findings demonstrate that
overexpression of miR-200a in breast cancer is associ-
ated with chemoresistance.

Several miRNAs were known to be associated with
chemotherapeutic efficacy. miR-504 and miR-125b can
negatively regulate p53 protein level by directly binding
to specific sites within the 3 UTR of p53 mRNA [3, 4].
More recently, miR-193a, which is regulated by p63 and
targets p73, was found to be a key regulator of p63/p73-
dependent chemoresistance in squamous cell carcinoma
[2]. In this study we showed that miR-200a expression is
significantly associated with the response to chemothe-
rapy in patients with breast cancer. Furthermore, we
found miR-200a was overexpressed in gemcitabine re-
sistant breast cancer cells, and inhibition of miR-200a
can restore sensitivity to these cells. Unfortunately, we
cannot determine the dynamic expression of miR-200a
after treating with chemotherapy due to small
chemotherapy samples and a relatively limited number
of patients. Despite its preliminary character, this study
clearly indicates that miR-200a acts as a negative regula-
tor of chemotherapy induced apoptosis therefore confer
chemoresistance.

The susceptibility of tumor cells to chemotherapy in-
duced death is a major determinant in the outcome of
therapy. p73 plays a central role in chemotherapy resist-
ance; the regulatory mechanisms that control the p73
chemotherapy response are closely related to
posttranslational modifications and protein-protein in-
teractions [16]. In the current study, mRNA expression
of p73 is not significantly changed with variation of
miR-200a expression, indicating that regulation of p73 is
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not at RNA level but posttranslational level. In present
study, the results showed that miR-200a can negatively
regulate TP53INP1 expression through binding to its 3’
UTR of mRNA. TP53INP1, which is referred to as a
stress-induced protein, can be transcriptionally
activated by p53 or p73 and promote p53 phosphoryl-
ation at Ser-46 as well as apoptosis in response to
DNA damage [17, 18]. We used MDA-MB-231 (TP53
mutant) and ZR-75-30 (TP53 wild-type) in the
current study and miR-200a plays a role in mediating
chemoresistance in both cell lines. We believe p53
does not matter in miR-200a mediated chemoresis-
tance. TP53INP1 is a downstream effector of p73 in
p53-mutant cell lines [19]. Our previous study has
also shown that miR-200a functions as a repressor of
YAP1, which stabilized p73 under conditions like
DNA damage and stress [20-24]. Therefore, in re-
sponse to chemotherapy, miR-200a may lead to p73
degradation, causing attenuated transcription of
downstream proapoptotic genes, such as Bax, Bim
and Puma. miR-200a may also prevent apoptosis by
targeting TP53INP1 [25]. Thus, by targeting two
nodes of the chemo-induced apoptosis pathway, miR-
200a confers resistance to chemotherapy (Fig. 7).

Conclusions

In summary, we established a role of miR-200a in
chemotherapy resistance. We showed that miR-200a
promotes DNA damage resistance by inhibiting DNA
damage-induced apoptosis via YAP1 and TP53INP1 in
breast cancer. Deciphering the association of miR-200a
and chemoresistance might provide important insights
into tumor progression and treatment.
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