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Abstract

Background: Triple-negative breast cancer (TNBC) is characterized by a lack of estrogen and progesterone receptor
expression (ESR and PGR, respectively) and an absence of human epithelial growth factor receptor (ERBB2)
amplification. Approximately 15–20% of breast malignancies are TNBC. Patients with TNBC often have an
unfavorable prognosis. In addition, TNBC represents an important clinical challenge since it does not respond
to hormone therapy.

Methods: In this work, we integrated high-throughput mRNA sequencing (RNA-Seq) data from normal and tumor
tissues (obtained from The Cancer Genome Atlas, TCGA) and cell lines obtained through in-house sequencing or
available from the Gene Expression Omnibus (GEO) to generate a unified list of differentially expressed (DE) genes.
Methylome and proteomic data were integrated to our analysis to give further support to our findings. Genes that
were overexpressed in TNBC were then curated to retain new potentially druggable targets based on in silico
analysis. Knocking-down was used to assess gene importance for TNBC cell proliferation.

Results: Our pipeline analysis generated a list of 243 potential new targets for treating TNBC. We finally demonstrated
that knock-down of Guanylate-Binding Protein 1 (GBP1 ), one of the candidate genes, selectively affected the growth of
TNBC cell lines. Moreover, we showed that GBP1 expression was controlled by epidermal growth factor receptor (EGFR)
in breast cancer cell lines.

Conclusions: We propose that GBP1 is a new potential druggable therapeutic target for treating TNBC with enhanced
EGFR expression.
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Background
The emergence of next-generation sequencing (NGS)
technology has provided a large amount of data, much
of which is publicly available [1, 2]. Specifically, RNA-
Seq has been used for the estimation of RNA abun-
dance [3, 4], alternative splicing detection [5–7], and

the discovery of novel genes and transcripts. As such,
RNA-Seq has become an important tool in cancer
studies [6], contributing to reduced costs and less time
being spent in benchtop experiments, thus speeding up
the resolution of biological problems. However, a chal-
lenge remains in achieving intelligible data analysis and
efficient laboratory validation.
Triple-negative breast cancer (TNBC) is characterized

by a lack of estrogen and progesterone receptor expres-
sion (ESR and PGR, respectively) and an absence of
human epithelial growth factor receptor (ERBB2) amp-
lification. Approximately to 15–20% of breast malig-
nancies are TNBC [8]. Patients with TNBC often
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exhibit unfavorable histopathologic features at diagno-
sis, mainly consisting of a higher histologic grade, larger
tumor size, and frequent metastasis to the lymph nodes
[9]. As a consequence, TNBC is associated with a
shorter median time to relapse and death [10]. TNBC
represents an important clinical challenge since it does
not respond to hormone therapy, which targets the
abovementioned receptors [11, 12]. Moreover, TNBC is
highly heterogeneous [13], indicating the necessity of
identifying unifying molecular targets, which may help
guide more efficient and less toxic therapeutic manage-
ment [14, 15].
Guanylate-Binding Protein-1 (GBP1) is a member of the

large GTPase family and is induced by interferons [16]
and inflammatory cytokines [17]. GBP1 is also transcrip-
tionally regulated by epidermal growth factor receptor
(EGFR). In glioblastoma [18, 19] and esophageal squa-
mous cell carcinoma [20], GBP1 upregulation via the
EGFR signaling pathway contributes to tumor prolifera-
tion and migration both in vitro and in vivo. Moreover,
GBP1 is described as a component of the cytoskeletal
gateway of drug resistance in ovarian cancer [21, 22].
GBP1 expression is also linked to a lack of responsiveness
to radiotherapy in some tumors [23], and GBP1 is overex-
pressed in pancreatic cancer that is refractory to oncolytic
virus therapy [24].
In this work, we utilized RNA-Seq data obtained from

TNBC tissues as well as cell lines that were publicly
available from The Cancer Genome Project (TCGA)
and the Gene Expression Omnibus Portal (GEO),
respectively, to search for new therapeutic targets for
TNBC. To complement our findings, we also per-
formed transcriptomics analyses of several TNBC cell
lines. The obtained lists of overexpressed genes were
inter-crossed and compared with data from normal tis-
sues from the TCGA. Methylome and proteomic data
were integrated to our analysis to give further support
to our findings. Using this approach, we identified 243
genes, which were subsequently evaluated for their
druggability potential. GBP1 was the second gene on
the list, and knock-down of GBP1 in TNBC and non-
TNBC cell lines showed that its expression is important
for TNBC cell growth. In addition, we demonstrated
that GBP1 expression is controlled by EGFR signaling
in breast cancer cells. Thus, we present GBP1 as a new
potential druggable target for TNBC with enhanced
EGFR expression.

Methods
RNA sequencing and data processing
Total RNA extraction was performed using the RNeasy
kit (Qiagen) according to the manufacturer’s instructions.
Then, mRNA was isolated with either the Dynabeads
mRNA purification kit (Life Technologies) or the TrueSeq

RNA sample preparation kit v2 (Illumina) for samples se-
quenced at the High-Throughput Sequencing Facility
(HTSF) of the University of North Carolina at Chapel Hill
(UNC, USA) and the High-Performance Technologies
Central Laboratory (LaCTAD) of the University of Campi-
nas (UNICAMP, Brazil), respectively. After isolation, the
mRNAs were fragmented in the presence of divalent
cations and high temperatures and then employed for
cDNA synthesis with random primers using the Super-
script II Reverse Transcriptase (Life Technologies) kit.
The MDAMB231 and SKBR3 samples were sequenced at
HTSF, while the MDAMB436, MDAMB468, BT549 and
MCF7 samples were sequenced at LaCTAD. All samples
were sequenced using the paired-end × 100 base pairs
technique on the Hiseq2000 platform (Illumina). Level 3
TCGA RNA-Seq data (RNASeqV2 raw count estimates)
and related clinical data (immunohistochemical results for
ER, PR and HER2 TNBC markers) for 1093 tumor tissues
from the Breast Invasive Carcinoma (BRCA) dataset, as
well as 112 normal breast tissue samples, were down-
loaded from the Genomic Data Commons Legacy Archive
(National Cancer Institute) on November 10, 2016, from
legacy database. Cell line RNA-Seq data (accession codes
GSE58135 [25] and GSE48213 [26]) were obtained from
the Gene Expression Omnibus [27] by downloading raw
FASTQ files from the DDBJ Sequence Read Archive [28]
(DRA) or NCBI Sequence Read Archive (SRA) [29].
FastQC [30] was used to evaluate the quality of the
reads. Reads presenting a mean quality score below 30
were removed. Those that exhibited a quality score
above this threshold but included bases at the extrem-
ities with a quality score below 20 were trimmed using
Skewer [31] following guidelines published elsewhere
[32], up to a minimum of 30 base pairs. The processed
reads were aligned against the hg19 genome using
STAR [33], and transcript abundance was estimated
with RNA-Seq by Expectation-Maximization (RSEM)
[34]. We applied upper-quantile normalization to per-
form batch effects adjustments and render dataset from
distinct sources comparable [35].

Assignment of breast cancer marker status in the TCGA
cohort
The TCGA normalized log2 RSEM values for the ESR1,
PGR and ERBB2 genes were adjusted to a bimodal
curve using an approach published previously [36, 37].
Briefly, for each gene, log2 + 1-transformed [38], upper
quartile-normalized [35] gene expression was fitted for
a 2-component Gaussian mixture distribution model
with the R package mclust [39]. The highest match be-
tween the assignment and clinical data (when available)
was the criterion for selecting equal or variable vari-
ance between the two Gaussian fits. For the microarray
validation datasets, the same approach was used, but
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log2 + 1-transformed normalized intensity values were
used instead.

Differential gene expression analysis
Differential gene expression analysis of the RNA-Seq data
was performed with the R package DESeq2 [40]. The
differentially expressed (DE) genes list was restricted to
genes showing a fold-change higher or equal than +2 and
lower or equal than −2 and a false discovery ratio (FDR)
equal to or below 0.05. The microarray datasets were pre-
processed using the justRMA function from affy [41], and
probes were pooled into genes with Weighted Correlation
Network Analysis (WGCNA) [42]. For these data, the DE
gene list was generated with limma [43] using eBayes fit.
Heatmaps were constructed with the R package heatmap
[44] using Pearson’s correlation coefficient and the
complete clustering method. Venn plots were constructed
with the R package VennDiagram [45], and principal
component analysis (PCA) plots were obtained with the R
package ggbiplot [46].

Pathway enrichment, literature annotations and druggability
When possible, GeneIDs or UCSC gene names were
translated into Human Genome Organisation (HUGO)
annotations using R package org.Hs.eg.db [47]. Gene
Ontology [48, 49] annotations were obtained with the R
package [50] GO.db [51] (using Wallenius approxima-
tion and adjusting p-values with the FDR). We employed
the R package RISmed [52] to retrieve published papers
containing the target gene names and the keyword
“triple-negative breast cancer” on November 10, 2016.
Interaction network, structural information, structural
druggable criteria and druggability rankings was assessed
using the canSAR [53] database. Structural drug pockets
were assessed using PockDrug [54].

DNA methylation analysis
The ratio of the methylated probe intensity and the
overall intensity (sum of methylated and unmethylated
probe intensities), or beta value, were obtained from
the HumanMethylation450 BeadChip analysis of the
TCGA BRCA samples. The data, downloaded from the
Genomic Data Commons Archive (National Cancer
Institute) on March 15, 2016, was both quantile nor-
malized and logit transformed using wateRmelon [55].
TNBC, Non-TNBC and normal samples were separated
and comparisons at probe-level were performed with
limma [43, 56]. The closest transcription initiation site
(TSS) and island definition according to the Hidden
Markov Models CpG-Islands (HMM CG Islands) [57]
were performed with FDb.InfiniumMethylation.hg19
[58]. Shore, shelf and open sea extension of CG Islands
was determined with GenomicRanges [59]. Circos plot
[60] was performed with OmicCircos [61].

Proteomics analysis
The Cancer Proteomic Atlas (TCPA) Reverse Phase Pro-
tein Array (RPPA) data [62] replicate-based normalized
[63] were obtained from the TCPA data portal (http://
tcpaportal.org/tcpa/), separated into TNBC, Non-TNBC
and normal status and compared with limma [43, 56].
Mass spectrometry normalized and processed data avail-
able for the same tumor tissues were obtained from previ-
ous work [64]. The limma [43, 56] package was used for
the comparisons.

Cell culture
The triple-negative breast cancer cell lines BT549
(HTB-122™), HCC38 (CRL-2314™), HCC1806 (CRL-
2335™), Hs578T (HTB-126™), MDA-MB-157 (HTB-24™),
MDA-MB-231 (HTB-26™), MDA-MB-436 (HTB-130™),
and MDA-MB-468 (HTB-132™) and the non-triple-
negative MCF7 (HTB-22™), SKBR3 (HTB-30™) and T47D
(HTB-133™) lines were obtained from the American Type
Culture Collection (ATCC) and maintained in RPMI 1640
supplemented with 10% fetal bovine serum and incubated
at 37 °C under 5% CO2 in a humidified atmosphere.

Quantitative PCR
RNA samples were extracted with the TRI Reagent
(Sigma) following the manufacturer’s instructions.
cDNA synthesis was performed using GoScript™ Re-
verse Transcriptase (Promega) and a 12 μM concentra-
tion of a mixture of random hexamers and (dT)18 (7:5),
according to the manufacturer’s instructions. PCR amp-
lification was performed with Power SYBR Green PCR
MasterMix (Applied Biosystems), as instructed by the
manufacturer. Samples were analyzed on the Applied Bio-
systems 7500 real-time PCR system via the 2-ΔΔCt method
[65]. The following primers were used: rRNA18S (5′-AT
TCCGATAACGAACGAGAC-3′ and 5′-TCACAGACCT
GTTATTGCTC-3′), RPLP0 (5′-GCTCTGGAGAAACT
GCTGCCT-3′ and 5′-TGGCACAGTGACTTCACATG
G-3′), GBP1 (5′-ACTTCAGGAACAGGAGCAAC-3′
and 5′-TATGGTACATGCCTTTCGTC-3′).

GBP1 knock-down and in vitro proliferation assay
The pLKO.1-TRC.puro cloning vector (a gift from
David Root - Addgene plasmid # 10878) was modified
in our laboratory to express the monomeric Kusabira-
Orange2 fluorescence protein (mKO2) instead of the
selection marker. The shRNA contained the following
target sequences: Luc: 5′-CTTACGCTGAGTACTTCG
AC-3′; GBP1_1: TRCN0000116119 (5′-CGACGAAAG
GCATGTACCATA-3′); GBP1_2: TRCN0000116120
(5′-TGAGACGACGAAAGGCATGTA -3′). Annealed
forward and reverse oligos were cloned into AgeI-EcoRI
restriction sites. Viral particle packing was performed,
followed by titration, at the LNBio Viral Vector Laboratory
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Facility. The viruses were transduced at a multiplicity
of infection (MOI) of 0.75 with 8 μg/mL of hexadi-
methrine bromide (Sigma Aldrich, H9268) in 31.25
cells/mm2, in triplicate. The medium was replaced after
24 h of transduction and every 48 h thereafter. After 96
and 192 h of transduction, the cells were fixed with
3.7% formaldehyde in 1X phosphate buffered saline
(PBS) for 20 min at room temperature and stained with
1.5 μM DAPI (in PBS 1X) for 10 min. Images were
collected with an Operetta fluorescence microscope
(Perkin Elmer) and analyzed with Columbus (Perkin
Elmer). The total number of cells was determined by
identifying DAPI-stained nuclei, and positive-for-
transduction cells were identified as those exhibiting an
mKO2 mean and contrast fluorescence intensity above a
threshold defined in non-transduced cells (background sig-
nal). The percentage of proliferation (when the number of
the cells at time 192 > time 96) as well as the percentage of
cell loss (when the number of the cells at time
192 < time 96) were calculated using the following
equations: percentage of proliferation: 100*{[shGBP1(
Time192/Time96)]/[shLUC(Time192/Time96)]}; cell loss:
100*(1-[shGBP1(Time192/Time96)]). In order to deter-
mine GBP1 knockdown long-term effect, we cloned
shGBP1 and shLuc sequences into pLKO1-TRC.puro and
transduced four cells lines (HCC1806, MDA-MB-436,
Hs578T, MDA-MB-231). After a week of puromycin se-
lection, 31.25 cells were seeded per square millimeter into
96 wells plate, and fixed 24 h later (day 1) as described
above. Consecutive plates were fixed every 48 h up to
7 days. Number of nuclei was quantified as described
above and displayed as the ratio to the number of cells at
day 1. Cell cycle phase quantification was determined by
DAPI staining as previously described [66].

Apoptosis assay
Apoptotic/necrotic cells were quantified by Propidium
Iodide (PI) staining as previously described [67]. After
7 days of transduction and puromycin selection, cells
were collected (both adhered as well as those floating in
the media), fixed in 70% ethanol, stained with PI and an-
alyzed by BD FACS Canto II Flow Cytometer with a
488-nm laser line at the FL-3 channel. Control cells were
treated with 1 μM Staurosporine to determine the hypo-
diploid (sub-G1) peak.

EGFR activation
Cell lines were serum starved for 24 h and then treated
with 50 ng/mL of epidermal growth factor (EGF, Sigma-
Aldrich) for six hours. GBP1 expression was quantified via
qPCR, and EGFR activation was confirmed by immuno-
blotting. Cells were washed twice with cold PBS and lysed
in lysis buffer (10 mM EDTA pH 8.0, 100 mM Tris-HCl
pH 7.4, 150 mM NaCl, 10 mM sodium pyrophosphate,

100 mM NaF, 2 mM PMSF, 10 mM Na3VO4, 2 μg/ml
aprotinin, 10 μM leupeptin, 1 μM pepstatin, 1% Triton X-
100). Protein lysates were resolved in 4–20% gradient
polyacrylamide SDS gels and transferred onto PVDF
membranes via semi-dry electroblotting using six WypAll
X60 (Kimberly-Clark) filter pads under alcohol-free buffer
conditions [68] at 0.325 mA/mm2 for 7 min. The mem-
branes were blocked in 3% non-fat dry milk diluted in Tris
Buffered Saline with 0.05% Tween 20, subsequently incu-
bated with anti-p-EGFR (Y1068; Cell Signaling Technol-
ogy), then washed and probed with HRP-conjugated
secondary antibodies (Sigma) for 1 h at room temperature.
Band detection was conducted with SuperSignal West
Pico Chemiluminescent Substrate (Pierce) followed by
autoradiography film exposure.

Results
TNBC patient re-classification based on ESR, PGR and
ERBB2 expression data
Since some of the TCGA patients were not classified by
immunohistochemistry (IHC) according to Estrogen
Receptor (ER), Progesterone Receptor (PR) and Human
Epidermal growth factor Receptor 2 (HER2) status
(Additional file 1: Figure S1A), we used the correspond-
ing normalized gene (ESR, PGR and ERBB2, respect-
ively) expression levels (determined using a previously
proposed approach [36, 37]; Additional file 1: Figure
S1B) to define their tissues marker status. For this
purpose, the distribution of the expression levels of
each gene was fitted with several bimodal mixture possi-
bilities, and the results were compared with the available
IHC information (Additional File 1: Figure S1C). The best
bimodal model combination achieved 95.3% overall agree-
ment with the available information (Additional File 1:
Figure S1D and E) and was used for classification
(Additional File 2: Table S1).

TNBCs exhibit a distinct gene expression pattern
RNA-seq data from 194 TNBC and 899 non-TNBC
cases (Additional File 1: Figure S1F and G) were
employed to define DE genes using the DESeq2 [40, 69]
routine (Additional File 3: Table S2). Similarly, a DE list
was generated by comparing TNBC with normal tissues
(Additional File 4: Table S3). A total of 2924 DE genes
were identified when TNBC was compared with non-
TNBC, while 5399 DE genes were identified between
TNBC and normal tissues (Additional File 5: Figure
S2A and B, respectively). The DE list efficiently sepa-
rated both pairs of groups, as denoted by unsupervised
(Fig. 1a) and supervised (Additional File 5: Figure S2C
and D) PCA. The same trend was observed when a
hierarchical clustering analysis was conducted (Fig. 1b).
Curiously, TNBC tissues presented greater spatial sep-
aration for both components in the comparison with
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normal tissues versus the comparison with non-TNBC
tumors, as further demonstrated by exclusive clustering. A
total of 1512 DE genes were shared between the two lists,
with 1001 genes being upregulated (fold-change (FC) ≥ +2)
and 511 being downregulated (FC ≤ −2), with a FDR equal
to or less than 0.05 (Fig. 1c and d and Additional File 6:
Table S4).

TNBC cell lines are good surrogates for studying the
disease
With the aim of using cell lines to validate the new
targets, we first compared the gene expression profiles
of the cell lines with tumor tissues. To this end, we
sequenced four TNBC (MDA-MB-231, BT549, MDA-
MB-436 and MDA-MB-468) and two non-TNBC cell
lines (MCF7 and SKBR3; data processing with Skewer
[31], shown in Additional File 7: Figure S3A), referred to
as “in-house” cell lines herein. The RNA-Seq results
were confirmed by comparing the expression levels of

48 genes (displayed as log2 RSEM + 1) with the data
obtained through qPCR (1/ΔCt). The obtained Spearman
correlations varied between 0.40 (MCF7) and 0.67
(SKBR3) (Additional File 7: Figure S3B). To complement
our analysis, we added the RNA-Seq data from other six
TNBC cell lines (MDA-MB-157, Hs578T, HCC70,
HCC1806, HCC1937 and HCC1143) and two non-TNBC
cell lines (T47D and ZR75–1), which were available from
GEO (see Additional file 8, Table S5, for a description of
all presented data). All 14 cell lines were rendered com-
parable after proper normalization, despite variations in
the applied sequencing methods (Additional File 7: Figure
S3C). We first confirmed the TNBC status of the cell lines
by verifying ESR1, PGR1 and ERBB2 expression levels
(Additional File 9: Figure S4). A total of 4033 DE genes
were identified between the TNBC and non-TNBC cell
lines, with 2300 being upregulated and 1733 being
downregulated (Additional File 10: Figure S5A;
Additional File 11: Table S6). As observed in the patient

Fig. 1 DE genes in TNBC versus non-TNBC tissues and TNBC versus normal tissues from TCGA. Principal component analysis (a) and heatmap
clustering (b) performed with the DE genes revealed a clear separation between TNBC, non-TNBC and normal tissues. Correlations were obtained
through Pearson coefficient analysis; unsupervised clustering was conducted via a complete method, and both axis and log2(RSEM + 1) values
were scaled by line. c 3D Volcano plot showing non-DE (gray circles) and DE (blue circles, downregulated; red circles, upregulated) genes. Genes
showing FC ≥ +2 and FC ≤ −2 with FDR ≥ 0.05 were considered up- and downregulated, respectively. On axis Z, −log10(FDR). d Venn diagram
showing that 1512 genes were equally DE when TNBC versus non-TNBC and TNBC versus normal tissues were compared
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tissue data, unsupervised PCA clearly separated TNBC
from non-TNBC cell lines (Additional File 10: Figure
S5B), which was confirmed through hierarchical clus-
tering (Additional File 10: Figure S5C).
By crossing the TNBC and non-TNBC DE gene lists ob-

tained from the tissue and cell line analyses with the list of
DE genes obtained in the comparison of TNBC versus
normal tissues (Tri-dimensional plot in Fig. 2a; Two-
dimensional view in Additional File 12: Figure S6; Gene
list in Additional File 13: Table S7), we identified 134 com-
mon downregulated and 243 common upregulated genes
(Fig. 2b). Curiously, pairwise correlations between fold-
changes revealed a positive Pearson correlation of 0.35 in
the comparison of TNBC vs. non-TNBC tissues with
TNBC vs. non-TNBC cell lines (Additional File 12: Figure
S6, most right), indicating agreement in the overall
differential expression profiles. We then performed Gene
Ontology (GO) analysis to verify whether the two types of
samples exhibited common enriched biological processes,
molecular functions and cellular components. Several of
these processes and pathways were equally enriched in
TNBC versus non-TNBC in both tissues and cell lines
(Additional File 14: Figure S7). Considering our results to-
gether, we conclude that TNBC cells are distinct from
normal tissues, which creates an interesting window for
searching for therapeutic targets. Moreover, established
cell lines retain a high resemblance to tumor tissues, mak-
ing them good surrogates for testing potential new targets
for treating TNBC.

CpG methylation status of potential regulatory regions
concur with expression level of DE genes
Aside from the transcriptomic and genomic information
available from the TCGA, the project also make available
methylation and proteomic (Reverse Phase Protein
Array, RPPA) data for most of the samples found in the
platform. DNA methylation is the most-studied epigen-
etic modification in mammalian cells and is character-
ized by the addition of a methyl group at the carbon-5
position of cytosine residues within CpG dinucleotides.
Intrigued whether there was or not a correlation be-
tween the methylation status of CpG islands with the
gene expression FC variation found in the TNBC versus
non-TNC and TNBC versus normal comparisons, we
crossed the transcriptomic with the methylome data. To
do so, DNA methylation data (Additional File 15: Figure
S8A) was quantile normalized (Additional File 15: Figure
S8B), logit transformed (Additional File 15: Figure S8C)
and differentially methylated regions (DMR) defined in
TNBC versus Non-TNBC and TNBC versus Normal tis-
sue (Additional File 15: Figure S8D-E, Additional file 16:
Table S8). Within the generated list of hypermethylated
(FC ≥ +2) and hypomethylated (FC ≤ −2) regions found
in the TNBC samples (in comparison to non-TNBC or

normal samples) is a region already described for the
PPFIA3 gene [70]. Similarly, we found the islands
cg10029842 and cg17473600 (chr1–47,207; exon of
LHX8) as hypermethylated in TNBC samples, as
already described [70]. Hypermethylation (as opposed
to hypomethylation) of both islands are related to lower
survival time in TNBC patients [70]. Of note, we observed
more hypomethylated (than hypermethylated) probes in
TNBC, concurring with previous publications [71].
DMRs may be present at CpG islands (regions larger

than 200pb in length with >50% GC content), shores (up
to 2 kb from CpG islands), shelves (2-4 kb from CpG
islands) and open-sea (isolated CpG in the genome) [72].
CpG islands placed at regions nearby to transcriptional
start sites (TSS), when hypermethylated, are highly likely
to cause gene downregulation, the opposite also being
true [73].
When we analyzed only probes covering CpG islands,

associated them to genes based on TSS proximity and
related their methylation FC with the gene expression
FC obtained from the TNBC x Non-TNBC comparison,
we found a negative Pearson correlation of ~ − 0.17
(Fig. 2c). This data indicates that promoter region hyper-
methylation may partially explain the alteration in the
expression level (the higher the methylation status, the
lower the mRNA level) seen in the TNBC x Non-TNBC
comparison. Coherence between higher gene expression
level and lower methylation status (as well as the other
way around) can be overall appreciated in the Circos
plot of the Fig. 2d. We concluded that alteration on the
expression level status of the TNBC tissues (compared
to Non-TNBC) can be partially explained by the methy-
lation level of CpG islands placed nearby to the TSS of
these genes.

TNBC x non-TNBC gene expression fold change overall
agrees with protein level fold change
Higher or lower gene expression levels do not do not
necessarily correlate to protein levels. We used the
RPPA data to calculate protein FC in TNBC (compared
to Non-TNBC and normal tissues). Then, we compared
the protein FC with the gene expression FC of the
TNBC versus Non-TNBC and TNBC versus normal
tissues comparisons and found a Pearson correlation of
0.73 (Additional file 17: Figure S9A) and 0.46
(Additional file 17: Figure S9B), respectively. In parallel,
we used mass spectrometry (MS) data available for the
same BRCA group of patients used in our gene expres-
sion analysis [64] to evaluate the correlation between
gene expression and protein level FC in TNBC versus
Non-TNBC. Equally to the comparison performed with
the RPPA data, the MS comparison displayed a positive
Pearson correlation of 0.32 (Fig. 2E and Additional file 17:
Figure S9C). In summary, we found a positive correlation
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amongst gene expression and protein level FC in the eval-
uated gene lists.

Common overexpressed genes and druggability criteria
used to reveal new potential targets for TNBC
Using all of the gathered information, we created a pipe-
line for selecting new targets (Fig. 2f ). To do so, we took

a closer look at the list of overexpressed genes. For 10% of
the genes, there were at least two published papers linking
them to TNBC (Fig. 2g). The remaining 90% were then
evaluated with the canSAR platform to search for drug-
gable targets. canSAR is an integrated knowledge base that
combines data on biology, pharmacology, structural biol-
ogy, cellular networks and clinical annotations to provide

Fig. 2 Transcriptomics and proteomics druggability analysis generated a list of new potential protein targets for TNBC. a 3D correlation plot
between FC of DE genes. Dark gray in 2D projections represents upregulated genes. Unifying DE genes exhibiting an FDR ≤ 0.05 and an
FC ≥ +2; FDR ≤ 0.05 and FC ≤ −2; or an FDR > 0.05 are shown as purple, orange and green circles, respectively. b Venn diagrams showing that
134 genes (B, left) were equally downregulated, while 243 (b, right) were equally upregulated in all three comparisons. c Probes covering CpG
islands were related to genes based on TSS proximity and their methylation status (values for different probes were averaged) were correlated to
the gene expression FC (TNBC x Non-TNBC). d Circos plot comparing CpG islands methylation FC (green or pink lines) with gene expression FC
(blue line) in the TNBC x Non-TNBC (outer circle) or TNBC x normal (inner circle) (chromosome ideogram denoted in the most outer circle). Values
for both methylation and gene expression FC were averaged within every 5 Mbp. FC opposite spikes indicate that the higher the methylation FC,
the lower the gene expression FC of the associated region, and vice-verse. e Protein level FC (MS dataset [64] performed with the same BRCA
samples used in this work) and gene expression FC correlation in the comparison TNBC x Non-TNBC. f Pipeline used for new protein targets
discovering. g Number of genes found in two or more publications (25) or in 0 or 1 publication (218) following the PubMed query “gene name +
triple-negative breast cancer”. The genes that were non-cited or were cited only once were then evaluated in canSAR as either having available
protein structure (67) or not (151), followed by a cutoff of being structurally druggable (42) or not (25). Among the 42 genes with a druggable
structure, the top 10 based on the ligand-based druggability percentile are listed
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druggability predictions [74]. Out of the remaining 218
targets, 67 had available structure information, 42 of
which presented structure-based druggability (Fig. 2g), as
they showed potential small molecule binding pockets in
an analysis based on the ChEMBL Strudel https://www.
ebi.ac.uk/chembl/drugebility/) (DrugEBIlity) methodology.
Among these genes, 10 exhibited ligand-based druggabil-
ity scores falling within the 75% percentile or above de-
fined for all of the proteins in the platform (Fig. 2g). This
parameter is an easy way to assess how a target’s drugg-
ability compares with that of all other targets in the prote-
ome and aims to estimate the likely druggability of a
target based on the chemical properties and bioactivity
parameters of small molecule compounds (including
molecular weight, med-chem friendliness and ligand-
efficiency) that have been tested against the protein itself
and/or its homologues. If the target binds drug-like com-
pounds, it is more likely to be druggable than a target that
only binds compounds with very un-drug-like properties.

Guanylate-binding protein 1 (GBP1) is more expressed in
TNBC
Cell Division Cycle 7 (CDC7), the first in the final top
10 list, has recently been described as a therapeutic tar-
get to treat TNBC [75, 76]. GBP1 was listed second in
the final list of potential druggable targets. GBP1 is a
member of an interferon-inducible gene family, the p65
guanylate-binding proteins (GBPs). GBPs are structur-
ally related to the dynamins and another known anti-
viral protein family, the Mx proteins. GBP1 is clearly
overexpressed in TNBC tissues (Fig. 3a, left) and cell
lines (Fig. 3a, right) and has at least 5 possible binding
pockets for drug interactions (Fig. 3b) as calculated by
PockDrug [54]. Moreover, GBP1 protein level is also
enhanced in TNBC compared to non-TNBC samples as
evaluated by MS protein analysis (Fig. 3c). The prefer-
entially higher expression of GBP1 in TNBC tissues
versus non-TNBC tissues was further confirmed in 7
other microarray datasets (totaling 1915 patients;
Fig. 3d), confirming GBP1 as a potential new druggable
target for this disease. All of the datasets were proc-
essed following the same approach used for the TCGA
datasets (Additional File 18: Figure S10A). Our final list
of overexpressed genes was finally crosschecked with
the lists of overexpressed genes obtained from these 7
external microarray datasets, revealing intersections
varying from 22% to 85% (Additional File 18: Figure
S10B and C). Finally, by looking at the GBP1 methyla-
tion status, we found an open-sea DMR in the 5′ UTR
region of the gene (Fig. 3e, lower scheme), which is
hypomethylated in TNBC samples when compared to
normal and Non-TNBC samples (Fig. 3e). This finding
provides potential regulatory mechanism behind GBP1
higher expression level on TNBC.

In order to access the impact of GBP1 expression on the
disease prognosis, we used the Nearest Centroid Classifier
for Area Under Curve optimization (NCC-AUC) model
[77] to integrate patient 5-years survival status with RNA
expression level. By using a λ of 10−5 and θ-score cutoff of
10−5, the analysis showed that ~17% of our final gene
target list would be potential targets based on the impact
of their expression level on patient survival, which did not
include GBP1 (Additional file 19: Table S9). Indeed, we
verified that there is no difference on GBP1 expression
level in patients with less than 5 years survival time
(Additional file 20: Figure S11) compared to patients with
more than 5 years survival time (p = 0.49). Altogether, our
data show that GBP1 is more expressed (and is also
present at higher protein level) in TNBC, which may be
related to hypomethylation of a CpG open-sea region
present at the 5’UTR. GBP1 higher expression did not
affect TNBC patient prognosis.

Guanylate-binding protein 1 (GBP1) knock-down exclu-
sively affects TNBC cell growth
Having shown that TNBC cell lines are good surrogates
for studying the disease, we next confirmed that GBP1 is
more highly expressed in TNBC cell lines than in non-
TNBC cell lines via qPCR (Fig. 4a). We then tested the
importance of GBP1 for TNBC cell proliferation com-
pared with non-TNBC cells. We assayed eight TNBC
and three non-TNBC cell lines by knocking-down GBP1
with two different shRNA sequences (with knock-down
efficiencies of 68% and 81% as assessed via qPCR, Add-
itional File 21: Figure S12A) and using a sequence tar-
geting the Luciferase gene (Luc) as a negative control.
Overall, knocking-down GBP1 with either of the shRNA
sequences resulted in more profound effects on the pro-
liferation of TNBC cells than non-TNBC cells (Fig. 4b
and c). To evaluate long-term impact of GBP1 knock
down on cells that responded either dying (HCC1806
and MDS-MB-436) or proliferating less (Hs578t and
MDA-MB-231) after GBP1 knock down, we transduced
cell lines and selected them to stably express the shRNA
sequences. After checking the knocking down efficiency
of the transduced cell lines (Additional File 21: Figure
S12B), we evaluated cell proliferation for 7 days. The
data showed that, while Hs578t and MDA-MB-231
maintained the slower proliferation behavior seeing on
the endpoint assay (with the exception of the shRNA #1
tested on Hs578t), HCC1806 and MDA-MB-436 se-
lected cells had their growth profoundly affected by the
knock down (Fig. 4D), likely because of the increased
rate of cell death seeing for these cells (Fig. 4e and
Additional File 21: Figure S12C). Accordingly, MDA-
MB-231 cells expressing the shGBP1 #1 and #2,
compared to control shLuc, present a slight (but signifi-
cative) percentage increase of cells in the G0-G1 phase,
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and a slight but significative percentage decrease of
cells in the S phase, indicating cell growth arrest at the
G0-G1 phase (Additional File 21: Figure S12D-E).
HCC1806 cells responded on the opposite direction
(Additional File 21: Figure S12D-E). In summary, we
demonstrated that GBP1 is overexpressed and import-
ant for the survival of a subgroup of TNBC cells.

GBP1 interaction network
To provide information on the functional connection of
GBP1 with other cellular proteins, we performed an

interaction network analyzes as implemented by the can-
SAR platform. GBP1 either physically interact (directly or
indirectly) or is functionally related to several proteins
(Additional File 22: Figure S13). GBP1 expression is in-
duced by Interferon Regulatory factors (IRF) 2, 3 and 9,
coherent with the GBP1 being a member of an interferon-
inducible family [78]. GBP1 is also a transcriptional target
of the STAT 1 (which acts as a heterodimer with STAT2),
a downstream effector of the interferon signaling path-
way [79]. The Protein arginine N-methyltransferase 1
(PRMT1) methylates arginine residues of several

Fig. 3 Multiple evidence sources makes GBP1 arise as potential target for TNBC. a GBP1 is more highly expressed in TNBC than in non-TNBC and
normal tissues (left) and in TNBC versus non-TNBC cell lines (right). FDR values were obtained from the DESeq2 comparisons. b Cartoon representation
of the human GBP1 protein structure (PDB ID 1DG3), displaying the 5 highest-scoring potential small molecule binding pockets according to PockDrug
[54]. c MS evaluation of GBP1 protein level in Non-TNBC and TNBC samples. P-Value and FDR value were calculated with limma. d Seven microarray
datasets external-to-our-pipeline analysis confirmed GBP1 upregulation in TNBC versus non-TNBC tissues. FDR values were derived from limma
comparisons. (e, lower) GBP1 gene scheme denoting the open-sea probe cg12054698 location within the exon 1. (e, upper) Methylation status
(as defined by M-values) for the cg12054698 in Normal, Non-TNBC and TNBC samples, showing hypomethylation in TNBC. FDR values calculated with
limma. As for all the displayed box-plots, log2-transformed upper-quantile values were used, with the whiskers extending to half of the interquartile
range. Gray circles denote each sample. Notches, when present, denotes the 95% confidence intervals of the median
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proteins, including histones. GBP1 arginine methylation
functionally connects PRMT1 to GBP1. Interferon-
stimulated gene 15 (ISG15), a protein that adds itself cova-
lently to other proteins (in a process similar to ubiquitina-
tion), was shown to physically interact with GBP1 [80].
Finally, the Specificity protein 1 (SP1), a transcriptional
factor that controls many different cellular process, also

binds to GBP1 [81]. FNTA and FNTB are both subunits
of the farnesyltransferase and the geranylgeranyltransfer-
ase complexes, which transfer a farnesyl or geranylgeranyl
moieties to proteins, affecting their function. In summary,
network interaction analysis performed by canSAR high-
light the already known interplay of GBP1 with the inter-
feron signaling pathway and implicate that disturbing

Fig. 4 TNBC are more sensitive to GBP1 knock-down than non-TNBC cells. EGFR drives GBP1 expression. a GBP1 mRNA levels were evaluated via
quantitative PCR in different cell lines. b GBP1 knock-down (shGBP1) using pLKO.mKO2 for 96 h affected the growth of TNBC cells more effectively
than that of non-TNBC cells, as assessed using two shRNA sequences. An shRNA targeting non-human gene luciferase (shLuc) was used as a con-
trol. Data were split between cells that died (left) and cells that proliferated less (right) after knock down. c Representative fluorescence micros-
copy images of MDA-MB-231 after 96 h of GBP1 knock-down compared with shLuc. DAPI staining of nuclei is shown in blue, and mKO2
fluorescence of cells positive for viral transduction is shown in yellow. d Cell proliferation assay (performed over 7 days) of cell lines selected to
stably express the shGBP1 and shLuc sequences. e Propidum iodide incorporation assay was performed to evaluate the fraction of cells that are
in apoptosis/late necrosis state. EGFR is more highly expressed in TNBC than non-TNBC tissues (f, top) and cell lines (f, down). The FDR value was
absent in DESeq2 comparisons due to outlier removal. g GBP1 and EGFR expression levels are highly correlated in tissues (left) and cell lines
(right). h GBP1 expression level positively correlates with EGFR total protein level. Log2-transformed upper-quantile RSEM expression values were
used, with whiskers extending to half of the interquartile range. Gray circles denote each sample Notches denote the 95% confidence interval
of the median. (I) MDA-MB-231 cells were serum starved for 24 h and then stimulated with 50 ng/mL of EGF for six hours. Western blotting
(right) confirmed that the treatment increased EGFR stimulation (increase of Tyr1068 phosphorylation). qPCR (left) showed that, with the
exception of BT549, all tested cell lines responded to EGF stimulation by increasing GBP1 expression. Error bars denote one standard error
of the experimental triplicates
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GBP1 function in cells have the potential to impact such
pathway. It also reveals binding partners related to diverse
functions in the cells and may point to some yet unex-
plored roles of GBP1.

EGFR drives GBP1 expression in breast cancer
EGFR is one of the major biomarkers of TNBC, predict-
ing a poor outcome of the disease [82], and it has been
reported as a new target for treating TNBC [83]. As ex-
pected, EGFR was found to be overexpressed in TCGA
TNBC tissues compared with expression in non-TNBC
tissues (Fig. 4f, upper panel), in the in-house sequenced
and GEO cell lines (Fig. 4f, lower panel). RPPA analysis
also confirmed that EGFR protein level is enhanced in
TNBC compared to non-TNBC (Additional File 23:
Figure S14). EGFR is known to control GBP1 expression
in glioblastoma and esophageal carcinoma [18–20], and
(not surprisingly) we verified a positive correlation be-
tween EGFR and GBP1 expression levels when TNBC and
non-TNBC tissues (Pearson correlation coefficient = 0.41;
Fig. 4g, left panel) and cell lines (Pearson correlation coef-
ficient = 0.67; Fig. 4g, right panel) were compared. We
also compared EGFR protein levels (according to the
RPPA data) with GBP1 expression levels, obtaining a Pear-
son correlation coefficient of 0.28 (Fig. 4h). Furthermore,
we confirmed the EGFR-signaling-dependent expression
of GBP1 in breast cancer cell lines via qPCR (Fig. 4i). A
positive correlation was not observed when we compared
GBP1 and Y1173 or Y1068 EGFR phosphorylation levels
in the patient tissue samples (data not shown) using the
RPPA data. We conclude that EGFR controls GBP1 ex-
pression in breast cancer cells.

Discussion
Several works have used transcriptomic analysis to im-
prove the classification of TNBC and to obtain new pre-
dictive markers and therapeutic targets for the disease [25,
26, 37, 84–87]. In our approach, we integrated RNA-Seq
data from normal and tumor tissues (obtained from
TCGA) and from cell lines that were sequenced in-house
or were available from the GEO databank. A unifying DE
gene list was obtained from the comparisons of normal x
TNBC tissues, TNBC x non-TNBC tissues and TNBC x
non-TNBC cell lines. Methylome and proteomic data
were integrated to our analysis to give further support to
our findings. A total of 243 genes were shown to be exclu-
sively overexpressed in TNBC tissues and established cell
lines and, importantly, were more highly expressed in
TNBC than in non-transformed breast epithelial tissues.
Subsequently, we searched for novelty by removing genes
that have already been strongly linked to TNBC by analyz-
ing publications listed in PubMed. Finally, we subjected
our list to druggability scoring using the multidisciplinary
canSAR platform. With the canSAR platform, we were

able to predict gene products that could be used as thera-
peutic targets based on protein structure availability, the
presence of potential small molecule binding pockets and
information regarding the pre-existence of bio-active
compounds (drugs or chemical probes) that have already
been tested on a target or its homologues. Thus, we
combined transcriptomic and proteomic approaches to
enhance our chances of identifying proteins with true po-
tential to become new therapeutic targets.
Moreover, by comparing the GO signatures of the cell

lines and tissue transcriptomic data, we showed that cell
lines could serve as good surrogates for testing these po-
tential new targets, and we used them to show that
GBP1 (the second highest ranked gene on the final list)
knock-down selectively affected TNBC cell growth.
GBP1 expression is controlled by EGFR in glioblastoma
[18, 19] and esophageal squamous head and neck can-
cers [20] and is important for proliferation and tumor
invasion. In addition, GBP1 is linked to radiotherapy
resistance in head and neck tumors [23] and is a compo-
nent of the cytoskeletal gateway of drug resistance in
ovarian cancer [21, 22], especially for paclitaxel, which is
a common therapeutic choice for treating TNBC [88].
Class III β-tubulin plays an important role in the devel-
opment of drug resistance to paclitaxel by allowing the
incorporation of GBP1 into microtubules. Upon entering
the cytoskeleton, GBP1 binds to pro-survival kinases,
such as Proto-oncogene Serine/threonine-protein kinase
pim-1 (PIM1), and initiates a signaling pathway that in-
duces resistance to paclitaxel [89]. Indeed, a 4-aza podo-
phyllotoxin derivative was demonstrated to act as a
potent in vitro inhibitor of the GBP1:PIM1 interaction,
which is a property that is maintained in vivo in ovarian
cancer cells resistant to paclitaxel [90]. Taken together,
these findings confirm GBP1 as a druggable protein.
It is well known that the TNBC is a very heterogeneous

breast cancer subtype [91]. In saying so, it was not out of
surprise that the tested TN cell lines responded heteroge-
neously to the GBP1 knock down: Out of the 8 tested cell
lines, while 4 presented increased cell death, 4 responded
by decreasing cell proliferation in comparison to control.
Moreover, GBP1 expression level did not impact on pa-
tient’s 5 years survival as evaluated by the NCC-AUC
model. Indeed, we observed that the cell lines that were
more impacted by GBP1 knock down are, following a mo-
lecular sub-classification of the disease [37], Basal-like 1
(BL1) and 2 (BL2) cells (with the exception of MDA-MB-
436). On the other hand, the cell lines that had only its
proliferation affected after GBP1 knock down are, all of
them, mesenchymal (M) or mesenchymal stem-like
subtypes (MSL) [37]. Top gene ontologies for the BL1 and
BL2 subtype are heavily enriched in cell cycle and cell
division components and pathways, as well as growth fac-
tor signaling. Differently, the M and MSL subtype display
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gene ontologies that are heavily enriched in components
and pathways involved in cell motility, ECM receptor
interaction, and cell differentiation pathways. The MSL, in
particular, presents enrichment of genes associated with
stem cells and mesenchymal stem cell–specific markers,
and low expression of claudins [37]. We hypothesize that
higher expression levels of GBP1 may have a more severe
impact on the survival of a subgroup of TNBC patients
with specific molecular markers.
EGFR is overexpressed in a high proportion of the

TNBC cases [82, 92] and is a marker of a poor prognosis
[93–95]. Although EGFR has been successfully used as a
therapeutic target for many tumor types [96], unencour-
aging results have been obtained in clinical trials (in
both mono- and adjuvant therapy protocols) conducted
in TNBC patients [97]. Failure to induce inhibition of
Akt has been reported as a major cause of resistance to
EGFR inhibitors [97, 98]. Moreover, nuclear EGFR
(nEGFR) can enhance resistance to anti-EGFR therapies
and correlates with poor overall survival in breast can-
cer. Inhibition of nEGFR nuclear translocation leads to
subsequent accumulation of EGFR on the plasma mem-
brane, which greatly enhances the sensitivity of TNBC
cells to cetuximab [99]. We demonstrated that GBP1 ex-
pression correlates with EGFR expression (and protein
levels) in both tissues and breast cancer cell lines. In
most of the tested cell lines, we showed that the GBP1
expression level responded to EGFR stimulation by epi-
dermal growth factor.

Conclusions
TNBC is an aggressive histological breast cancer subtype
with limited treatment options and very poor prognosis
following progression after standard chemotherapeutic
regimens. For that, finding new therapeutic targets to fight
this disease is of great importance. In this work, by using a
combination of transcriptomics and proteomics analysis,
we generated a list of 243 potential new therapeutic tar-
gets for treating TNBC. Second on this list, we show that
GBP1 expression correlates with EGFR stimulation and is
important for TNBC cell proliferation. In summary, we
propose that GBP1 is a new potential druggable thera-
peutic target for treating TNBC with enhanced EGFR
expression.

Additional files

Additional file 1: Figure S1. Assignment of breast cancer marker status
according to TCGA using RNA expression levels. (A) Number of samples
positive for ER, PR and Her2, as determined via IHC and available from
the TCGA. In more than 30% of the tissues, at least one of the markers
was not classified. (B) Density graph of the raw log2 + 1 transformed
RSEM of all genes in the 1100 samples RNA-Seq dataset, showing that
the maximum density values largely deviated around an RSEM of 10 (left).
Normalization performed with upper-quantile [35] methodology

harmonized all of the datasets (right). (C) mClust [39] was used to fit
bimodal distribution patterns and define samples that were positive or
negative for the expression of ESR, PGR and ERBB2. To do so, some
assumptions were made and tested to search for the best combination
of assumptions based on the percentage of agreement with the available
IHC data. “E” denotes “equal variance between populations”, and “V”
denotes “variable variance between populations”. (D) Concordance
between expression (using the EEE combination) and IHC data for each
marker as well as for all three combined. (E) Bimodal fits, as implemented
by mClust with the EEE combination, highlighting samples that are
negative (purple) and positive (light pink) for ESR1 (left), PGR (middle)
and ERBB2 (right). (F) Boxplots of the log2-transformed upper-quantile
RSEM of the ESR, PGR and ERBB2 markers in normal, non-TNBC and TNBC
tissues. The whiskers extend to half of the interquartile range. Gray circles
denote each sample. Notches denote the 95% confidence interval of the
median. (G) Assignment of marker status assignment based on RNA
expression levels (PNG 7247 kb)

Additional file 2: Table S1. ESR1, PGR and ERBB2 RSEM values of each
tumor tissue, marker status according to mclust model and respective
available IHC data (PNG 1377 kb)

Additional file 3: Table S2. DE genes between TNBC and non-TNBC
tissues (XLS 279 kb)

Additional file 4: Table S3. DE genes between TNBC and normal
tissues (XLS 2099 kb)

Additional file 5: Figure S2. Analysis of TNBC versus non-TNBC and
TNBC versus normal DE genes from the TCGA samples. Volcano plot of
the FC of the genes TNBC versus non-TNBC (A) and TNBC versus normal
(B) comparisons. Non-DE (or DE but with a p-value >0.05) genes are
indicated with gray circles, while DE genes are indicated with blue circles
when downregulated and red circles when upregulated. Genes showing
an FC ≥ +2 and FC ≤ −2, with an FDR ≥ 0.05, were considered up- and
downregulated, respectively. The numbers outside the circles refer to all
genes that passed the FDR cutoff, while the numbers inside the circles
are DE genes that passed both the FDR and fold-change cutoffs. Principal
component analysis using DE genes obtained from TNBC versus non-TNBC
(C) and TNBC versus normal tissues (D) comparisons. PCA correlations are
denoted with circles around the samples (XLS 2112 kb)

Additional file 6: Table S4. Intersection between DE genes from TNBC
x non-TNBC and TNBC x normal tissue (PNG 4690 kb)

Additional file 7: Figure S3. Quality assessment of RNA-Seq data. (A)
FastQC [30] plot of the Phred scores of each nucleotide position of all
reads before and after Skewer [31] trimming for BT549, MCF7, MDAMB436
and MDAMB468, sequenced at LaCTAD-UNICAMP, and MDAMB231 and
SKBR3, sequenced at HTSF-UNC. (B) RNA-Seq data from in-house-
sequenced cell lines were evaluated for reproducibility by comparing the
log2 RSEM +1 values of 48 genes with the obtained qPCR 1/ΔCT values.
Density of raw log2-transformed RSEM values for the in-house-sequenced
and Varley et al. [25] and Daemen et al. [26] datasets (C, left) and the
normalized RSEMs (C, right), showing success in the harmonization
of all data, despite variations in sample preparation and sequencing
(XLS 4164 kb)

Additional file 8: Table S5. Description of all cell lines (in house
sequenced or obtained from GEO) used in this work (PNG 2237 kb)

Additional file 9: Figure S4. Cell lines exhibit the expected ESR, PGR
and ERBB2 marker expression status. Linear range of RSEM from ESR1
(upper), PGR1 (middle) and ERBB2 (lower) for the in house and external
RNA-Seq datasets. Gray boxes below data indicate the study related to
the dataset (in house, Varley et al. [25] and Daemen et al. [26]) (XLS 26 kb)

Additional file 10: Figure S5. Analysis of DE genes in TNBC versus
non-TNBC cell lines. (A) Volcano plot of the FC and p-values of the genes.
Non-DE (or DE but with p-value >0.05) genes are shown with gray circles,
and DE genes are shown with blue circles when downregulated and red
circles when upregulated. Genes with an FC ≥ +2 and an FC ≤ −2, with
an FDR ≥ 0.05, were considered up- and downregulated, respectively.
The numbers outside of circles refer to all genes that passed the FDR
cutoff, while the numbers inside of circles are DE genes that passed both
the FDR and fold-change cutoffs. Principal component analysis (B) and
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correlation heatmap (C) using DE genes obtained from the comparison.
PCA correlations are denoted with circles around the samples. Heatmap
correlations were obtained through Pearson coefficient analysis; unsuper-
vised clustering was conducted via the complete method, and both axis
and log2(RSEM + 1) values were scaled by line (PNG 1166 kb)

Additional file 11: Table S6. DE genes between TNBC and non-TNBC
cell lines (PNG 6547 kb)

Additional file 12: Figure S6. Correlation plots. 2D correlation plots
(equivalent to the 2D projections in Fig. 2A) of the FC of DE genes
obtained from the comparisons of TNBC versus non-TNBC cell lines and
TNBC versus normal tissues (left), TNBC versus normal tissues and TNBC
versus non-TNBC tissues (middle), and TNBC versus non-TNBC cell lines
and TNBC versus non-TNBC tissues (right) (PNG 1580 kb)

Additional file 13: Table S7. Intersection between DE genes from
TNBC x non-TNBC tissue, TNBC x normal tissue and TNBC x non-TNBC cell
lines (XLS 4979 kb)

Additional file 14: Figure S7. GO analysis of altered pathways in TNBC
tissues and cell lines (compared with non-TNBC samples). Biological processes
(blue), cellular components (red) and molecular functions (green) equally
enriched in TNBC tissues (left) and cell lines (right). These pathways point to
events occurring on the membrane, associated with signaling activity and cell
motility. Each box denotes 1 order of magnitude of FDR reduction; dashed
black lines highlight an FDR = 0.05 (PNG 1759 kb)

Additional file 15: Figure S8. Analysis of Infinium
HumanMethylation450 BeadChip methylation array from 876 TCGA
samples, including TNBC, Non-TNBC and normal tissues. (A) Raw Kernel
density plot from β methylation ratios (methylated / total signal) for each
category (TNBC, Non-TNBC or normal tissue). (B) Quantile normalized
Kernel density plot of β methylation ratios, as implemented by
wateRmelon [55]. (C) Quantile normalized Kernel density plot of M-Values
(Logit transformation of β normalized ratios), showing the peaks
alignment. Volcano plot of the FC and adjusted p-values of the methylation
probes in TNBC vs Non-TNBC (D) and TNBC vs normal (E) comparisons.
Non-differentially methylated (DM) probes (or differentially methylated one
but with p-value >0.05) are shown as gray circles. DM probes are shown as
blue circles when hypermethylated and red circles when hypomethylated.
Probes with a FC ≥ +2 or an FC ≤ −2, with an FDR < 0.05, were considered
hyper- and hypomethylated, respectively. The numbers outside of circles
refer to all probes that passed the FDR cutoff, while the numbers inside of
circles are DM probes that passed both the FDR and fold-change cutoffs
(XLSX 45499 kb)

Additional file 16: Table S8. Methylation status of the available probes
in the TCGA TNBC x Non-TNBC and normal x TNBC comparisons, as
performed by limma (PNG 2076 kb)

Additional file 17: Figure S9. Proteomic analysis of BRCA tissues by
using the RPPA and MS data. (A) Comparison between protein level FC
(available from RPPA) and mRNA level FC in TNBC vs Non-TNBC (A) and
TNBC vs normal (B) comparisons. RPPA data are limited to only 160 pro-
teins. (C) Volcano plot of the FC versus adjusted p values of proteins from
MS dataset [64] in TNBC vs Non-TNBC comparison. Non-DE (or DE but
with p-value > 0.05) proteins are shown as gray circles, and DE proteins
are shown as blue circles when down-regulated and red circles when up-
regulated. Proteins with an FC ≥ +2 and an FC ≤ -2, with an FDR < 0.05,
were considered up- and down-regulated, respectively. The numbers out-
side of circles refer to all proteins that passed the FDR cutoff, while the
numbers inside of the circles are DE proteins that passed both the FDR
and fold-change cutoffs. (PNG 4403 kb)

Additional file 18: Figure S10. Evaluation of external Array Express
datasets. (A) E-MTAB-365, E-GEOD-65216, E-GEOD-12276, E-MTAB-1547,
E-GEOD-3494, E-GEOD-4922 and E-GEOD-1456 expression profiles of
ESR1, PGR and ERBB2 and bimodal adjustment (green for samples with
lower expression and blue for samples with higher expression). (B)
Number of tissues negative (pink) and positive (purple) for each marker
as well as for all three markers. (C) Venn diagrams between our identified
target list and the upregulated genes identified through TNBC versus
non-TNBC analysis of all external datasets. At the intersection of the
smaller (genes from our list) and larger circles (upregulated genes

from the external datasets), the numbers and percentages of genes in
agreement are provided, positioned upwards (XLS 47 kb)

Additional file 19: Table S9. List of genes which expression level
impact patients 5 years survival following NCC-AUC analysis (PNG 585 kb)

Additional file 20: Figure S11. Expression level of GBP1 in patients
divided by survival time (more than 5 years survival or less than 5 years
survival). The whiskers extend to half of the interquartile range. Gray
circles denote each sample. Notches denote the 95% confidence interval
of the median. P-Value from Welch’s t-test (PNG 1379 kb)

Additional file 21: Figure S12. GBP1 knock down evaluation and its
effect on cell cycle. (A) qPCR of MDA-MB-231 after GBP1 knock-down, as
performed in the end-point assay. (B) qPCR of HCC1806, MDA-MB-231,
Hs578t and MDA-MB-231 cells transduced and selected with puromycin
to stably express the shRNA sequences. Cell Cycle analysis using DNA
content evaluation (as determined by DAPI intensity staining) was
executed after imaging attached cells by microscopy. Cells were classified
being at the SubG1 (C), G0-G1 (D) or (E) S phase. Error bars represents
standard error of the mean. P-Values from Welch’s t-tests (PNG 1679 kb)

Additional file 22: Figure S13. GBP1 Interaction network as defined
with the canSAR platform (PNG 724 kb)

Additional file 23: Figure S14. Boxplot of RPPA EGFR protein level
comparing Non-TNBC with TNBC samples. The whiskers extend to half of
the interquartile range. Gray circles denote each sample. Notches denote
the 95% confidence interval of the median (PNG 724 kb)
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