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Abstract

Background: Tumor-infiltrating leukocytes can either limit cancer growth or facilitate its spread. Diagnostic
strategies that comprehensively assess the functional complexity of tumor immune infiltrates could have
wide-reaching clinical value. In previous work we identified distinct immune gene signatures in breast tumors that
reflect the relative abundance of infiltrating immune cells and exhibited significant associations with patient
outcomes. Here we hypothesized that immune gene signatures agnostic to tumor type can be identified by de novo
discovery of gene clusters enriched for immunological functions and possessing internal correlation structure
conserved across solid tumors from different anatomic sites.

Methods: We assembled microarray expression datasets encompassing 5,295 tumors of the breast, colon, lung,
ovarian and prostate. Unsupervised clustering methods were used to determine number and composition of gene
clusters within each dataset. Immune-enriched gene clusters (signatures) identified by gene ontology enrichment
were analyzed for internal correlation structure and conservation across tumors then compared against expression
profiles of: 1) flow-sorted leukocytes from peripheral blood and 2) > 300 cancer cell lines from solid and hematologic
cancers. Cox regression analysis was used to identify signatures with significant associations with clinical outcome.

Results: We identified nine distinct immune-enriched gene signatures conserved across all five tumor types. The
signatures differentiated specific leukocyte lineages with moderate discernment overall, and naturally organized into
six discrete groups indicative of admixed lineages. Moreover, seven of the signatures exhibit minimal and uncorrelated
expression in cancer cell lines, suggesting that these signatures derive predominantly from infiltrating immune cells.
All nine immune signatures achieved statistically significant associations with patient prognosis (p < 0.05) in one or
more tumor types with greatest significance observed in breast and skin cancers. Several signatures indicative of
myeloid lineages exhibited poor outcome associations that were most apparent in brain and colon cancers.

Conclusions: These findings suggest that tumor infiltrating immune cells can be differentiated by immune-specific
gene expression patterns that quantify the relative abundance of multiple immune infiltrates across a range of solid
tumor types. That these markers of immune involvement are significantly associated with patient prognosis in diverse
cancers suggests their clinical utility as pan-cancer markers of tumor behavior and immune responsiveness.
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Background
Immune cells that traffic to solid tumors can exert
profound influences on the clinical behavior of can-
cer. Tumor-infiltrating immune cells such as cytotoxic
T lymphocytes (CTL), T-helper (TH) cells, natural killer
(NK) cells and dendritic cells (DC) are generally known
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to effect anti-tumor immune responses that can limit
tumor growth and progression, while others such as
T-regulatory cells (T-reg), tumor associated macrophages
(TAM) and myeloid derived suppressor cells (MDSC) are
associated with pro-tumorigenic functions that disable
anti-tumor immunity and facilitate cancer invasion and
metastasis. Consistent with their functional attributes,
these various immune cell types have been shown to con-
fer clinically-relevant prognostic information predictive
of either good or poor patient outcomes depending on
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cell type, abundance and functional orientation. How-
ever, for reasons that remain unclear, immune prognos-
tic value is known to vary according to tumor site and
histology, and is likely impacted by signals intrinsic to
the tumor microenvironment including factors expressed
by cancer cells or other immune cells with antagoniz-
ing functions. New diagnostic strategies that comprehen-
sively and simultaneously assess the cellular composition
and functional complexity of immune infiltrates in solid
tumors is needed. Such a diagnostic systems level view of
tumor immunity could markedly enhance patient progno-
sis and inform immunotherapeutic decisions for cancer
patients. Conventional strategies for assessing immune
involvement in cancer are limited in this capacity. For
example, tumor infiltrating lymphocytes (TIL) are readily
observable in tumor sections by conventional histologi-
cal staining methods, and their relative abundance has,
historically, been widely associated with good clinical out-
comes in multiple cancer types including breast, colon,
lung, ovarian and skin cancers [1–5]. TIL assessment,
however, lacks objective quantitation and is subject to
the inherent limitation of cellular heterogeneity, namely
a lack of discernment among the varying types and pro-
portions of immune cells that together comprise TIL
[6], prompting the formation of international consortia
to develop standardized methods for TIL evaluation [7].
By contrast, immunohistochemical (IHC) methods that
stain for immune cell-specific markers offer greater accu-
racy and precision for quantifying biologically distinct
immune populations, but practical limitations associated
with IHC such as reagent costs and labor, prevent the
comprehensive (multi-cellular) assessment of the immune
contexture of tumors on a routine basis, though new
multispectral imaging approaches are beginning to show
promise [8].
While a number of different immune signatures have

been reported, there remain obstacles to their clini-
cal translation. For example, the genetic composition of
reported immune signatures has been mostly inconsis-
tent, varying widely within and across tumor types. The
ability of these genes to discern specific immune cell
lineages is poorly understood. How malignant cells con-
tribute to the expression of these genes in a manner that
may obscure their immune-specific origins has not been
systematically addressed.
Herein, we investigated the hypothesis that immune

cell signatures agnostic to tumor type could be identified
by the de novo discovery of gene signatures comprised
of genes enriched for immune biological functions and
with internal correlation structure conserved across solid
tumors from different anatomic sites. We identified nine
distinct immune gene signatures with fully conserved cor-
relation structures in breast, lung, colon, ovarian and
prostate tumors that differentiated specific leukocyte

populations to variable degrees. These signatures also
exhibited significant statistical associations with patient
prognosis while presenting some substantial differences
among various cancer types. Together, these findings
indicate the existence of tumor-agnostic immune-specific
gene signatures that appear to quantify a variety of
immune cell lineages with prognostic implications for
cancer patients.

Methods
Cancer microarray datasets used for identification of
immune gene signatures
To discover immune-related gene signatures in human
tumors, we assembled five curated microarray datasets of
primary tumor expression profiles for breast, colon, lung,
ovarian and prostate cancers. All five datasets are based
on the Affymetrix U133 GeneChip microarray platform
with specific array platforms: HG-U133A, HG-U133A2
and HG-U133 PLUS 2.0. Only probe sets in common to
all gene chips were included for analysis, which resulted in
22,277 probe sets.
Each cancer dataset represents a compilation of multi-

ple smaller tumor profiling datasets. The breast cancer
dataset is described in detail in [9]. It consists of 2,034
primary invasive breast tumors from multiple medical
centers in the U.S., Europe and Asia. The colon cancer
dataset consists of 843 tumor profiles derived from
four studies. Raw data was downloaded from NCBI
Gene Expression Omnibus (GEO) database [10, 11]
(accessions: GSE26682, GSE17538, GSE14333, and
GSE13294). The non-small cell lung cancer dataset con-
sists of 1,346 samples from 11 studies. Eight of them were
extracted from GEO (accessions: GSE10072, GSE10245,
GSE10445, GSE19188, GSE31210, GSE3141, GSE31908,
and GSE4573). One dataset was downloaded from NCI
caArray microarray data repository http://cabig.cancer.
gov/solutions/applications/caarray/ (accession number:
jacob-00182) and is now available on GEO: GSE68465.
Additionally, this dataset contains unpublished sam-
ples: 77 samples (Paris series II; Dr. Philippe Broet, by
communication) and 50 samples (Singapore; Dr. Patrick
Tan, by communication). The ovarian cancer dataset
consists of 740 tumor profiles from six studies. Raw
data was downloaded from GEO database (accessions:
GSE18520, GSE26193, GSE26712, GSE27943, GSE6008,
and GSE9899). The prostate cancer dataset consists of
332 tumor profiles from three studies. Raw data was
downloaded from GEO database (accessions: GSE17951,
GSE25136, and GSE8218).
Each dataset (breast, colon, lung, ovarian and prostate)

was processed on individual study using the Robust
Multi-array Average (RMA) method that includes back-
ground correction, quantile normalization and summa-
rization. RMA processing is implemented in the R [12]
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package affy [13] as provided by Bioconductor [14]. Batch
effects were corrected using ComBat, an Empirical Bayes
method [15].

Data filtering using EPIG
To extract major patterns of genes in our five datasets
(described above) we have used EPIG, which is a method
for Extracting Microarray Gene Expression Patterns and
Identifying co-expressed Genes [16]. Prior to EPIG anal-
ysis, we averaged expression (log2 signal intensities) of
probe sets that corresponded to the same gene with a
Pearson r-value greater than 0.4. Next, for each dataset
50% of samples were randomly selected and the EPIG
algorithm was applied to extract major patterns of co-
expressed genes. This process was repeated 1000 times.
For each cluster we chose genes that were selected 750
times or more out of 1000. Gene-annotation enrichment
analysis using the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) [17, 18] was per-
formed on all final clusters. Clusters of genes that were
highly enriched (p < 0.001) for immunity-related terms
were selected for further analysis. At this stage we went
back to individual probe identifications and took the
union of all probes among five datasets resulting in 1,017
Affymetrix probe IDs.

Consensus clustering
We have selected two different unsupervised cluster-
ing methods for analysis of datasets (described above)
each containing 1,017 probe sets: self-organizing maps
(SOMs) [19–21] and k-means [22–25]. To assess clus-
ter stability we further adopted the consensus clustering
methodology of Monti et al. [26]. In addition, two dif-
ferent environments that employ consensus clustering
technique were used: ConsensusClustering module imple-
mented by Monti et al. [26] in GenePattern [27], and the
package clusterCons implemented by Simpson et al. [28]
in R [12]. We have used SOMs with the GenePattern
moduleConsensusClustering and k-means with R package
clusterCons.
The consensus clustering procedure begins by speci-

fying the range of clusters to be investigated and the
clustering algorithm, i.e., k-means, or self-organizing map
(SOM). Next, a proportion of genes or samples from a
dataset is selected and clustered by using the specified
algorithm and other parameters. This process is repeated
many times and clusters produced by each iteration are
stored and then used to calculate the consensus results.
Genes that are recurrently identified in the same cluster
can be deemed reliable cluster members. We have chosen
the maximum number of clusters to investigate to be 10,
and run 500 resampling iteration for both algorithms with
80% of probe sets being subsampled from the 1,017 probes
without replacement.

Several objects and summary statistics are computed
that can be used to assess the clusters’ composition and
to quantify the stability of each cluster. One of the main
objects is the consensus matrix that measures the fre-
quency with which any two probe sets cluster together.We
can rearrange items in the consensus matrix that belong
to the same cluster and display it as a heatmap. In the
event of a perfect consensus the heatmap will have sharply
colored blocks along the diagonal. Other summary statis-
tics are cluster and item consensus, which can be used to
quantify the stability of each cluster, and to rank items
within clusters in terms of how representative of a given
cluster they are.

Enrichment scores
Enrichment scores were computed using the immune cell
profiling dataset of Abbas et al. [29] downloaded from
the NCBI Gene Expression Omnibus database [10, 11],
accession GSE22886. Expression data (Affymetrix HG-
U133A) was processed using RMA as implemented in the
R [12] package affy [13] and provided by Bioconductor
[14]. We partitioned this dataset into 18 groups represent-
ing specific immune cell subsets (see Table 1). To compute
enrichment scores for each probe set per group we have
used the procedure as described in [30] and limma pack-
age of Bioconductor [14, 31, 32]. The procedure can be
summarized as follows: first, one compares each group to
all others and computes the linear model coefficient for
each pair, which is a measure of the difference between

Table 1 Immune cell subsets

Immune descriptor Replicates

CD8Tcell-N0-1 4

CD4Tcell-N0-1 3

CD4Tcell-Th1 5

CD4Tcell-Th2 6

MemoryTcell-RO-unactivated 3

MemoryTcell-RO-activated 3

NKcell-control 4

NKcell-IL2-stimulated 5

NKcell-IL15-stimulated 6

Bcell-naïve 7

Bcell-Memory 8

PlasmaCell 7

Monocyte-Day0 12

Monocyte-Day1 12

Monocyte-Day7 12

DendriticCell-Control 6

DendriticCell-LPS-stimulated 6

Neutrophil-Resting 5
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two groups, then for each probe set one sums all linear
model coefficients with p ≤ 0.05 (Bonferroni corrected).

Gene-annotation enrichment analysis
Gene-annotation enrichment analysis using the Database
for Annotation, Visualization and Integrated Discovery
(DAVID) [17, 18] was performed on all final meta-
intersections (see Results section for definition of meta-
intersection). In selecting the candidates that will become
signatures we have used the following criteria: (i) at least
50% of probe sets in each meta-intersection had to be
annotated for GO biological process and function, (ii)
there must be at least ten unique gene symbols and
titles in each intersection, and (iii) from the remaining
meta-intersections we selected only those with significant
enrichment (FDR < 0.05) for immune functions.

Metagene construction
The construction of immune metagenes was performed
as follows. First, for each cancer dataset (described above)
we averaged probe sets within a metagene that represent
the same gene to ensure that no gene is overrepresented.
Next, the signal intensities of the genes from the first step
and intensities of the remaining probe sets were averaged
to form a final metagene.

GSK cell lines data
Expression data (Affymetrix HG-U133 PLUS 2.0) from
over 300 cancer cell lines provided by GlaxoSmithKline
(GSK) was processed using RMA as described in the
previous sections. This dataset contained three technical
replicates per cell line. After processing we averaged
the replicate data (per cell line) which resulted in 318
samples. The dataset can be downloaded from National
Cancer Institute’s caArray Directory https://wiki.nci.nih.
gov/display/caArray2/caArray+Directory (Experiment
ID: woost-00041).

Datasets for survival analysis
For survival anlysis we have used six datasets that were
annotated with survival time and event. Three of these
datasets are subsets of the data described above and three
are from The Cancer Genome Atlas (TCGA) Research
Network: (http://cancergenome.nih.gov/).

Data used formetagene discovery
The breast cancer dataset contains 1,954 cases (out of
2,034) annotated with distant metastasis-free survival
(DMFS) time (years) and event. For more information
about breast cancer dataset clinical annotations consult
[9]. For the colon dataset we have used GEO accession
GSE17538 [33, 34]. This data contained patient and clin-
ical characteristics. Of these, 232 cases were annotated
for overall survival (OAS) time and event, 177 cases were

annotated for disease specific survival (DSS) time and
event, and 200 cases for disease free survival (DFS) time
and event (all times are in months). Lung cancer dataset
consists of 757 cases (out of 1346) annotated for overall
survival (OAS) and progression-free survival (PFS) time
and event, and 507 cases for relapse-free survival (RFS)
time and event (times are in years).

TCGA data
Glioblastoma multiforme (GBM) and Ovarian serous cys-
tadenocarcinoma (OV) Level 1 raw data (Affymetrix
HG-U133A) and clinical information were downloaded
from the TCGAdata portal (https://tcga-data.nci.nih.gov/
tcga/). Raw data was grouped by Plate ID and processed
using RMA as implemented in the R [12] package affy [13]
and provided by Bioconductor [14]. Batch effects were
corrected using ComBat [15], which is part of the package
sva [35]. Arrays that did correspond to the same patient
were removed prior to preprocessing. The OV dataset had
566 cases and the GBM dataset had 524 cases annotated
for overall survival (OAS) time (days) and event.
Skin Cutaneous Melanoma (SKCM) Level 3 data

(RNASeqV2 normalized results for expression of a gene)
was downloaded using R based data client (RTCGATool-
box [36]) for Firehose [37] pre-processed data. The SKCM
dataset had 456 cases annotated for overall survival (OAS)
time (days) and event.

Survival analysis
Cox proportional hazards model (survival package
[38, 39] as implemented in R [12]) was fitted to each
dataset described above (Datasets for statistical analyses)
using each metagene individually as continuous explana-
tory variable. To deal with tied event times we have
used Efron’s approximation. We have also stratified each
dataset according to other available characteristics (e.g.,
cancer subtype, gender, etc.) to investigate the association
of each metagene with patient survival for each subset.

Results
Identification of immune gene clusters across five tumor
types
To facilitate the de novo discovery of immune-related
gene signatures in solid tumors, we assembled microar-
ray datasets of tumor expression profiles for breast, colon,
lung, ovarian and prostate cancers from public data repos-
itories. The datasets ranged from 332 to 2,034 tumor
profiles and consisted of 22,277 probe sets common
to the Affymetrix microarray platforms used. For each
dataset, we independently identified all major patterns of
co-expressed genes using the EPIG algorithm [16] and
an iterative sampling procedure to ensure robustness of
gene selections (see Methods: Data filtering using EPIG).
Next, the resulting gene patterns (i.e., gene clusters) were

https://wiki.nci.nih.gov/display/caArray2/caArray+Directory
https://wiki.nci.nih.gov/display/caArray2/caArray+Directory
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https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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systematically analyzed for gene ontology enrichment
to identify those significantly enriched for immunity-
related terms. The union of all genes comprising immune-
enriched clusters (across all 5 datasets) resulted in 1,017
probe sets. The expression patterns of these probe sets
were further assessed within each dataset by consen-
sus clustering methodology, i.e., a resampling technique
that provides quantitative evidence of cluster stability and
enables determination of the number and composition
of gene clusters within a dataset [26]. Of note, a variant
of this method was used for our initial pattern extrac-
tion via EPIG as described in Methods: Data filtering
using EPIG.

SOMand k-means consensus clustering results
Within each tumor dataset, the consensus clustering
procedure, using both k-means and self-organizing map
(SOM) clustering algorithms, was performed on the 1,017
probe sets (see methods: Consensus clustering). Analy-
sis of the consensus summary statistics indicated that the
optimal number of gene clusters ranged from 5 to 7 by
k-means clustering, and from 4 to 7 by SOM clustering,
depending on cancer type. The adjusted Rand index (ARI),
which measures the similarity between two clustering
approaches, indicated strong agreement between the two
algorithms. The consensus heatmaps for the selected gene
clusters and adjusted Rand index are displayed in Fig. 1.
Additional heatmaps for each dataset and algorithm, and
other summary statistics can be found in Additional files
1 and 2.

Intersection of clusters and immune gene signatures selection
To identify immune-related gene signatures that are pre-
served across the five tumor datasets, we compared the

gene composition of clusters across the datasets by com-
puting all possible points of cluster intersection. For clar-
ity, by the intersection of two sets A and B, denoted by
A ∩ B, we mean all elements of A that also belong to B.
Thus, if Bi,Cj, Lk ,Ol and Pm represent specific clusters of
probe sets for breast, colon, lung, ovarian and prostate
datasets, respectively, then we computed all possible com-
binations of the following form Bi ∩ Cj ∩ Lk ∩ Ol ∩ Pm.
In this manner, we had 6,300 intersections for k-means
and 4,704 intersections for SOM. Next, we narrowed our
selection to only the intersections that contained at least
ten probe sets, which resulted in 21 intersections for k-
means and 24 for SOM. Lastly, we combined the results
of the two algorithms to generate a meta-consensus, i.e.,
we chose only the probe sets in common between the
21 k-means and 24 SOM intersections. This resulted in
23 final meta-intersections, each comprising at least ten
probe sets.
As a final qualification of immune relevance, gene-

annotation enrichment analysis [17, 18] was performed
on these 23 meta-intersections, individually (see Methods
section and Additional file 3). Nine of the meta-
intersections exhibited significant enrichment (FDR
< 0.05) for terms related to immune cell functions,
thereby fulfilling our criteria for conserved immune gene
signatures in solid tumors. The expression dynamics of
the immune gene signatures are shown in Fig. 2. To
investigate the correlation structure of the immune gene
signatures, we collapsed each signature into a single meta-
gene value (described in Methods) and computed all pair-
wise correlations within each tumor dataset. As expected,
metagenes belonging to the same larger original gene
cluster remained highly correlated and primarily grouped
together (Fig. 3).

Fig. 1 Consensus clustering heatmaps and adjusted Rand index. Consensus matrices are represented as color coded heatmaps. Each entry in the
matrix is between 0 and 1, thus we associate a color gradient to the (0, 1) range of real number. For k-means algorithm 0 = white and 1 = blue, while
for SOM 0 = white and 1 = red. A matrix corresponding to perfect consensus is displayed as a color-coded heatmap characterized by blue/red
blocks along the diagonal. Numbers inside of each heatmap represent number of clusters selected for each algorithm and dataset. Adjusted Rand
index (ARI) is also shown, which measures the agreement between two clustering algorithms with 1 corresponding to perfect agreement. High
values for ARI indicate high level of agreement
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Fig. 2 k-means clustering and immune gene signatures. Each heatmap represents consensus clustering for k-means algorithm. The clusters are
represented by gray and black bars on the right-hand side of each heatmap with their respective sizes (number of probe sets) written over
gray/black bars. The final nine immune gene signatures are represented by colored bars on the left-hand side of each heatmap

Immune gene signatures differentiate specific leukocyte
populations
To investigate the hypothesis that our nine immune gene
signatures reflect subpopulations of tumor-infiltrating
immune cells, we examined the cellular enrichment of our
immune signature genes within a comprehensive collec-
tion of leukocyte gene expression profiles (Abbas et al.
[29]). Using the Abbas dataset (Table 1), we computed
global immune cell type-specific gene enrichment scores
[30] (see Methods) then examined the enrichment pro-
files of our immune gene signatures across the different
immune cell types (Fig. 4).
We observed that the immune gene signatures naturally

fall into six discrete groups. The first three signatures

show strong enrichment in T cells and Natural Killer
(NK) cells, and are thus classified here as T/NK. Genes
comprising the T/NK signatures include those with
conserved roles in T-cell receptor signaling such as
TRAC, TRBC1, CD3D, CD3G, TRAT1, CD2, CD7, CD28,
LCK and CD247, as well as genes with more special-
ized roles in activated cytotoxic T lymphocytes (CTLs)
including CD8A, PRF1, CCL5, CXCL9, GZMB, GZMA,
GZMH, GZMK, CTSW, IL2RB and CRTAM. One signa-
ture, termed B/P/T/NK exhibited a broader lymphocytic
enrichment characteristic of B cells, plasma B cells, T cells
and NK cells. It includes B cell signaling genes such as
CD19, CD79A and CD180, and genes involved in lym-
phocyte differentiating and trafficking including IKZF1,
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Fig. 3 Dendrograms of metagenes. For each dataset, metagenes were hierarchically clustered using Pearson correlation as distance and average
linkage. The results were plotted as dendrograms. Each metagene was constructed as described in the Methods section

CXCR3, IL16 and ITGB7. One signature, termed B/P,
is strongly enriched in B cells, and plasma B cells in
particular, and is composed primarily of immunoglobulin-
encoding genes such as IGKC, IGHD, IGLC1, IGLJ3,
IGHA1, IGHM, IGJ and IGK. One signature, termed
B/M/D, is enriched in B cells, monocytes and dendritic
cells, and is predominated by genes that belong to the
major histocompatibility complex (MHC) class II family
(HLA-DRA, HLA-DRB1, HLA-DPA1, HLA-DPB1, HLA-
DQB1, CD74) consistent with roles in professional anti-
gen presentation. Two gene signatures, termed M/D/N,
are enriched in monocytes, dendritic cells and neu-
trophils. These signatures comprise genes involved in

the activation and recruitment of effector lymphocytes
(CD84, CD86, CCR1), regulation of immune responses
(LILRB2, LILRB4, CD300A), macrophage differentiation
and function (CSF1R, CCL2, CD14, CD163, CYBB,
CLEC4A, CLEC7A) and myeloid IgG receptor signal-
ing (FCER1G, FCGR1A, FCGR1B, FCGR2A, FCGR2B,
FCGR3A, FCGR3B). Finally, one gene signature, termed
D (LPS), showed greatest enrichment in LPS-stimulated
dendritic cells and is composed of major histocompatibil-
ity complex (MHC) class I family genes (HLA-B, HLA-C,
HLA-G, HLA-J) and a large number of genes with direct
roles in interferon signaling (IRF7, IRF9, STAT1, ISG15,
OAS1, OAS2, OAS3, IFI35, IFI44, IFI6, IFIH1, IFIT3,
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Fig. 4 Enrichment scores heatmap and Functional Annotation terms for each immune-signature. Dataset of Abbas et al. [29] was used to compute
and visualize enrichment scores as described in Methods section. Major functional annotation terms were determined using DAVID [17, 18]

IFIT5, HERC5, HERC6, DDX58, DDX60). Gene sym-
bols associated with each signature are listed in Table 2
(genes that had no symbol or had more than three sym-
bols representing the same probe are listed with Affy
Probe ID).

Most immune gene signatures exhibit minimal and
uncorrelated expression in cancer cell lines derived from
solid tumors
To further investigate the hypothesis that our nine
immune gene signatures reflect subpopulations of tumor-
infiltrating immune cells, we examined the expression
patterns of the immune signature genes in a microarray
dataset provided by GlaxoSmithKline (GSK) (seeMethods
for details) which comprises of > 300 cancer cell lines
derived from solid tumors (n = 243) and hematopoi-
etic and lymphatic cancers (n = 75) representing 28
different cancer types. Shown in Fig. 5 is a heat map

that displays the relative gene expression levels of our
nine immune gene signatures. Consistent with immune-
restricted expression, the majority of the signature genes
displayed a significantly heightened expression in can-
cer cell lines of hematopoietic and lymphatic (immune
cell) origin (i.e., lymphomas, leukemias and myelomas).
By contrast, expression of the immune signature genes
in cell lines derived from solid tumors tended to exhibit
markedly reduced and uncorrelated expression patterns,
consistent with the notion that cancer cell lines cultured
from solid tumors are immune deficient. However, two
exceptions were observed. The B/M/D signature, com-
prising largely of genes encoding MHC class II antigen
presenting molecules, showed enhanced expression in
several solid tumor types, most notably cancers of the skin
(melanomas) and cervix. Indeed, the overexpression of
these genes is well documented in multiple epithelial can-
cers, most notably melanoma [40, 41] and cervical cancer
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Table 2 Immune gene signatures and gene symbols

Gene signature Gene symbol

T/NK 1 BIN2; CD3G; CD7; CD72; CTSW; CXCR6; FYB; GZMH; IKZF1; IL21R; KLRC4-KLRK1/KLRK1; KLRD1; LCK; MAP4K1;
PSTPIP1; PTPN7; SIRPG; SP140; STAT4; TRAF1; UBASH3A; YME1L1; ZAP70

T/NK 2
ARHGAP25; CCL5; CCR5; CD2; CD3D; CD48; CD8A; CORO1A; CST7; CXCL9; FYB; GIMAP1-GIMAP5/GIMAP5;
GZMA; GZMB; GZMK; IL2RB; ITGAL; LCK; LTB; NCF1/NCF1B/NCF1C; NCF1C; NKG7; PIK3CD; PRF1; RASGRP1;
SASH3; SELL; TNFAIP3; TRAC; TRAC/TRAJ17/TRAV20; TRAF3IP3; TRBC1; YME1L1

T/NK 3 ACAP1; ARHGAP25; CCL19; CCR7; CD247; CD28; CD96; CRTAM; FAIM3; GPR171; GPR18; HLA-DOB; IL16; KLRB1;
LAT; LRMP; MS4A1; PLCG2; PPP1R16B; PVRIG; RUNX3; SH2D1A; TRAT1; XCL1; XCL1/XCL2

B/P/T/NK CD180; CD19; CD79B; CD8B/LOC100996919; CXCR3; DENND1C; FAIM3; IKZF1; IL16; ITGB7; LAT; LY9; PAX5;
PLA2G2D; PRKCQ; SH2D1A; SIT1; TCL1A

B/P

217179_x_at; 211633_x_at; 217480_x_at; 211868_x_at; 211637_x_at; 211639_x_at; 217281_x_at;
211650_x_at; 211635_x_at; 211641_x_at; 214916_x_at; 216557_x_at; 217360_x_at; 216510_x_at;
211430_s_at; 216401_x_at; 214768_x_at; 216984_x_at; IGHD; IGHM; IGJ; IGK; IGHG1/IGHM; IGHV3-
47/IGHV3-47; IGK/IGKC; IGKC; IGKV1-17/IGKV1-17; IGHA1/IGHG1/IGHM; CYAT1/IGLC1/IGLV1-44; GUSBP11;
IGH/IGHA1/IGHA2; IGKV4-1/IGKV4-1; IGLC1; IGLJ3; IGLL3P; IGLL5; IGLV1-44; IGLV2-14/IGLV2-14;
IGLV3-10/IGLV3-10; IGLV3-19/IGLV3-19; MZB1; PIM2; TNFRSF17; AC016745.2/OTTHUMG00000153338;

B/M/D
215193_x_at; 209312_x_at; 204670_x_at; CD74; HLA-DPA1; HLA-DPB1; HLA-DQB1; HLA-DRA; SLC15A3;
SLC1A3; THEMIS2; TMEM140; HLA-DRB1/LOC100507709/LOC100507714; HLA-DQB1/LOC101060835; HLA-
DRB6/LOC100996809

M/D/N 1 APOC1; CCL18/LOC101060271; CCR1; CD300A; CD84; CD86; FCGR2C; LILRB2; LILRB4; LSP1; PILRA; SLAMF8

M/D/N 2

219574_at; AIF1; ALOX5AP; APOE; BCL2A1; C1QA; C1QB; C3AR1; C5AR1; CCL2; CCL4; CCR1; CD14; CD163;
CD300A; CD53; CD86; CLEC2B; CLEC4A; CLEC7A; CSF1R; CYBB; DOCK10; DOCK2; EVI2A; EVI2B; FCER1G;
FCGR1A/FCGR1B/FCGR1C; FCGR1B; FCGR2A; FCGR2B; FCGR3A/FCGR3B; FCGR3B; FGL2; GPNMB; GPR65; HCK;
HCLS1; IFI30/PIK3R2; IGSF6; ITGA4; ITGB2; LAIR1; LAPTM5; LCP2; LILRB2; LST1; LY86; LY96; MNDA; MRC1;
MS4A4A; MS4A6A; MSR1; MYO1F; NCF2; NCKAP1L; NPL; PILRA; PLEK; PTPRC; RGS1; RNASE6; SAMSN1; SELPLG;
SLA; SLAMF8; SLC7A7; SLCO2B1; SRGN; TFEC; TLR1; TLR2; TLR7; TM6SF1; TRPV2; TYROBP; VSIG4

D (LPS)
B2M; CXCL10; CXCL11; DDX58; DDX60; EIF2AK2; HERC5; HERC6; HLA-B; HLA-C; HLA-G; HLA-J; IFI35; IFI44;
IFI44L; IFI6; IFIH1; IFIT1; IFIT3; IFIT5; IRF7; IRF9; ISG15; LAP3; OAS1; OAS2; OAS3; PLSCR1; PSMB8; RSAD2; STAT1;
TAP1; TAPBP; UBE2L6; USP18; WARS

Genes without symbol or with more than three symbols per probe are listed with Affy Probe ID

Fig. 5 GSK cancer cell lines and immune gene signatures. Cell lines were arranged by cancer type and are represented by the colored bar at the top
of the heatmap. There are 318 cancer cell lines representing 28 different cancer types. Cancer types labeled Other are (in order from left to right):
Eye, Synovial Membrane, Pharynx, Rectum, Sarcoma, Connective Tissue, Placenta, Vulva. Samples and immune gene signatures were not clustered
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[42, 43], though its pathological contributions are not
known. Contrary to the other immune signatures, the D
(LPS) signature, comprised mainly of interferon-regulated
genes, displayed marked up-regulation in a portion of
all cancer cell types. Not surprisingly, the majority of
these genes have been previously defined as components
of a conserved interferon activation signature, observed
not only in various cancers [44–47], but also autoim-
mune diseases [48, 49]. Thus, we conclude that, with the
exception the latter two signatures, the tumor immune
gene signatures identified here likely derive, in large part,
from the infiltrating immune component of the tumor
microenvironment.

The immune gene signatures are robust prognostic
markers
Next, we examined the extent to which the nine immune
signatures (i.e., metagenes) associate significantly with
patient prognosis. Since the immune signatures were dis-
covered independently of the clinical outcome data, our
statistical analysis utilized three subsets from our original
datasets (breast, colon and lung) and three independent
TCGA (http://cancergenome.nih.gov/) datasets: Glioblas-
toma multiforme (GBM), Ovarian serous cystadenocar-
cinoma (OV) and Skin Cutaneous Melanoma (SKCM)
(see Methods section on Datasets for statistical analyses
details). Prior to survival analysis, we investigated whether
the discovered signatures display similar patterns of gene
correlation structure when applied to TCGA OV, GBM,
and SKCM data. As shown in Fig. 6, the genes comprising
the nine immune signatures do in fact retain a preserved
intra-signature co-expression structure in all three TCGA
datasets.
To assess associations with overall and/or recurrence-

or progression-free survival, we performed univariate Cox
proportional hazards regression using the immune meta-
genes as continuous explanatory variables. For each tumor
dataset, we performed multiple survival analyses based
on the differential stratification of patients according to
a variety of potentially relevant clinical and biological
tumor characteristics; the latter of which included a tumor
proliferation metagene (P metagene) that we previously
demonstrated in breast cancer to markedly influence
the prognostic strength of several immune metagenes
upon stratifying patients to different P metagene ter-
tiles [9]. Numerous significant results were observed and
are presented in Table 3 (for the entire summary that
includes hazard ratios and 95% confidence intervals see
Additional file 4). As the table demonstrates, all nine
immune metagenes achieved statistically significant asso-
ciations with DMFS (distant metastasis-free survival)
and/or OAS (overall survival), with greatest positive sig-
nificance (i.e., high immune metagenes associated with
good outcomes) observed in the Breast and SKCM cancer

types. By contrast, however, a number of metagenes
exhibited inverse survival associations under various cir-
cumstances. This poor-outcome association was most
apparent for metagenes enriched in myeloid cells and
occurred most notably in the contexts of GBM and colon
cancer. Together, these findings are consistent with the
perception that tumor infiltrating immune cells possess
the functional capacity to promote both anti- and pro-
tumorigenic effects, where the directionality and extent of
effect is governed, in part, by cellular and molecular con-
stituents of the tumor microenvironment that vary within
and across tumor types.

Discussion
A number of expression profiling studies have demon-
strated the existence of a relationship between intratu-
moral immune gene signatures and favorable prognosis or
response to therapy, either chemotherapy or immunother-
apy [50–52]. Although overlapping biological properties
characterizing the favorable cancer immune phenotype
have been described [50], the gene makeup of these signa-
tures lacks consensus, the cellular specificity of the gene
expression signals are unknown and a systematic analy-
sis of their prognostic value within multiple tumor types
is lacking. Only very recently, an integrative meta-analysis
has corroborated the prognostic role of immune gene sig-
natures across cancer [53]. In this study, we instituted
a de novo discovery approach to rigorously identify co-
expressed genes enriched for immune cell function and
conserved in correlation structure across anatomically
diverse malignancies. We hypothesized that the existence
of such gene signatures could be explained by gene expres-
sion patterns specific to infiltrating immune cells with
negligible transcriptional contribution from cancer cells
or other stromal compartments that would otherwise dis-
rupt the conserved internal correlation among the genes
comprising the signatures. As quantifiable surrogates of
tumor infiltrating immune cells, we further posited that
the immune gene signatures (quantified as metagenes)
would significantly associate with measures of disease
aggressiveness such as tumor recurrence and patient
survival in a manner typifying the functional attributes
of distinct immune cell lineages in anti- or pro-tumor
immunity.
Using unsupervised and consensus clustering methods

followed by assessment for enrichment of immunological
processes, we identified 9 distinct gene signatures con-
served across breast, colon, lung, ovarian and prostate
cancers that appear to reflect different functional aspects
of immune cell biology. Enrichment analysis of their pat-
terns of expression in blood-purified immune cell lineages
(Fig. 4) revealed large distinctions between lymphoid and
myeloid tissues, but with limited resolution among more
specific immune cell types, with the exception of a highly

http://cancergenome.nih.gov/
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Fig. 6 TCGA datasets and immune gene signatures. Samples for each dataset (OV, GBM and SKCM) were hierarchically clustered using Pearson
correlation as distance and average linkage. Gene signatures were not clustered
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Table 3 Significant p-values from univariate survival analysis of immune metagenes

Immune metagenes

Cancer type Clinical characteristics T/NK 1 T/NK 2 T/NK 3 B/P/T/NK B/P B/M/D M/D/N 1 M/D/N 2 D (LPS)

Breast (DMFS) All (n = 1954) ** ** ** ** *** ***

P (high) (n = 651) *** *** *** *** *** *** *** *** **

HER2-E (n = 281) *** *** *** *** *** ** ** * **

Basal (n = 334) *** *** *** *** *** ** **

LN- (n = 1498) ** ** ** ** *** ***

ER- (n = 401) *** *** *** *** *** **

ER+ (n = 1343) * ** *** *↓
Luminal B (n = 399) * * * *** *

Luminal A (n = 565) *↓
Normal (n = 257) *

40 < Age ≤ 50 (n = 404) * * ** **

Age > 50 (n = 986) * * *

Colon (OAS) All (n = 232) **

Grade - MD (n = 166) * *

Age < 60 (n = 79) * *

P (low) (n = 78) *

Gender - M (n = 122) * * * **

Gender - F (n = 110) *↓
Stage II (n = 72) *↓ *↓ *↓ **↓ **↓ **↓

Lung (OAS) All (n = 757) * ** * **

Stage I (n = 490) ** ** * **

Sub-stage IB (n = 313) * ** ** * ** *

Adj. Chemo - No (n = 503) * ** * *

Histology - S (n = 183) * * **

Histology - A (n = 574) *

60 ≤ Age < 70 (n = 273) * ** *

P (med) (n = 253) * *

Gender - F (n = 333) *

Gender - M (n = 424) *
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Table 3 Significant p-values from univariate survival analysis of immune metagenes (Continued)

TCGA OV (OAS) All (n = 566) * * * *

P (med) (n = 189) ** ** ** * * * *

P (low) (n = 188) *↓ *↓
Grade 3 (n = 477) ** * ** *

Stage III (n = 436) * * *

60 ≤ Age < 70 (n = 136) *

TCGA GBM (OAS) All (n = 524) *↓ *↓ *↓
Age < 60 (n = 273) *↓ *↓ **↓
Gender - F (n = 205) *↓ *↓ *↓ *↓ **↓ **↓
P (high) (n = 174) *↓ **↓ **↓ **↓ *↓

TCGA SKCM (OAS) All (n = 456) *** *** *** *** *** *** *** *** ***

Stage ≤ II (n = 229) *** *** *** *** *** *** *** *** ***

Stage > II (n = 191) *** *** ** ** ** *** ** *** ***

Gender - F (n = 175) *** *** *** ** *** *** *** *** ***

Gender - M (n = 281) ** ** * ** * ** ** ** **

P (low) (n = 152) ** ** ** * ** ** ** *** ***

P (med) (n = 152) * * ** * * **

P (high) (n = 152) ** ** * ** ** ** ** ** **

Age < 50 (n = 136) ** ** * * * * **

50 ≤ Age < 70 (n = 190) ** ** * * ** *** *** *** **

Age ≥ 70 (n = 130) ** ** * ** * ** * * **

Breslow dv ≤ 1.5 (n = 105) *** ** ** * * *** ** *** **

Breslow dv > 1.5 (n = 246) * * * * *

Primary Tumor (n = 102) *

Regional Tumor (n = 288) *** *** *** *** *** *** *** *** ***

p-value codes: p ≤ 0.001 (***); 0.001 < p ≤ 0.01 (**); 0.01 < p ≤ 0.05 (*); Poor outcome (↓)

P (low, med, high) = low, intermediate and high proliferation tertiles. Breslow dv (depth value)
Grade - MD = Moderately Differentiated. Histology - S/A = Squamous Cell Carcinoma/Adenocarcinoma
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specific B cell/Plasma cell (B/P) gene module shared by
naïve, memory and plasma B cells. Notably, the genes
of this signature have been previously recognized in a
number of independent studies, overlapping substantially
with prognostic and therapy-predictive B-cell signatures
in breast cancer [9, 54–56], an IgG metagene in breast
cancer [57] and a gene signature of B-cell TILs in breast
and ovarian tumor subtypes associated with prognostic
low-diversity B-cell receptor (BCR) gene segments [58]. A
signature termed D (LPS) that showed strongest enrich-
ment in LPS-stimulated dendritic cells, provided little
distinction between lymphoid and myeloid tissues, gener-
ally, and in contrast to the other gene signatures, showed
relatively similar expression levels across the entirety of
immune cell types. These results suggest that while the
gene signatures can largely distinguish immune lineages
from the common progenitors (lymphoid and myeloid),
and also B cells with marked specificity, the more differen-
tiated cells that stem from a common developmental pre-
cursor (e.g., CD8+ T cells, CD4+ T cells, CD56+ NK cells)
are largely not discernible by the immune gene signatures.
There are several possible explanations for this lack of cell
type-specific resolution. First, a comparative analysis of
the global gene expression profiles of the purified immune
cells revealed a moderate to high degree of transcriptional
similarity among differentiated cells related by lineage,
with only a few genes, in some instances, exhibiting robust
cellular specificity [29]. That these rare, cell type-specific
genes were not major components of our gene signatures
could owe to their admixed expression in tumors, where
both immune and malignant cells (and/or other stro-
mal cell populations) may co-express the genes thereby
abrogating their cellular specificity that otherwise exists
among peripheral blood-purified immune cells. Second,
it is currently unknown to what extent immune cells
from peripheral blood share transcriptional programming
with immune cells residing in the tumor microenviron-
ment. Secreted factors unique to this environment could
induce systemic transcriptional alterations in tumor infil-
trating immune cells that, while contributing to cellular
specificity underlying the tumor-derived immune gene
signatures, may not accurately reflect cellular identity in
peripheral blood counterparts. Third, the derivation of the
immune gene signatures required a sufficient number of
genes per signature to achieve statistical significance for
enrichment of immune-related processes. Thus, a rela-
tively small (and immune enrichment-insignificant) num-
ber of correlated and conserved cell-specific genes could
have been precluded by our statistical selection criteria.
Consistent with their immunological origins, a positive

correlation between immune signatures (i.e., metagenes)
and good prognosis was observed in all but GBM tumors,
in which the expression of the immune metagenes associ-
ated with B cell, monocyte and dendritic cell infiltration

was inversely correlated with outcome. Studies assess-
ing the prognostic role of immune signatures in GBM
have reported contrasting results [59–61]. However, dif-
ferential expression of immune genes according to GBM
molecular subtypes has been described [62]. As intrin-
sic molecular subtypes of GBM in turn associate with
different clinical outcomes, further analyses should clar-
ify the role and functional orientation of immune infil-
trates within specific GBM molecular subtypes. While
our study did not uncover immune metagenes that con-
sistently showed negative correlations with patient out-
comes, the myeloid-like signatures exhibited the greatest
variation in direction of prognosis (good versus poor),
which appears to depend on cancer type and specific diag-
nostic contexts. This finding may exemplify the myriad
and opposing pathological roles played by myeloid cells
in cancer.
The transcriptional profiling of whole tumor specimens

cannot clarify the source of immune-signature signals. To
further address the question of immune cellular speci-
ficity of gene expression, we examined the expression
profiles of the immune gene signatures across several hun-
dred cancer cell lines (Fig. 5). Under baseline conditions,
solid tumor cells generally displayed negligible expres-
sion of the immune signature genes. By contrast, the
genes tended to exhibit highest expression in hematopoi-
etic and lymphatic cancers, consistent with the hypoth-
esis that immune signals detected from whole tumor
samples are mostly driven by the presence of immune
cell infiltrates. However, two notable exceptions were
observed. The D (LPS) signature exhibited substantial
expression heterogeneity in solid and liquid cancer cell
lines. This signature is enriched for interferon-regulated
genes such as transcripts coding for classical IFN-induced
chemokines (e.g., CXCL9 and CXCL11), and other IFN-
regulated transcripts (e.g., STAT1, IRF7, IRF9, STAT1,
ISG15, OAS1, OAS2, OAS3, IFI35, IFI44, IFI6, IFIH1,
IFIT3, IFIT5, HERC5, HERC6, DDX58, and DDX60). It
has been observed that the degree of T cell infiltra-
tion in ovarian cancer correlated with the expression of
the interferon regulatory factor IRF1, the major tran-
scriptional activator of genes induced by alpha, beta and
gamma interferons. Positive staining of IRF1 was predom-
inantly observed in ovarian cancer cells (cell lines and
tumors) with lesser but detectable expression observed
in tumor infiltrating lymphocytes [63]. Interferon signal-
ing has well established roles in both immunological and
non-immunological tissues (including epithelium) where
it elicits diverse cellular responses. Interferon signaling
is activated in many tissue types in response to viral
and bacterial infection. In cancer, interferon signaling
is the main mediator of immune-surveillance mecha-
nisms, and its activation is critical for the develop-
ment of immune-mediated rejection. However, it is also
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responsible for the activation of counter-regulatory/pro-
tumorigenic immune mechanisms [51, 64]. Similarly, but
to a lesser extent, the B/M/D signature genes exhibited
tandem elevation in solid cancer cell lines derived from
melanomas, cervix and lung cancers consistent with up-
regulation of MHC class II antigen presenting molecules
in malignant melanoma [40, 41] and cervical cancer
[42, 43]. Together, these observations suggest that the
D (LPS) and B/M/D signatures integrate transcriptional
signals from both immune and malignant cell compart-
ments, while the other immune signatures are relatively
immune-specific in their expression.
That each of the immune signatures exhibited signifi-

cant prognostic value in multiple cancer types lends cre-
dence to the concept of an ‘immune grading index’ for
assessing patient prognosis based on combinations of the
immune gene signatures. The application of such an index
would require further investigation involving multivari-
ate modeling to determine the independent and additive
value of the signatures in combination, as well as in the
context of different cancer types, where our findings sug-
gest differential tuning would be required for maximal
prognostic results. To the extent to which these immune
signatures reflect the functional orientation of infiltrating
immune cell populations, it is logical that their prognostic
information could be predictive of therapeutic outcomes
as well, particularly for treatments where efficacy depends
on immune system response, such as current and emerg-
ing immunotherapy approaches. The clinical merit of such
applications will be the focus of future studies.

Conclusions
Our results are the first to identify a diversity of immune
gene signatures that are robustly conserved across solid
tumor types. At the core of our immune signatures are
genes that reflect specific immunological functions and
broadly distinguish immune cell populations. We show
that the immune signatures exhibit robust prognostic
associations that vary between lymphocytic and myeloid
signatures and according to cancer type. Looking ahead,
our findings suggest that the immune signatures described
here could form the basis of a tumor-agnostic immuno-
logical grading index for assessing patient prognosis or
predicting response to immune-modulating therapies.
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Additional file 1: Consensus clustering summary of k-means algorithm.
This Excel file contains summary of the k-means consensus clustering
results as produced by clusterCons R package [12, 28]. Each cancer dataset
(breast, colon, lung ovarian and prostate) has two tabs. One tab displays
images of the summary statistics. The other tab lists the number of clusters
selected for our analysis and contains Affy ID, gene symbol and title
together with membership robustness. (XLSX 2170 kb)

Additional file 2: Consensus clustering summary of SOM algorithm. This
Excel file contains summary of the SOM consensus clustering results as
produced by ConsensusClustering GenePattern module [26, 27]. Each
cancer dataset (breast, colon, lung ovarian and prostate) has two tabs. One
tab displays images of the summary statistics. The other tab lists the
number of clusters selected for our analysis and contains Affy ID, gene
symbol and title. (XLSX 5007 kb)

Additional file 3: Combined meta-intersections between two algorithms
SOM and k-means. This Excel file contains final 23 meta-intersections as
described in Results section. Each intersection is in separate tab, which also
contains gene-annotation enrichment analysis results. (XLSX 721 kb)

Additional file 4: Univariate survival analysis. This Excel file contains all
results of univariate survival analysis. (XLSX 159 kb)
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