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Abstract
Background: Detection and localization of genomic alterations and breakpoints are crucial in cancer research.
The purpose of this study was to investigate, in a methodological and biological perspective, different female,
hormone-dependent cancers to identify common and diverse DNA aberrations, genes, and pathways.

Methods: In this work, we analyzed tissue samples from patients with breast (n = 112), ovarian (n = 74), endometrial
(n = 84), or cervical (n = 76) cancer. To identify genomic aberrations, the Circular Binary Segmentation (CBS) and
Piecewise Constant Fitting (PCF) algorithms were used and segmentation thresholds optimized. The Genomic
Identification of Significant Targets in Cancer (GISTIC) algorithm was applied to the segmented data to identify
significantly altered regions and the associated genes were analyzed by Ingenuity Pathway Analysis (IPA) to detect
over-represented pathways and functions within the identified gene sets.

Results and Discussion: Analyses of high-resolution copy number alterations in four different female cancer types are
presented. For appropriately adjusted segmentation parameters the two segmentation algorithms CBS and PCF
performed similarly. We identified one region at 8q24.3 with focal aberrations that was altered at significant frequency
across all four cancer types. Considering both, broad regions and focal peaks, three additional regions with gains at
significant frequency were revealed at 1p21.1, 8p22, and 13q21.33, respectively. Several of these events involve known
cancer-related genes, like PPP2R2A, PSCA, PTP4A3, and PTK2. In the female reproductive system (ovarian, endometrial,
and cervix [OEC]), we discovered three common events: copy number gains at 5p15.33 and 15q11.2, further a copy
number loss at 8p21.2. Interestingly, as many as 75% of the aberrations (75% amplifications and 86% deletions)
identified by GISTIC were specific for just one cancer type and represented distinct molecular pathways.

Conclusions: Our results disclose that some prominent copy number changes are shared in the four examined female,
hormone-dependent cancer whereas others are definitive to specific cancer types.

Keywords: Breast cancer, Cervical cancer, Copy number alteration, Endometrial cancer, Female cancers, Genomic
Identification of Significant Targets in Cancer, Ovarian cancer

Background
In Norway, cancers of the breast and reproductive organs,
including the cervix, ovaries, uterus (endometrium), fallo-
pian tubes, vagina, and vulva, account for more than 34%
of all cancers affecting women [1]. Breast, ovarian, cer-
vical, and endometrial cancers are all associated with

hormonal imbalance [2, 3]. Further, more than 99% of all
cervix carcinomas are reported positive for infection with
high risk human papillomavirus (HPV) [4]. Common
characteristics of cancer cells are their abnormal prolifera-
tion, increased growth rate, and spreading to other or-
gans [5]. Genomic alterations, including chromosomal
rearrangements, copy number changes, and nucleotide
substitutions, are regarded as fundamental cellular dis-
ruptions of almost all cancers [6, 7]. Although the gen-
omic architecture varies considerably between cancer
types, some genomic regions are commonly affected in
several types, suggesting that some general mechanisms
for selection are present. For example, aberrations of the
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tumor suppressor gene PTEN, located on 10q23, have
been reported in various human malignant tumors, in-
cluding endometrial, ovarian, breast, cervical, and lung
cancer [8–10]. Detection of such aberrations may point to
genes that are critical in cancer development and may
point to targetable pathways [11]. Oligonucleotide arrays
allow the detection of copy number alterations (CNAs)
with high resolution on a genome-wide scale [12, 13]. Pre-
vious studies have identified many regions with known
oncogenes, including ERBB2 and EGFR, as well as tumor
suppressor genes such as TP53 [14].
In this study, copy number data from a total of 346

tumors from patients with breast (B), ovarian (O), endo-
metrial (E), or cervical (C) cancers were analyzed with
the aim of detecting similarities and differences between
copy number changes of different female cancers. For
segmentation of the copy number data, the test-based
Circular Binary Segmentation (CBS) algorithm [15] and
the penalized regression based Piecewise Constant Fitting
(PCF) algorithm [16] were applied. After segmentation,
the Genomic Identification of Significant Targets in
Cancer (GISTIC) algorithm [17] was used to identify
regions significantly altered in the different cancer data
sets. These regions were further analyzed, on both the
gene and pathway level, to reveal mechanisms of disease
evolution common to multiple female cancer types. Taken
together, these results may bring novel insight into the
characteristics of the onset and progression of female can-
cers and possibly identify some common underlying
mechanisms of hormonal influence in the risk of cancer.

Methods
Materials
We analyzed four different datasets of copy number al-
terations in tumors from patients with breast (n = 112
samples, p = 109315 probes), ovarian (n = 74 samples, p =
17984 probes), endometrial (n = 84 samples, p = 114782
probes), and cervical (n = 76 samples, p = 260531 probes)
cancers. A summary of the clinicopathological characteris-
tics for the investigated breast and ovarian cohorts is
shown in Additional file 1: Table S1.

Breast
The 112 breast cancer samples are a subset of a larger
patient series consisting of 920 samples collected from
breast cancer patients to study the effect of disseminat-
ing tumor cells to the blood and bone marrow [18]. The
samples were collected at five different hospitals in the
Oslo region. This cohort has been extensively studied at
both clinical and molecular level [18, 19]. Tumors were
genotyped using the Human-1 109K BeadChip array
(Illumina, San Diego, CA, USA). For each sample, the
corresponding log R ratio (LRR) was extracted from

two-channel allelic intensity values using Illumina's
BeadStudio genotyping software [20].

Ovarian
The ovarian cohort, diagnosed and treated at the
Department of Gynecological Oncology at the Oslo
University Hospital the Norwegian Radium Hospital
during the period May 1992 to February 2003, consisted
of 74 patients diagnosed with serous ovarian cancers on
routine pathology reports [21]. All patients had primary
surgery, followed by adjuvant platinum-based chemother-
apy. Copy number profiles of all samples were obtained
with the Stanford 42k cDNA aCGH platform.

Endometrial
A total of 84 endometrial carcinomas data of 100K SNP
Affymetrix Human Mapping 50K Xba and Hind arrays
were selected from Gene Expression Omnibus (GEO,
Series GSE14860). The samples were collected from 2001
to 2003 and primary tumor tissues were snap-frozen dur-
ing hysterectomies. Genotyping was performed by Affyme-
trix Genotyping Tools Version 2.0. DNA-Chip Analyzer
(dChip) software (www.dchip.org) to normalize probe-level
signal intensities and data preprocessing [22]. Data were
merged from the platforms, interlacing the markers ac-
cording to position on the genome. Data were normalized
and log2-transformed.

Cervix
The cervical carcinomas copy number data of 76 patients
using 250K_Nsp SNP arrays were obtained from GEO
(Series GSE10092) after exclusion of seven normal sam-
ples, eight duplicated samples, and nine cell lines. Data
sets were evaluated at CUMC, Instituto Nacional de
Cancerologia (Santa Fe de Bogota, Colombia) (Pulido et
al., 2000), and the Department of Gynecology of Campus
Benjamin Franklin, Charité Universitätsmedizin Berlin
(Germany) [23]. We loaded the CEL-files to PennCNV
software tool to obtain the Copy Number Variations
(CNVs) from SNP genotyping array [24]. CEL files were
sourced through the Mapping 250k Nsp genome informa-
tion hg18. The raw signal intensities were normalized and
log2-transformed.

Methods
Copy number segmentation
Various segmentation methods exist for copy number
data [25]. Here, the widely used CBS algorithm [15] and
the more recent PCF algorithm [16] were applied.
Briefly, CBS is a modified version of binary segmentation
that splits chromosomes into contiguous regions based
on a maximum t-statistic estimated by permutation. PCF
fits a piecewise constant function to the data and for a
given number of segments the method determines the
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optimal segmentation in a least squares sense. Both
methods allow the trade-off between sensitivity and
specificity to be controlled by the user (using the sig-
nificance level for accepting a change point (α) in CBS
and the penalty parameter (γ) in PCF). A range of ad-
justments for the trade-off were considered in order to
explore short-range and long-range features in the copy
number data, as well as to calibrate the performance of
the two segmentation methods relative to each other.
(For details about the algorithms and the calibration,
see Additional file 2: Supplementary Methods).

GISTIC
To distinguish biologically significant copy number changes
from random events, we applied GISTIC 2.0 [26].
GISTIC requires segmented data. In this article, we
segmented data applying the CBS or PCF algorithms.
Location annotations were based on hg18. First, GISTIC
calculates a G-score associated with the amplitude of the
aberration and the frequency of incidence in multiple
tumors. Second, the G-scores is assessed significance by
q-value based on permutations of the locations of the
copy number segments in the tumors; thus, the level of
significant q-values is calculated for each observed region.
Only alterations that surpass a specified q-value threshold
are identified as being significant [11, 17]. Regions with a
log2 ratio above a threshold value (Default = 0.1) are con-
sidered being amplified and regions with a log2 ratio
below a negative threshold (Default = 0.1) are considered
being deletions. Focal events are regions of repeated
genetic information that span over not more than 25%
of the chromosome arm. All regions greater than that
limit are termed broad. The broad regions (arm-level
significance) are computed by comparing the frequency
of gains or losses of each arm to the expected rate given
its size [11, 15, 26].

Capturing consistent GISTIC output
Depending on the selection of the segmentation method
and the trade-off for sensitivity-specificity balance, the
number of segments and their precise boundaries may
vary. Some deviation in the result of GISTIC is expected;
however, a consistent output of GISTIC is required for
the correct biological interpretation of the data. To test
the consistency of the GISTIC output for data seg-
mented by different algorithms, in this case CBS or PCF,
the combination of CBS + GISTIC or PCF + GISTIC was
applied to simulated and real data and a range of differ-
ent values for the sensitivity-specificity parameter α in
CBS and γ in PCF were explored (see Additional file 2:
Supplementary Methods and Additional file 3: Tables S2
and Additional file 4: S3). To achieve an optimal threshold
for α and γ in each data set, we identified a consistent
number of GISTIC focal peaks and confirmed whether

these peaks generated by CBS-segmentation highly
overlapped with peaks based on PCF-segmentation
(Additional file 5: Table S4).

Visualization of copy number changes
Following identification of the significant copy number
changes, we used the software package of Circos (http://
circos.ca) to visualize the genomic localization and rear-
rangements [27].

Pathway and network analysis
Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.
com; version 9.0; release date: 2012-08-11, content ver-
sion: 14197757, build: 172788) was used to analyze se-
lected sets of genes in order to identify over-represented
canonical pathways and biological functional interactions.
The IPA core analysis module allows detection of interac-
tions between genes and proteins, related networks, func-
tions, and canonical pathways in the context of biological
processes. Gene sets identified by GISTIC were uploaded
into IPA for further analysis. The only filter criteria used
for the network analysis was “only consider molecules
and/or relationships where species = Human”. Both, direct
and indirect relationships, as well as endogenous chemi-
cals were taken into account and for the network analysis
the maximum number of molecules allowed per network
was set to 140. The significance of the association between
the cancer gene sets was assessed by the False Discovery
Rate (FDR) [28].

Results
Comparing different segmentation algorithms
Accurate detection of chromosomal aberrations is crucial
for comparing multiple CNA data sets originating from
different platforms and cancer types. The performance of
CBS- and PCF-segmented data as input for GISTIC were
compared using both simulated and real data from tumor
samples from patients with breast (B), ovarian (O), endo-
metrial (E), and cervical (C) cancers, hereafter denoted as
BOEC (Additional file 3: Table S2 and Additional file 4:
Table S3). For both methods, the threshold for calling
copy number gains and losses can be adjusted and must
be set appropriately. In most publications, the default
values of α and γ are used [29, 30], but as shown here,
variations in these parameters may influence the results
substantially and the optimal γ and α should be adjusted
for every dataset. During the segmentation process, the
CBS algorithm illustrated slower processing than PCF. To
determine α and γ, we compared the significant regions
identified by GISTIC (for details see Additional file 2:
Supplementary Methods) for various choices of α and γ
and selected the parameter values that maximized the
overlap between the GISTIC outputs for the two methods.
Detection of amplification events was consistently less
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dependent on the segmentation procedure than that of
deletion events in the different cancers. A large fraction of
amplifications (80-86%) and deletions (58–84%) were de-
tected by GISTIC after segmentation by both methods
(Additional file 5: Table S4). The significant aberrations
fall into two types, focal and broad (as described in Mater-
ial and Methods). We observed that PCF-segmented data
produced a higher number of GISTIC focal peaks (Add-
itional file 6: Figure S1). Based on the adjustment among
different arrays, optimal α and γ were selected separately
for each data set (Figs. 1 and 2). In each cohort, the num-
bers of focal events surpassing the significance threshold
(green line in Figs. 1 and 2) together with the locations of
the peak regions have been identified (Additional file 7:
Table S5).

Loci of specific amplifications and deletions according to
GISTIC
GISTIC was applied to the breast, ovarian, endometrial,
and cervical sample sets to detect copy number changes
associated with either single or multiple cancer types.
The GISTIC focal peaks were compared to identify the
shared altered genomic regions independently for amp-
lification and deletion. To attain a robust estimate of
the aberrant regions, the GISTIC output was analyzed
separately for each segmentation algorithm (Additional
file 7: Table S5 and Additional file 8: Figure S2). Using
CBS-segmented input data for GISTIC, we identified a
total of 404 significant regions of focal aberrations includ-
ing 124 regions in breast (n = 57 amplifications and n = 67
deletions), 79 regions in ovarian (n = 42 amplifications and

Fig. 1 Circular Binary Segmentation (CBS) - and Piecewise Constant Fit (PCF) - segmented data (amplifications). Significant copy number
alterations (gains, colored in red) are illustrated in four different cohorts; breast, ovarian, endometrial, and cervical cancers, determined by two
different segmentations algorithms PCF and CBS. Both methods allow the trade-off between sensitivity and specificity to be controlled by the
user using the significance level for accepting a change point (α) in CBS and the penalty parameter (γ) in PCF. We selected γ = {14, 12, 14, and 16}
for the PCF-segmentation and α = {0.02, 0.02, 0.02, and 0.01} for the CBS-segmentation. The statistical significance of the aberrations is displayed
as FDR q-values to account for multiple-hypothesis testing (x-axis). Chromosome positions are indicated alongside the y-axis with centromere
positions indicated by dotted lines. The significance threshold is allocated by a green line
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n = 37 deletions), 124 regions in endometrial (n= 74
amplifications and n = 50 deletions), and 77 regions in
cervical cancers (n= 32 amplifications and n= 45 deletions)
(Additional file 9: Figure S3). Applying PCF-segmented input
data for GISTIC, we observed a total 402 significant regions
that consisting of 122 regions in breast (n = 58 amplifications
and n= 64 deletions), 80 regions in ovarian (n= 42 amplifi-
cations and n= 38 deletions), 123 regions in endometrial (n
= 74 amplifications and n= 49 deletions), and 77 regions in
cervical cancers (n= 33 amplifications and n= 44 deletions)
(Additional file 7: Table S5 and Additional file 10: Figure S4).
These results indicate that GISTIC output is most stable
after optimizing the segmentation parameters α in CBS and
γ in PCF. Overlapping focal peaks between all cancers pair-

wise are summarized in Fig. 3a and Additional file 11: Table
S6. Using theses stringency levels, the majority of the
identified regions were specific for only one cancer type
with 75% (89/112) of the amplified and 86% (92/107) of
the deleted regions (Fig. 3b). However, one CNA event
was common for all studied female cancer types, a copy
number gain at 8q24.3.
Including broad peak regions into the analysis, additional

common events for all studied cancers were detected at 1p,
1q, 13q, 17p, 20p, 20q, and 22q (Additional file 12: Table
S7). Further, for cancers in the female reproductive system
(ovarian, endometrial, and cervix [OEC]), we identified three
common incidences; two copy number gains at 5p15.33 and
15q11.2, and one copy number loss at 8p21.2 (Fig. 3b).

Fig. 2 CBS- and PCF-segmented data (deletions). Significant copy number alterations (deletion, colored in blue) are shown in four different
cohorts; breast, ovarian, endometrial, and cervical cancers, analyzed by the two different segmentations algorithms PCF and CBS. For both
methods, the threshold for calling copy number gains and losses can be adjusted. For PCF-segmentation, γ = {14, 13, 16, and 25} was selected
and for CBS-segmentation α = {0.05, 0.05, 0.02, and 0.005} was defined. The X-axis indicates the statistical significance of the aberrations
(q-values). Chromosome positions are indicated alongside the y-axis with centromere positions designated by dotted lines. The significance
threshold is allocated by a green line
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Fig. 3 (See legend on next page.)
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Genes residing in loci of specific amplifications and
deletions
Genes classified by both algorithms and located within
the broad or focal peak regions identified by GISTIC
(Additional file 13: Table S8) were extracted and the
deregulated genes for each cancer type are reported. We
obtained 3106 genes for breast, 3146 genes for ovarian,
2070 genes for endometrial, and 2058 genes for cervical
cancer. The degree of overlap between these lists is visu-
alized in a Venn diagram (Fig. 4). The number of identi-
fied common genes was 235 for endometrial and ovarian
(EO), 259 for breast and endometrial (BE), 285 for breast
and cervix (BC), 87 for ovarian and cervix (OC), 164 for
endometrial and cervix (EC), and 461 for breast and
ovarian (BO) cancers. Further, shared genes among three
cancer types, we found 128 for endometrial, ovarian, and
cervix (EOC), 106 for breast, ovarian, and cervix (BOC),
50 for breast, endometrial, and cervix (BEC), and 20 for
breast, ovarian, and endometrial (BOE) cancers. Two
genes, actin-organizing protein KLHL1 at 13q21.33 and
COL11A1 (collagen, type XI, alpha 1) at 1p21.1 were
detected as joint deletions in all four cancer types
(breast, ovarian, endometrial, and cervical, BOEC) (Fig. 4
and Additional file 14: Figure S5).

Pathways deregulated by significant DNA aberrations in
female cancers
Genes located in regions identified by GISTIC analysis
(Additional file 13: Table S8) were submitted to the IPA
software to investigate whether these genes are orga-
nized in combinatorial pathways. IPA was first attained
separately for each cancer data set (Additional file 15:
Table S9). For the breast cancer gene lists (n = 3106),
IPA resulted in solely one top biological function, “ner-
vous system development and function”. Genes aberrant
in ovarian cancer (n = 3146) shared pathways like “cellu-
lar development, cell-to-cell signaling and interaction,
cellular function and maintenance, cellular growth and
proliferation, and immune cell trafficking and other in-
flammatory response signatures” (Fig. 4). At 5% FDR,
the IPA analysis exhibited the most significant canonical
pathways (Fig. 5 and Additional file 16: Table S10),
including “protein citrullination” and “complement acti-
vation for the breast cancer aberrated genes”, whereas

eight significant canonical pathways were discovered for
ovarian cancer such as: “role of lipids/lipid, retinoic acid
mediated apoptosis signaling, role of RIG1-like receptors
in antiviral innate immunity, activation of IRF by cyto-
solic pattern recognition receptors, and role of PI3K/
AKT signaling in the pathogenesis of influenza”. The sin-
gle significant canonical pathway at 5% FDR for cervical
cancer associated genes was “thyroid hormone metabol-
ism II (via conjugation and/or degradation)” (Additional
file 15: Table S9) and for endometrial cancer “Natural
Killer cell signaling”. Although unique lists of genes for
each of the sections of the Venn diagram were studied,
in the end there turned-up similar overlapping genes be-
tween different cancer types (Fig. 4), which were also
uploaded to IPA for the assignment of biological func-
tions as well as for identifying the most significantly
associated canonical (curated) pathways. The most fre-
quent biological functions among all genes and all stud-
ied cancers were lipid metabolism, small molecule
biochemistry, cellular growth and proliferation, cellular
development, and post-translational modification.

Discussion
In the last decade, the genomic profiles of tumors of
many different tissues have been analyzed. Especially for
tumors originating from female breast or the reproduct-
ive organs common copy number gains or losses have
been observed [31–35]. However, despite this obvious
coincidence of genetic traits, to our knowledge, so far no
systematic comparison has been performed to identify
universal or cancer-type specific regions and genes in
female cancers. The reasons for that may be manifold,
including the limited number of samples for specific
cancer types, systematic tissue-dependent differences
(like ovarian tumors, that are often detected at a later
stage with on average larger sizes), and the lack of avail-
able analytic methods taking care of the challenges gen-
erated by combining data originating from different
array platforms. Baumbusch et al. (2008) compared dif-
ferent platforms and illustrated that despite the
consistency of platforms, specific variations in frequency
are visible in the studied platforms [29]. We do not dir-
ectly quantify the amplitudes but compared the frequen-
cies of different platforms for each tumour type. Here in

(See figure on previous page.)
Fig. 3 GISTIC focal peaks for overlapping regions of CBS- and PCF-segmented data in four different female cancers. Circos-plot of GISTIC copy
number alteration data obtained from female patients with breast (B), ovarian (O), endometrial (E), or cervical (C) cancers. The breast (pink),
ovarian (green), endometrial (purple), and cervical (brown) cancers are presented in a clockwise direction. For each cohort, from the top of circle,
chromosomes 1 – 23 are displayed and each chromosome’s cytoband is colored differently. Aberrations are represented by lines linking the
overlapping cytobands between different cancers. The width of the lines is matched to the cytobands. Amplification lines are colored in red and
deletion lines are marked in blue. Panel B demonstrates similarities and divergences between the four investigated female cancers for at least two
genomic regions identified by the CBS and PCF algorithms. On the left side, copy number gains of GISTIC focal peaks are presented and on the
right side are copy number loss of GISTIC focal peaks illustrated, for both, CBS- and PCF-segmented data. The number of peaks obtained by
GISTIC, for breast, ovarian, endometrial, and cervical cancer that are colored in pink, green, purple, and brown, respectively
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Fig. 4 Overlap between gene sets of four female cancer– Top biological functions. The Venn diagram displays joint genes identified by both, CBS
and PCF algorithms located within the regions identified by GISTIC. The total number of genes for each data set is presented on the top right
panel. Top biological functions and top canonical pathways for each region of the overlapped cancers are stated
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this study, we chose a rather strict analysis pipeline to avoid
too many false positive results without losing infrequent
regions and genes. It is important to detect regions and
genes common for breast, ovarian, endometrial and cervical
cancers; however, it may be even more interesting to identify
regions and genes unique for the various cancer types in
order to reveal underlying mechanisms of disease genesis
and progression in female cancers.

Accurate detection of chromosomal aberrations is cru-
cial for comparing multiple CNA datasets originating
from different platforms and cancer types is dependent
on an accurate segmentation algorithm matching an
optimal level to adjust for platform- and tissue-specific
variations. Different algorithms for aCGH analysis have
been compared and described previously [25]. Depending
on the segmentation algorithm (and the chosen significant

Fig. 5 Overlap between gene sets of four female cancers – Top canonical pathways. The Venn diagram illustrates the joint genes identified by
both CBS and PCF algorithms, located within the regions identified by GISTIC. The total number of genes for each data set is exhibited on the
top right panel. Top canonical pathways, at 5% FDR, for each region of the joint cancers are displayed
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levels) the identified copy number gains and losses may
vary in their occurrence, number, and distribution.
From the variety of available methods for analyzing
CNA we chose CBS, as one of the most commonly used
algorithms, and PCF, a novel platform independent, ef-
ficient, and flexible algorithm. The two segmentation
methods were tested separately for each platform to
assess multiple segmented data generated by several
variables of the parameters and to identify a consistent
and adjusted threshold among different arrays and to
detect an optimal segmentation parameter for our com-
parative analysis. We found high similarities between
the two segmentation algorithms. In this paper, we sim-
ultaneously searched the optimum of both parameters
related to two segmentation algorithms; however, we
could consider the consistency to the GISTIC output
by other segmentation methods or another algorithm,
like fixing one parameter of an algorithm and searching
the optimum parameter of the other algorithms.
For both methods the threshold for calling copy num-

ber gains and losses in different arrays can be adjusted
and must be set properly. In most publications, the de-
fault values of α and γ [29, 30] are used but, as shown
here, varying these parameters may substantially influ-
ence the results and we recommend to adjust and
optimize γ and α for each dataset. The selection of an
appropriate value is hence important and mostly de-
pends on the number of probes in each data set and
the level of noise.
Our study represents analysis of high-resolution copy-

number profiles of various female cancers. This analysis
shows a strong tendency for significant focal aberrations
in some regions of female cancers. Significant events of
genomic amplification were more often detected by
both, segmentation procedures in all types of arrays,
(over 82%) consistency between the arrays, which was
much more than what was found for deletions; may be
explained by the possibility of only two copies allowed
for deletions.
Previous studies of copy-number alterations have fo-

cused on one or two cancer types, such as breast and
ovarian. Mutations in BRCA1 and BRCA2 genes confer
a high risk of both breast and ovarian cancer [36].
Cheng et al. (2006) have reported gene Rab25, located
on 1q22, as a potential driver of ovarian and breast
tumor development [37]. We identified this candidate
gene (Rab25) in the altered regions (gain on chromo-
some 1q) of endometrial and ovarian cancers. Another
genetic event seen in both breast and ovarian cancer is
loss of heterozygosity (LOH) on the short arm of
chromosome 8 [38, 39]. We have previously shown that
genes in these regions such as 8q24.13 and 8p23.2 are
affected by a non-random loss of heterozygosity in
breast cancer [40].

Recent whole genome association studies of common
epithelial cancers have revealed that the most prevalent
gains are detected at the 8q arm [41]. It was also the
single event common to all female cancers studied in
this paper. This locus is also the one with most com-
monly identified susceptibility SNPs by GWAS for dif-
ferent cancers. Among the 97 annotated genes found
affected by chromosomal focal gain event in 8q24.3 in
this study, we recognized some susceptibility genes that
have previously been reported associated to risks of
different cancer types. For instance, the genetic variation
in prostate stem cell antigen (PSCA) gene has been asso-
ciated with the risk of bladder cancer, pancreatic cancer,
and prostate cancer in multiple GWAS studies [42, 43].
Additionally, recent GWAS studies have shown that two
single-nucleotide polymorphisms (SNPs) in PSCA gene
are associated with gastric cancer [44]. Hao et al. (2011)
have reported the PSCA expression in invasive micropa-
pillary carcinoma of breast [45]. CYP11B2 residing in
the same region has been associated with adrenocortical
tumor development [46]. The PTK2 gene located on
8q24.3 is a member of the focal adhesion kinase (FAK)
and has been suggested to be involved in early breast
carcinogenesis [47]. This region also contains some can-
cer related genes such as PTP4A3 and PTK2 genes. The
over expression of PTP4A3 has been reported in liver
metastases derived from colorectal cancer as well as
breast cancer, ovarian cancer, gastric cancer, esophageal
carcinoma, and invasive cervical cancer [48]. This gene
promotes the cell invasion and activity by stimulating
of Rho signaling pathways [49]. PTK2 gene has been
identified as a critical gene in breast carcinoma, too
[50]. Ishikawa et al. (2007) have suggested the LY6K
gene as a potential histochemical biomarker for lung
and esophageal cancers and its potential activation role
in cervical cancers [51]. Ambatipudi et al. (2012) also
have shown the over expression of LY6K in gingivobuc-
cal complex cancers [52]. Frequent increases in DNA
copy number at the chromosomal region of 8q24.3 have
been reported to serve as a prognostic marker in early
stage ER+ breast cancers [53] and ovarian carcinomas
[54]. This region is also frequently amplified in endo-
metrial cancer [55] and contributes to the cancer risk
in bladder cancer [56], colorectal cancer [57], adreno-
cortical tumor development [46], and gingivobuccal
cancers, -a sub-site of oral cancer [52].
Among the female reproductive system (OEC) data

sets, we distinguished two common gain events (5p15.33
and 15q11.2) and one loss event on chromosome 8p21.2.
The copy number gain at 5p15.33 and the loss at 8p21.2
have been reported as potential predictive markers of
drug-resistant phenotype in advanced serous ovarian
cancer [54]. A number of studies have shown that the
frequent gain at 5p15.33 in cervical cancer may play an
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important role beside the HPV infection [58, 59]. GWAS
studies have shown an association between a variant at
5p15.33 region with the risk of many tumors including
breast [60], testicular [61], bladder [62], lung [63], pan-
creatic [64], and glioma cancers [65] in genes such as
TERT and CLPTM1L The TERT enzyme is a protein
component of telomerase, a ribonucleoprotein polymer-
ase that regenerates telomere ends by the addition of
nucleotide repeat sequences [60]. A gene variant in the
TERT gene has been suggested to be associated with epi-
thelial ovarian cancer [60]. Another gene in 5p15.33 was
CLPTM1L that is expressed in various cancer types, in-
cluding lung and ovarian cancers. It plays an important
role in the induction of apoptosis in cisplatin-sensitive
cells [60]. Kersemekers et al. (1998) reported the pres-
ence of a tumor-suppressor gene on 15q11.2 [66]. The
other region found altered in cancers of the reproductive
system, 8p21.2 harbours the BNIP3L gene and has been
identified as a tumor suppressor gene in breast cancer,
ovarian cancer, and prostate cancer [39]. This gene en-
codes a protein that is homologous to the proapoptotic
protein BNIP3 and has the ability to suppress colony
formation in soft agar. Curtis et al. (2012) have shown
heterozygous and homozygous deletions of PPP2R2A
gene are located on 8p21.2 in breast cancer [67].
In each of the four female cancers individually, we

observed in the aberrant regions known driver genes.
For example, in breast cancer, we identified divide ac-
cording to amplified or deleted regions genes TP53BP2,
TP53INP1, K-RAS, BIRC5, TP53TG3, TP53I11, CCND1,
FGFR1OP, ATM, PMS1, H-RAS, N-RAS, and MYCBP2.
TP53BP2 gene encodes a member of the ASPP (apoptosis-
stimulating protein of p53) family of p53 interacting pro-
teins. Over-expression of TP53INP1 has been reported in
breast cancer as a potential prognostic marker [68]. Many
of these proteins represent regulatory molecules including
members of the p53 family that regulate apoptosis and cell
growth through interactions with other regulatory mole-
cules [69]. For example BIRC5, a member of the inhibitor
of apoptosis (IAP) gene family, encodes negative regula-
tory proteins that prevent apoptotic cell death. Over ex-
pression of BIRC5 gene has been reported to be correlated
with loss of specific chromosomal regions in breast tumor
cells [70]. Activating K-RAS gene point mutations have
been detected in breast cancer [71]. H-, K-, and N-RAS
genes are a subfamily of the huge RAS/RHO/RAB super-
family and encode ubiquitous cytoplasmic GTP binding
p21 proteins involved in signal transduction [72]. In ovar-
ian cancer, we detected some known cell cycle regulating
driver genes such as CSF1R, AKT2, FGF3, EEF1A2,
MUC17, NOTCH2, CDKN2A, MYC, and ERBB2IP. In
endometrial cancer, we observed in the aberrant regions
genes such as ADIPOR1 which adiponectin levels have
been shown to correlate with endometrial cancer risk [73].

FOXC1 gene that screens of primary endometrial cancer
have revealed that this gene is deleted in 6.7% out of
11.7% transcriptional silenced primary cancer and sug-
gests that it functions as a tumour suppressor, PAEP,
THBS2, and PTK2. In cervical cancer, genes PTK2, DDK3,
DLG1, MUC6, and HSPD1 have been reported to be over-
expressed in exo-cervix cancer [72].
The actin-organizing protein KLHL1 gene is one of the

two identified common genes among all of the tested
female cancers. The kelch-related proteins (KLHL) play
an important role for the maintenance of the ordered
cytoskeleton [74]. They have diverse functions in cell
morphology, cell organization, and gene-expression; and
form multi-protein complexes through contact sites in
their β-propeller domains [75]. Alterations and mutations
of these proteins have been reported in brain tumors and
neurodegenerative disorders [74, 76]. COL11A1, (collagen,
type XI, alpha 1), is essential for normal formation of
cartilage collagen fibrils and the cohesive properties of
cartilage and has been identified as a potential metastasis-
associated gene in lung [77], oral cavity [78], and in cancer
associated fibroblasts [79].
Interestingly, despite the little overlap of loci identi-

fied as significantly aberrant in the different cancer
types, some common pathways were affected. Lipid me-
tabolism appears on O, BOE, BOC, EC, and E cancers.
Activation of lipid metabolism has been reported to be
an early event in carcinogenesis [80] and many studies
at the single-gene level of lipid metabolism have re-
vealed an effect on tumor genesis [81]. Tissue develop-
ment appears as affected in O, BOE, BEC, and BOC.
Immune cell trafficking in O, BOE, EOC, and OC, inflam-
matory response in O, EOC, and EC are also affected. The
most common deregulated pathway is bladder cancer
signaling which observed between BO and BOE. On the
contrary, pathways such as FGF Signaling, Clathrin-
mediated Endocytosis Signaling, HIF1A Signaling, and
etc. were only uniquely observed as deregulated in a
specific cancer type.

Conclusions
Recent technological advances in genome-wide analysis
have made it possible to detect chromosomal aberra-
tions leading to discovery of novel oncogenes among
different cancers. However, previous studies have primar-
ily focused on cancer of the same tissues. Here in this
study, we compared cancer generated from different tissue
types to identify the common and disperse regions, genes
and pathways in female cancers. Technical challenges,
like consistency across platforms, have been handled by
adjusting simultaneously the segmentation thresholds
in two different segmentation algorithms. However, we
found five events common to all studied cancers, there
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is possibility to combine other segmentation algorithms
to have robust regions.
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