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KLHL21, a novel gene that contributes to
the progression of hepatocellular
carcinoma
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Abstract

Background: Hepatocellular carcinoma (HCC) has very high prevalence and associated-mortality. However, targeted
therapies that are currently used in clinical practice for HCC have certain limitations, in part because of the lack of
reliable and clinically applicable biomarkers that can be used for diagnosis and prognosis assessments and for the
surveillance of treatment effectiveness.

Methods: Meta-analysis was used to analyze the integrated microarray data for global identification of a set of
robust biomarkers for HCC. Quantitative RT-PCR (qRT-PCR) was performed to validate the expression levels of
selected genes. Gene expression was inhibited by siRNA. CellTiter 96® AQueous One Solution Cell Proliferation
assays were used to determine cell proliferation, and Transwell assays were used to determine cell migration and
invasion potential.

Results: Meta-analysis of the expression data provided a gene expression signature from a total of 1525 patients
with HCC, showing 1529 up-regulated genes and 478 down-regulated genes in cancer samples. The expression
levels of genes having strong clinical significance were validated by qRT-PCR using primary HCC tissues and the
paired adjacent noncancerous liver tissues. Up-regulation of VPS45, WIPI1, TTC1, IGBP1 and KLHL21 genes and
down-regulation of FCGRT gene were confirmed in clinical HCC samples. KLHL21 was the most promising gene
for potential use as a bioclinical marker in this analysis. Abrogating expression of it significantly inhibited cell
proliferation, migration and invasion.

Conclusions: Our study suggests that KLHL21 is a potential target for therapeutic intervention. Our findings also
provide novel candidate genes on a genome-wide scale, which may have significant impact on the design and
execution of effective therapy of HCC patients.
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Background
Hepatocellular carcinoma (HCC) is the most common
primary malignancy of the liver and the second leading
cause of cancer death in men worldwide [1]. In patients
with HCC, the prediction of prognosis is more complex
compared with other solid tumors since there is no
worldwide consensus on the use of any HCC staging

system [2, 3]. Clinical studies demonstrate that only one-
third of the newly diagnosed patients are presently eligible
for curative treatments [4] and the 5-year survival after
resection for early-stage HCC ranges from 17 to 53 %
with recurrence rate as high as 70 % [5]. Therefore,
prognosis estimation and indicators for successful treat-
ment options are critical steps in the management of
patients with HCC.
Genes that are commonly dysregulated in cancer are

clinically attractive as candidate prognostic markers and
therapeutic targets. Previous bioinformatics analyses of
gene expression profiles have revealed targets for pre-
dicting prognosis and survival in patients with HCC are
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involved in angiogenesis, cell cycle regulation, invasion
and metastasis [6–11]. Although high-throughput gen-
omic technologies have facilitated the identification of
cancer biomarkers and improved our understanding of
the molecular basis of tumor progression, the most
common drawbacks of these studies are a lack of agree-
ment due to the differences across experimental platforms,
sample size and quality, inconsistent annotation, ongoing
discovery as well as the methods used for data processing
and analysis. Moreover, the number of prognostically-
informative genes in HCC varies from 3 to 628, with low
predictive accuracy, which leads to inherent difficulties
in drawing definitive conclusions [12–15]. Therefore,
identification of robust biomarker candidates for HCC
provides a novel potential link between clinical progno-
sis and cancer survival rates.
In this study, a meta-analysis was used to obtain a

consistent gene expression signature for HCC using the
integrating microarray data. The dysregulated genes
with potentially high clinical significance were validated
by qRT-PCR, among which KLHL21 was the most prom-
ising. Suppressing its expression inhibited cell prolifera-
tion, migration and invasion in HCC cells. Our analyses
identified a novel set of HCC biomarkers with high accur-
acy, using a combination of molecular techniques and
clinical information from patients with HCC. This may
lead to potential prognostic and therapeutic applications
in the future.

Methods
Data acquisition, inclusion criteria and study strategy
We searched the published microarray datasets from
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/geo/) [16] and ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/) [17] up to June 2015, with keyword “hepato-
cellular carcinoma OR HCC” filtered by organism “Homo
sapiens”. To identify new prognostic biomarkers in HCC,
the selected microarray datasets must meet the following
criteria: (i) both tumor tissues and their adjacent tissues
(or normal tissues) were included; (ii) contained con-
tain a large number of patient samples (>50) and high
gene coverage (>10,000 filtered genes). After background
correction and normalization of raw data, multiple probe
sets were reduced to one per-gene symbol using the most
variable probe measured by interquartile range (IQR) values
across arrays. Significance analysis of microarray (SAM)
[18] was used to determine the differentially expressed
genes (DEGs), with a false discovery rate (FDR) <0.001 and
1,000 times permutations.

Functional analysis of DEGs
To investigate the cellular component (CC), molecular
function (MF) and biological process (BP) of DEGs, Gene
Oncology (GO) enrichment analyses were performed by

Database for Annotation, Visualization and Integrated
Discovery (DAVID) [19, 20] and WEB-based GEne SeT
AnaLysis Toolkit (WebGestalt). To investigate regulatory
network, pathway enrichment analyses were performed by
BRB-ArrayTools based on KEGG (http://www.genome.jp/
kegg/) and BioCarta (http://www.biocarta.com/). In this
study, the LS/KS permutation test was used for pathway
enrichment and gene-sets with p < 0.00001 were consid-
ered significant. Co-expression analysis of the DEGs was
performed with a Spearman correlation coefficient abso-
lute value > 0.75 (p < 10e-10) by Cytoscape [21].

Survival analysis
To analyze the correlation between gene expression and
clinical relevance, the association between the gene ex-
pression levels and survival of patients with HCC was ana-
lyzed using the GSE10186 entry. In univariate survival
analyses, Cox proportional hazard regression model (Wald
test) were used to identify factors important for survival
followed by 1,000 times permutation test. In univariate
survival analyses, Kaplan-Meier method and the log-rank
test were used to compare overall survival curves between
high and low gene expression groups. For all statistical
analyses, p < 0.05 were considered significant.

Literature confirmation
The DEGs identified from meta-analysis were validated by
publications and scientific literature available on PubMed
(http://www.ncbi.nlm.nih.gov/pubmed/?term=). Keyword
used, take gene “MYCN” for example, was “(((((survival
[Title/Abstract]) OR prognosis[Title/Abstract]) OR bio-
marker[Title/Abstract]) AND tumor[Title/Abstract]) OR
cancer[Title/Abstract]) AND MYCN[Title/Abstract]”.

Cell culture and primary tissues
MHCC97H and HCC-LM3 cells were purchased from the
Cell Bank of Type Culture Collection of Chinese Academy
of Sciences (Shanghai, China) and maintained according to
the supplier’s instructions. Twenty-eight primary HCC tis-
sue samples with paired adjacent normal liver tissue sam-
ples were collected and all experimental procedures were
approved by the IRB of Third Affiliated Hospital of Third
Military Medical University (Chongqing, China). None of
the patients had received chemotherapy or radiotherapy
before or after surgery. Written informed consent was
obtained from all patients or their guardians and all
samples were histologically confirmed before analysis.

QRT-PCR analysis
To prepare cDNA, 1 μg total RNA was extracted from
cell lines and tissue samples using QIAGEN OneStep
RT-PCR Kit. Amplifications of cDNA stocks were per-
formed by qRT-PCR in triplicate using GoTaq qPCR
Master Mix (Promega) as described previously [22–24].
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In this study, unique primer pairs (Additional file 1: Table
S1) used to amplify the selected genes were designed using
Primer-Blast at NCBI (http://www.ncbi.nlm.nih.gov/tools/
primer-blast/index.cgi) and assessed for secondary struc-
ture using M-Fold (http://mfold.rna.albany.edu/). Where
possible, the primers were designed to span or include an
intron to avoid amplification of genomic DNA and to have
similar melting temperatures in the range 56–62 °C. Rela-
tive gene expression levels were analyzed by the ΔΔCT
method and normalized against β-actin.

Gene silencing by RNA interference
HCC cells were transiently transfected with small inter-
fering RNA (siRNA) using DharmaFECT (Dharmacon,
Lafayette, CO). Twenty-one base pair siRNA duplexes
targeting KLHL21 gene (siKLHL21-1: 5′-GTACAACTC
AAGCGTGAAT-3′; siKLHL21-2: 5′-TGTCATTGCTGT
CGGGTTA-3′) and a standard control (Dharmacon
siCONTROL nontargeting siRNA) were synthesized by
Dharmacon.

Cell proliferation, migration and invasion assays
For cell proliferation assays, HCC cells were seeded
into 96-well plate at a density of 1 × 103 cells. The cell
proliferation rate was analyzed at different time points
(1–5 days) with CellTiter 96® AQueous One Solution Cell
Proliferation assay (Promega, Madison, WI) according to
manufacturer’s instruction. The absorbance at 490 nm
was measured with a microplate reader and the average
absorbance values from six wells per group were calcu-
lated. Quantitative cell migration and invasion assays were
performed using 24-well Boyden chambers (Coring,
NY, USA) as described previously [22–24]. The num-
bers of migrated and invaded cells in six randomly se-
lected fields from triplicate chambers were counted in
each experiment under a Leica inverted microscope
(Deerfield, IL, USA).

Statistical analysis
Differences in quantitative data between two groups
were analyzed using 2-sided paired or unpaired Student
t-tests. All of the analyses were performed using SPSS
software version 18.0 (SPSS, Chicago, IL, USA). P < 0.05
was considered to be statistically significant.

Results
The most DEGs in HCC are identified by integrated
bioinformatics analysis
According to the inclusion criteria (Additional file 2:
Figure S1), 4 independent studies (GSE14520, GSE25097,
GSE36376 and GSE57957) retrieved from public data-
bases (GEO and ArrayExpress) were used to identify
the DEGs in HCC (Additional file 3: Table S2). The
technical framework used in the meta-analysis is shown

in Additional file 4: Figure S2. After normalization and
annotation, SAM was performed to analyze the DEGs
from each dataset. Only the DEGs displaying the same
trend (p < 6.25e-6) in 4 datasets were selected for fur-
ther analysis. In total, 1529 significantly up-regulated
genes and 478 significantly down-regulated genes were
identified in HCC samples (Fig. 1a and Additional file 5:
Table S3). Hierarchical clustering analyses of these DEGs
were depicted using GSE36376 since it had the highest
gene coverage and largest samples. Almost completely
separate clustering was observed between HCC and
noncancerous samples, indicating that the up-regulated
and down-regulated genes are differentially expressed
in HCC and noncancerous tissues (Additional file 6:
Figure S3).
GO enrichment analyses were used to determine

the common functional roles of the DEGs (Fig. 1b).
The top three highly enriched GO categories for BP
were metabolic process (67.81 %), biological regula-
tion (55.61 %) and response to stimulus (44.64 %),
indicating significant changes of cellular metabolism
in HCC tissues compared with that in the adjacent
tissues. To visualize the interaction of enriched GO,
directed acyclic graphs were constructed by the DEGs
(Additional file 7: Figure S4 and Additional file 8:
Figure S5), showing the main function of the enriched
genes was associated with cellular process, metabolic
process, and catalytic activity. Furthermore, KEGG and
Biocarta analyses were used to investigate the networks
of the DEGs. KEGG pathway mapping showed 105
significant pathways for up-regulated genes and 16 signifi-
cant pathways for down-regulated genes (p < 0.00001) in
HCC. Gene-sets such as “cell cycle”, “Wnt signaling path-
way”, “mTOR signaling pathway” and cancer pathways
such as “pathways in cancer” are all significant for the
up-regulated genes. Interestingly, 40 genes were enriched
in cell cycle pathway (LS/KS permutation test p < 0.00001,
Additional file 9: Figure S6), suggesting this signaling plays
an essential part in HCC development and progression.
Using Biocarta enrichment analysis, we identified 62
significant pathways for up-regulated genes and 3 for
down-regulated genes. The cell growth pathways, such as
“cell cycle: G1/S check point”, “cell cycle: G2/M check
point”, “growth hormone signaling pathway”, “signaling of
hepatocyte growth factor receptor”, “Ras signaling pathway”
and “Wnt signaling pathway”, were also enriched in up-
regulated genes. To integrate multiple layers of information
and gain new biological insights into the regulatory network
of the DEGs, co-expression networks analysis was
performed. In this assay, 417 genes were identified to be
co-expressed, which were selected as hub genes for GO
and KEGG pathway analyses (Fig. 2). Consistently, cell cycle
genes were identified by the first 8 significant GO terms as
well as KEGG pathways.
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Survival analysis indicates clinical significance of the
integrated-signature genes
To relate the gene expression levels to clinical outcome,
survival analysis was performed using the GSE10186

entry. Fifty-nine up-regulated genes and twenty down-
regulated genes were associated with overall survival of
patients with HCC (Cox p < 0.05) (Additional file 10:
Table S4). More than 40 % of the DEGs (32 out of

Fig. 1 The DEGs in hepatocellular carcinoma are identified by integrated bioinformatics analysis. a Venn diagram of up-regulated genes (left)
and down-regulated genes (right). b GO enrichment analysis was performed to identify enriched BP, CC and MF in both up-regulated genes
and down-regulated genes

Shi et al. BMC Cancer  (2016) 16:815 Page 4 of 10



79 genes) have been proven to have prognostic values
with at least one type of cancer, including well-known
oncogenes RHEB and MYCN [25–28]. Moreover, ~25 %
of other DEGs (20 out of 79 genes) contribute to cell
growth/proliferation, invasion/migration, apoptosis/
autophagy and differentiation. In further study, 9 up-
regulated genes (VPS45, WIPI1, SLC9A3R1, TTC1, GNB5,
IGBP1, MAP3K7, KLHL21 and NOX4) with a hazard ratio
(HR) > 1 and 3 down-regulated genes (KCNMA1, IQGAP2
and FCGRT) with a HR < 1 were selected for validation.
Among them, NOX4, MAP3K7, SLC9A3R1 and IQGAP2
were well studied in HCC and their expression levels
strongly associate with prognostic features [29–34].
Kaplan-Meier survival curve showed for the first time that
high expression levels of VPS45, WIPI1, TTC1, GNB5,
IGBP1 or KLHL21 gene or low levels of KCNMA1 or
FCGRT gene were significantly correlated with low overall
survival of HCC patients (Fig. 3).

QRT-PCR analysis validates the expression levels of the
identified HCC biomarkers in clinical samples
To validate 8 new candidate genes from the above ana-
lyses (Fig. 4a), we determined their expression levels
from 28 pairs of fresh HCC and adjacent noncancerous
liver tissues using qRT-PCR. As shown in Fig. 4b, the
average expression levels of VPS45, WIPI1, TTC1,
IGBP1 and KLHL21 genes in all tested HCC tissues
were greatly increased compared with those in the adja-
cent non-tumor tissues, showing the similar results to
microarray data. FCGRT was shown to be down-regulated
in Meta-analysis (Fig. 4a), and its expression levels
were also decreased in primary HCC tissue samples
in qRT-PCR assays (Fig. 4b). No significant changes
in the expression levels of GNB5 and KCNMA1 were
observed between HCC tissues and the paired non-
tumor tissues (Fig. 4b), which was not consistent with
meta-analysis.

Fig. 2 The regulatory network of the DEGs is identified by co-expression, GO and pathway analysis. Each node corresponds to a gene, and a pair of nodes
is connected with an edge if there is a significant co-expression relationship between them. Red: up-regulated genes; Green: down-regulated genes
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Knockdown of KLHL21 suppresses HCC cell proliferation,
migration and invasion
The expression levels of KLHL21 were increased most
significantly in primary HCC tissues compared with the
other validated genes (Fig. 4b). To elucidate the role of
KLHL21 in the progression of HCC, we studied the ef-
fects of siRNA-mediated KLHL21 knockdown on HCC
cell proliferation. MHCC97H and HCC-LM3 cell lines
have high metastatic potential, and loss of KLHL21 ex-
pression (Fig. 5a) inhibited cell proliferation within 5 days
in these cells (Fig. 5b). We next investigated whether
KLHL21 affected cell migration and invasion within
24 h. Transwell assays were carried out to quantitatively
determine the effect of KLHL21 on cell migration. As
shown in Fig. 5c, a significantly lower number of KLHL21
knockdown cells migrated to the lower face of the Trans-
well membrane compared with that of the knockdown
control cells (~40 % reduction in MHCC97H cells and
~30 % reduction in HCC-LM3 cells, respectively). De-
pletion of KLHL21 also reduced cell invasion (Fig. 5d).
These data suggest that KLHL21 is critically important

for hepatocellular development and progression. Sup-
pression of its expression may provide a novel strategy
to efficiently combat HCC.

Discussion
Meta-analysis has been widely used as a powerful method
in searching DEGs in various types of cancers [35–39]. In
this study, we systematically identify a set of molecular
prognostic markers for HCC using meta-analysis. To
minimize the limitation from a single microarray dataset,
we examined the overlap among many studies using differ-
ent platforms in an unbiased manner. By comparing gene
expression data from 1525 paired samples profiled in the
GEO datasets, and by combining molecular and clinical
data to reduce false-positive errors, we demonstrate a core
gene set with prognostic potential.
Cancer biomarkers are the measurable molecular changes

to either cancerous or normal tissues of patients [40–42]. A
reliable biomarker can be used for cancer diagnosis, risk
and prognosis assessments, and more importantly, some of
them can be exploited as therapeutic targets. Therefore,

Fig. 3 The Kaplan-Meier survival curves (Univariate survival method) for HCC patients with high (in red) or low (in black) individual gene expression
show genes associated with patient survival
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Fig. 5 Knockdown of KLHL21 suppresses HCC cell proliferation, migration and invasion. a Effect of siRNA-mediated knockdown of KLHL21 on
MHCC97H and HCC-LM3 cells. b Effect of KLHL21 knockdown on cell proliferation. c and d Effect of KLHL21 knockdown on cell migration and
invasion. Error bars represent SD (n = 3), *P < 0.05, **P < 0.01

Fig. 4 QRT-PCR analysis validates the expression levels of the identified HCC biomarkers in clinical samples. a Gene expression profile of the 8 novel
genes in adjacent tissues and HCC tissues in GSE36376. b qRT-PCR validation of the gene expression in primary HCC tissues and paired adjacent
noncancerous liver tissues. Fold change was calculated for the selected genes in HCC tissues relative to paired adjacent normal liver tissues.
Error bars represent SD (n = 3), *P < 0.05, **P < 0.01

Shi et al. BMC Cancer  (2016) 16:815 Page 7 of 10



better understanding of the biological significance of such
markers and validation of their usefulness are pivotal for de-
veloping novel targeted therapies. HCC appears to be char-
acterized by increased glycolysis, attenuated mitochondrial
oxidation, and increased arachidonic acid synthesis [43],
suggesting abnormal metabolism in HCC development and
progression. In this study, GO analysis, KEGG and BioCarta
pathway analyses were performed to determine the roles
and pathways of DEGs. These analyses implicate that the
expression profiling of metabolism genes was significantly
changed in HCC. The deregulated energy metabolism of
cancer cells modifies the metabolic pathways and influ-
ences various biological processes including cell prolifera-
tion. Not surprisingly, the dysregulated genes identified in
our study were highly associated with cell cycle pathways.
In order to determine the clinical relevance of the DEGs,

survival analysis was performed and 79 DEGs were found
to be associated with overall survival. Most of these genes
(65.82 %) have prognostic features and strong associations
with some cancers. For example, MYCN is well-studied
biomarker for neuroblastoma and inactivation of it results
in impaired cell growth and enhanced cell death in neuro-
blastoma [44–46]. RHEB acts as a proto-oncogene in the
appropriate genetic milieu and signaling context, and its
overexpression cooperates with PTEN haploinsufficiency to
promote prostate tumorigenesis [47]. The elevated expres-
sion levels of these two genes are also found in our study,
suggesting that cancers from different tissues may share
common features and these genes can be utilized as
pan-cancer biomarkers. The expression levels of GPC3
are down-regulated to facilitate cell migration, invasion
and tumorigenicity in ovarian cancer [48, 49]. However,
our study shows that GPC3 is an up-regulated gene in
HCC, which agrees with other studies [50–53]. These
observations indicate that the same gene might exhibit
opposite effects on different cancer types, and the genes
like GPC3 cannot be used as pan-cancer biomarkers.
The HR derived from the Cox proportional hazards

model provides a statistical test of treatment efficacy and
an estimate of relative risk of events. Therefore, under-
standing of HR of queried gene expression would be help-
ful in anticancer strategies. Two separate analyses were
performed for the genes up-regulated in poor prognosis
patients (HR > 1 by the Cox regression) and for those
down-regulated in poor prognosis patients (HR < 1). From
this analysis, we identified 12 DEGs whose expression
levels are associated with significantly higher risk of tumor
recurrence, and 4 genes have been reported to be re-
lated with survival or prognostic features. For instance,
MAP3K7 controls a variety of cell functions including
transcription regulation and apoptosis through mediat-
ing the signaling transduction induced by TGFβ and
bone morphogenetic protein (BMP) in a broad range of
cancers [54–56].

KLHL21 interacts with Cullin3 and regulates mitosis
in HeLa cells [57]. Unlike other family members, KLHL21
regulates of the chromosomal passenger complex transloca-
tion at the onset of anaphase and is required for completion
of cytokinesis [57]. It appears that KLHL21 is the most
promising gene among the 6 validated novel candidates.
We identified for the first time that reduced expression of
KLHL21 is associated with decreased cell proliferation rate
and invasion potential in HCC cells, although further re-
search is required to fully illustrate the regulatory network
and downstream targets of KLHL21 in HCC development
and progression.
Despite the significant body of literature describing pre-

dictive or prognostic mRNA profiles for cancer, only a
small number are used in current oncology practice. Our
study reveals novel biomarkers and molecular signatures
related to HCC development and progression, making it
possible to objectively evaluate the patient’s overall outcome
and translate new molecular information into drug therapy.

Conclusions
The significant outcomes from this study provide novel
candidate genes for HCC on a genome-wide scale. Among
them, KLHL21 represents the most potential target for
therapeutic intervention. Further prospective studies are
warranted to seek inhibitors targeting KLHL21 for the treat-
ment of HCC.
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