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Abstract

Background: The presence of circulating cell-free DNA from tumours in blood (ctDNA) is of major importance to
those interested in early cancer detection, as well as to those wishing to monitor tumour progression or diagnose
the presence of activating mutations to guide treatment. In 2014, the UK Early Cancer Detection Consortium
undertook a systematic mapping review of the literature to identify blood-based biomarkers with potential for the
development of a non-invasive blood test for cancer screening, and which identified this as a major area of interest.
This review builds on the mapping review to expand the ctDNA dataset to examine the best options for the
detection of multiple cancer types.

Methods: The original mapping review was based on comprehensive searches of the electronic databases Medline,
Embase, CINAHL, the Cochrane library, and Biosis to obtain relevant literature on blood-based biomarkers for cancer
detection in humans (PROSPERO no. CRD42014010827). The abstracts for each paper were reviewed to determine
whether validation data were reported, and then examined in full. Publications concentrating on monitoring of
disease burden or mutations were excluded.

Results: The search identified 94 ctDNA studies meeting the criteria for review. All but 5 studies examined one
cancer type, with breast, colorectal and lung cancers representing 60% of studies. The size and design of the
studies varied widely. Controls were included in 77% of publications. The largest study included 640 patients, but
the median study size was 65 cases and 35 controls, and the bulk of studies (71%) included less than 100 patients.
Studies either estimated cfDNA levels non-specifically or tested for cancer-specific mutations or methylation
changes (the majority using PCR-based methods).

Conclusion: We have systematically reviewed ctDNA blood biomarkers for the early detection of cancer. Pre-
analytical, analytical, and post-analytical considerations were identified which need to be addressed before such
biomarkers enter clinical practice. The value of small studies with no comparison between methods, or even the
inclusion of controls is highly questionable, and larger validation studies will be required before such methods can
be considered for early cancer detection.
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Background
The early detection of cancers before they metastasise to
other organs allows definitive local treatment, resulting
in excellent survival rates. This is particularly true for
breast cancer, but also others, including lung and colo-
rectal cancer [1]. Early detection and diagnosis has
therefore been a major goal of cancer research for many
years, and the concept of early detection from a blood
sample has been the focus of considerable effort. How-
ever, to date no blood biomarkers have had sufficient
sensitivity and specificity to warrant their clinical use for
early cancer detection, and their potential remains un-
realised [2]. Hanahan and Weinberg [3] identified the
major biological attributes of cancer, and it is apparent
that most if not all of these biological processes give rise
to biomarkers present in blood [4]. Circulating cell free
DNA produced from cancers is known as circulating
tumour DNA (ctDNA), and represents a subset of the
circulating DNA (cfDNA) normally present at low levels
in the blood of healthy individuals.
Since the first description of circulating cfDNA in

blood [5, 6], it has become clear that total ctDNA levels
rise in a number of disorders in addition to cancer in-
cluding myocardial infarction [7], serious infections, and
inflammatory conditions [8], as well as pregnancy where
it can be used for prenatal diagnosis [9]. The source of
this DNA appears to be mainly the result of cell death –
either by necrosis or apoptosis [5, 9–11]. A raised
ctDNA level is therefore non-specific, but may indicate
the presence of serious disease. In blood, ctDNA is al-
ways present as small fragments, which makes assay de-
sign challenging [12]. Nevertheless, many analytical
methods are available to measure ctDNA, and the field
is rapidly maturing to the point where it may be clinic-
ally relevant to many patients.
In 2014, the UK Early Cancer Detection Consortium

(ECDC) conducted a rapid mapping review of blood bio-
markers of potential interest for cancer screening [13],
and identified 814 biomarkers, including 39 ctDNA

biomarkers. This paper uses the list generated from the
mapping review, updated with relevant publications pub-
lished since its completion to discuss the candidacy of
ctDNA markers for early detection of cancer.

Methods
Our mapping review [13] conducted comprehensive
searches of the electronic databases Medline, Embase,
CINAHL, the Cochrane library, and Biosis to obtain rele-
vant literature on blood-based biomarkers for cancer de-
tection in humans (PROSPERO no. CRD42014010827).
The search period finished in July 2014, therefore the
searches have been updated to December 2016 using the
same search terms. The abstracts of the publications re-
trieved were reviewed to identify those with validation
data (usually indicated by case-control design) and to de-
termine what ctDNA biomarkers had been measured in
serum or plasma. Full details of the methods used are
published elsewhere [13], and described briefly here.
English language publications of any sample size were eli-
gible and the full eligibility criteria used are provided in
Table 1.
The search strategy was deliberately inclusive, using

keywords and subject headings as follows, to provide a
comprehensive list of those ctDNA candidate bio-
markers that had been used to identify cancers from
blood samples. The search terms included ‘cancer’ ‘diag-
nosis’, ‘markers’, ‘blood’, and ‘screening’ with ‘DNA’,
‘cfDNA’, or ‘ctDNA’. Keywords and subject headings were
determined by members of the ECDC working with the
review team at the University of Sheffield. The results of
the searches were collated in an Endnote database and
results tabulated, with references, size of study, and
methods used. To avoid bias, two reviewers conducted
screening; references identified by either as relevant were
included for further inspection. Those featuring ctDNA
with data related to diagnosis or detection of three or
more types of cancer were identified and retained for
closer scrutiny to determine their potential utility.

Table 1 Search criteria for ctDNA publications

Inclusion Criteria Exclusion Criteria

English language studies Studies published in non-English language

Studies within last seven years (2010–2016) Studies published in 2009 or earlier

Controlled studies Citation titles without abstracts

Validation Studies (comparison with controls) Parallel publications and reviews based on the same
or overlapping patient populationsa

Cancer detection/ diagnosis/screening Prognosis or prediction (treatment response) associated markers

Biomarkers measured in blood plasma or serum
(markers or biomarkers)

Tissue, blood cells, or other bodily fluid samples

DNA (including cfDNA and ctDNA) Abstracts of panels which do not state which biomarkers are studied

Human DNA Viral and microbial DNA
aReviews and meta-analyses are cited, but not considered as evidence, but studies were included if they appeared to contain new data
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Results
Following the updated searches and study selection, a
total of 84 ctDNA markers were identified from 94 indi-
vidual publications (Table 2 and Fig. 1).
The ctDNA biomarkers divided naturally into two

groups:

I. those with potential specificity for neoplasia (ctDNA
- usually mutations or DNA alterations such as
methylation), and

II. those designed to measure DNA levels, which may
not be specific to neoplasia.

Figure 2 shows the distribution of studies by cancer
type, including two publications on amplification [12, 14],
and one on clonality [15]. One of the amplification papers
looked at HER2 [14], while the other examined multiple
targets by NGS [12].
Of the 94 publications included, 72 publications (77%)

were case-control design diagnostic validation studies,
and 22 were case series. The size and design of the stud-
ies varied widely. The largest study included 640 cancer
patients [16]. The median study size was 65 cases, with a
mean of 98 cases (range 12–640 cancer patients), indi-
cating that the bulk of studies (67/94, 71%) included
<100 patients (Fig. 3).
Most publications were focussed on ctDNA in plasma

(n = 67) rather than serum (n = 25) with 2 comparing
both. Plasma was used for 38 markers, and serum for 28
markers, and either for 18 markers (Fig. 4). Two com-
parative studies of serum and plasma were conducted:
one for BRAF mutations, and the other for PIK3CA mu-
tations [17, 18].
The target of ctDNA studies and the methods used to

measure these targets varied considerably (Figs. 5 and 6
respectively). Non-specific total ctDNA levels (quantita-
tion) were usually estimated by size distribution assays
based on repeats: LINE1, and ALU were used in 3 [19–
21] and 6 publications respectively [20–25]. However,
some single genes were also used to measure DNA levels
– particularly GAPDH in a series of 4 publications on
breast cancer [26–29], and hTERT in 4 publications
[30–33]. The majority of publications examined gene
methylation markers (n = 49), though most examined
methylation of multiple target genes for a particular
tumour type (Fig. 5). Genes commonly mutated in can-
cer were also markers of interest, namely APC, BRAF,
EGFR, HER2, GNAQ, GNA11, KRAS, P53, and PIK3CA.
Only one gene, APC, was studied for both methylation
and mutation. Few markers were used to identify par-
ticular tumour types, but some are particularly likely to
occur in certain tumour types. GNAQ and GNA11 mu-
tations have been identified in the plasma of uveal mel-
anoma patients and are rare in other tumour types [34].

Other mutations are not tumour type-specific, and mu-
tations in 6 of the 9 genes listed above were reported in
multiple tumour types.

Discussion
The number of publications on ctDNA is increasing rap-
idly [35, 36], and a recent review emphasises the poten-
tial of the field [37]. Most (71%) are small case control
studies with less than 100 patients, and in our view very
few studies meet the requirements of analytical valid-
ation allowing their use within accredited (ISO:15,189)
clinical laboratories, though some may have unpublished
commercially-held analytical validation data. The stage
and size of the tumours included is variable, and few
studies are large enough to give robust subgroup assess-
ments. Larger tumours produce more ctDNA, though
tumour type also has an impact [16]. The value of small
studies with no comparison between methods, or even
the inclusion of controls is highly questionable. Most in-
clude a statement that ‘larger studies are required’, but
larger trials rarely result due to the necessary cost impli-
cations. Unless well-designed prospective studies based
on sample size calculations are performed, there is little
likelihood of such methods reaching clinical practice for
the detection of cancer at an early stage. There is also a
likelihood of bias in that negative results for these
markers are rarely if ever reported, and unlike clinical
trials, there is no requirement for the registration of
diagnostic validation studies. The use of ctDNA for early
cancer detection comes under existing molecular path-
ology guidance, which emphasises the requirements for
careful pre-analytical preparation, analysis, and reporting
of results [38]. It is important that studies adhere to the
Standards for Reporting of Diagnostic Accuracy Studies
(STARD) guidance [39], and regional guidance (e.g. US
Food and Drug Adminstration (FDA); UK National In-
stitute for Health and Care Excellence (NICE); Clinical
& Laboratory Standards Institute (CLSI)). It is hardly
surprising then that, to date, no ctDNA markers have
made it into screening programmes, due in part to the
economic feasibility of completing the necessary stages
of validation [40]. Nevertheless, there is encouraging evi-
dence that ctDNA can be used to detect cancers of many
types [16], and the poor quality of many studies should
not detract from this fact.
A plethora of methods are available for ctDNA meas-

urement, which have been well reviewed elsewhere [41].
BEAMing, PCR clamping methods, and deep sequencing
using NGS are now the most commonly used [42, 43]
and are widely regarded as the most sensitive methods
currently available. A recent report of copy number vari-
ation (CNV) in breast cancer is not surprising given the
ability of this method to detect such changes in preg-
nancy [15]. However, it should be noted that many of
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Fig. 1 PRISMA diagram

Fig. 2 Number of targets and publications by tumour type, showing the expected concentration of studies on common cancer types. CRC,
colorectal cancer; HNSCC, head and neck squamous cell carcinoma; HCC, hepatocellular carcinoma
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these methods are expensive. The development of highly
sensitive NGS methods for ctDNA may prove necessary
to obtain the best results [44], but large blood samples
(> 10 ml may be needed as the number of DNA mole-
cules present in small samples is often low) [45]. This
may be at odds with the key requirement of cost effect-
iveness for screening programmes, and in our view this
represents a real challenge for ctDNA. The problem is
probably not insuperable if automation allows the inte-
gration of such methods into large blood sciences la-
boratories, but this is not as yet the case.
As ctDNA is composed largely of short fragments,

short amplicons are required for maximum sensitivity of

PCR reactions, particularly if mutations are being de-
tected [46]. This is compounded by DNA loss in some
reactions, particularly bisulphite modification of DNA,
and it may be preferable to use nuclease protection as-
says [47, 48]. Methylation of key genes involved in car-
cinogenesis can be found in ctDNA, and has been
studied by many groups, but it should be noted that sub-
stantial numbers of normal controls also have methyla-
tion of ctDNA for these genes [49].
It is clear that high sensitivity methods will be needed

if ctDNA is to be used for early cancer detection. Several
factors affect the sensitivity of ctDNA measurement.
The first is the extraction method, and there are as yet
too few studies which have compared the different op-
tions available, which now include automated instru-
ments as well as manual extraction systems [50, 51]. The
proportion of tumour derived DNA (ctDNA) in total
cfDNA is greater in plasma than serum, and the higher
ctDNA levels in serum are due to leakage from leuko-
cytes during clotting [17]. The dilution effect for ctDNA
in serum results in a reduced ability to detect mutations,

Fig. 4 Use of serum or plasma for studies. The majority use plasma, but serum is preferred for methylation studies by some. Only three studies
looked at both serum and plasma

Fig. 5 Targets: many studies looked at multiple targets, mainly
either mutations or methylated genes

Fig. 3 Study size. There are occasional large studies, but the vast
majority are small, evidenced by the low median and averages for
both cases and controls
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particularly by methods with low analytical sensitivity
[50]. Most groups working in the field realise this, and
the majority of publications now look at plasma rather
than serum.
Several publications were noteworthy, including one

influential study which did not include healthy controls
[16]. However, the comparison of DNA levels and mul-
tiple mutations in plasma from many different tumours
types is helpful [44], and makes it clear that some tu-
mours (e.g. gliomas) do not have high ctDNA levels in
plasma, as previously found when comparing CSF with
plasma [52]. This is also one of several publications that
examines early stage disease, and shows that patients
with localised disease have lower ctDNA levels [16]. Few
publications have examined the ability of ctDNA to de-
tect smaller tumours, though all agree that ctDNA levels
increase as tumours enlarge [42].
Choice of target also influences results: the use of

LINE1 and ALU repeats allows quantitative size distribu-
tion of DNA to be measured. Several publications
suggest that this can distinguish cancer, and even pre-
cancerous conditions from controls [30]. The size distri-
bution of CRC appears to be different from other
tumours due to first pass hepatic metabolism [20, 53].
Absolute quantitation by single gene methods such as
GAPDH or hTERT will result in lower estimates of
DNA content, and it is likely that this is due to the
higher sensitivity of the ALU and LINE1 assays [30].
The use of mutations common within cancers is at-

tractive, and the use of ctDNA to provide companion
diagnostic information in patients in whom biopsy ma-
terial is not available is now entering practice [54]. How-
ever, it should be noted that such mutations in P53 can
occur in the blood of healthy controls, and could give
rise to substantial numbers of false positive results [55].
Septin 9 methylation is often regarded as a model for fu-

ture work [56, 57], and it is notable that there are some
large studies [58] within the evidence base for the use of
this marker in colorectal cancer, often used in addition to

other markers, such as faecal occult blood testing (FoBT)
or faecal immunohistochemical testing (FIT). Pre-analytical
factors have been examined for this marker [59], including
diurnal variation [60]. Plasma methylation of Septin 9 is
now available as a commercial test (Epi proColon 2.0; Epi-
genomics AG, Berlin, Germany) which has recently ob-
tained FDA approval for colorectal cancer screening (April
2016). This is the first blood test to be approved for cancer
screening, and represents an encouraging milestone.
Other methylation targets have been studied in depth

and show considerable promise. These include APC for
colorectal cancer, with a large number of studies (Table 2),
and SHOX3, for which a recent meta-analysis suggests
that it could have an important role in the diagnosis of
lung cancer [61].
There is an encouraging trend towards larger, more

ambitious studies, supported by the commercial sector
(e.g. (https://clinicaltrials.gov/ct2/show/NCT02889978, and
https://clinicaltrials.gov/ct2/show/NCT03085888). Case con-
trol studies (particular retrospective ones) can give biased re-
sults, and prospective studies in at-risk cohorts would
be more useful in examining the predictive capability
of these markers. Such prospective studies should in-
clude controls proven not to have cancer. The com-
parison of new with existing methods (e.g. tumour
markers, radiology), and competing technologies, is
recommended, and often required by regulators. This
has cost implications for funding bodies, but is essen-
tial if the field is to progress rapidly.

Conclusions
While ctDNA analysis may provide a viable option for
the early detection of cancers, not all cancers are detect-
able using current methods. However, improvements in
technology are rapidly overcoming some of the issues of
analytical sensitivity, and it is likely that mutation and
methylation analysis of ctDNA will improve specificity
for the diagnosis of cancer.
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