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Abstract

Background: Endocannabinoids have recently drawn attention as promising anti-cancer agents. We previously
observed that anandamide (AEA), one of the representative endocannabinoids, effectively inhibited the proliferation
of head and neck squamous cell carcinoma (HNSCC) cell lines in a receptor-independent manner. In this study,
using HNSCC cell lines, we examined the anti-cancer effects and the mechanisms of action of docosahexaenoy!
ethanolamide (DHEA) and N-arachidonoyl-L-alanine (NALA), which are polyunsaturated fatty acid (PUFA)-based
ethanolamides like AEA.

Methods and Results: DHEA and NALA were found to effectively inhibit HNSCC cell proliferation. These
anti-proliferative effects seemed to be mediated in a cannabinoid receptor-independent manner, since the
antagonist of cannabinoid receptor-1 (CB1) and vanilloid receptor-1 (VR1), two endocannabinoid receptors, did not
reverse the ability of DHEA and NALA to induce cell death. Instead, we observed an increase in reactive oxygen
species (ROS) production and a decrease of phosphorylated Akt as a result of DHEA and NALA treatment.
Antioxidants efficiently reversed the inhibition of cell proliferation and the decrease of phosphorylated Akt induced
by DHEA and NALA; inhibition of 5-lipoxygenase (5-LO), which is expected to be involved in DHEA- and
NALA-degradation pathway, also partially blocked the ability of DHEA and NALA to inhibit cell proliferation and
phosphorylated Akt. Interestingly, ROS production as a result of DHEA and NALA treatment was decreased by
inhibition of 5-LO.

Conclusions: From these findings, we suggest that ROS production induced by the 5-LO pathway mediates the
anti-cancer effects of DHEA and NALA on HNSCC cells. Finally, our findings suggest the possibility of a new
cancer-specific therapeutic strategy, which utilizes 5-LO activity rather than inhibiting it.
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Background

Endocannabinoids are endogenously-produced cannabi-
noids that are involved in a variety of physiological pro-
cesses (including pain-sensation and memory) through
the activation of cannabinoid receptors [1]. Endocanna-
binoids recently gained attention because cannabis
began to be clinically used [2]. More interestingly, these
endogenous molecules have been reported to exert cyto-
static, apoptotic, and anti-angiogenic effects in different
cancer cell lines and cancer xenografts [3-5].

Although the mechanistic actions of endocannabinoids
have been revealed in several cancer cell types, the exact
mechanisms underlying their anti-cancer action are still
unclear. This may be because of the complexity and var-
iety of the signaling pathways that endocannabinoids in-
duce, which seem to involve both receptor-dependent
and receptor-independent pathways [6, 7]. Evidence sug-
gests that endocannabinoids might suppress cancer cell
viability through the activation of classic cannabinoid re-
ceptors such as cannabinoid receptor-1/2 (CB1 and
CB2) and vanilloid receptor-1 (VR1). However, increased
production of ceramide and reactive oxygen species
(ROS), and activation of caspase, PPARs, p38, and JNK
signaling are reported to be related to the anti-cancer
action of endocannbinoids [8—12]. New putative recep-
tors for endocannabinoids, such as GPR55, have been re-
cently identified, and there is a possibility that these
receptors contribute to off-target endocannabinoid ef-
fects in order to suppress cancer cell viability [13].

Since cyclooxygenase-2 (COX-2), the enzyme that pro-
duces prostanoids from arachidonic acid (AA), is well
known to be associated to cell viability in several types
of cancer [14], COX-2 has been studied as a useful
therapeutic target for the treatment of various cancers
[14, 15]. 5-Lipoxygenase (5-LO), the other enzyme
involved in AA metabolism, was reported to be overex-
pressed in some cancer cells [16]. Similar to COX-2, 5-
LO is expected to be a promising target for molecular
targeted cancer therapy because 5-LO has been identi-
fied as being related to carcinogenesis due to its ability
to promote cell proliferation and angiogenesis [17-19].

Previously, several groups observed that the cancer
cell-killing effects of anandamide (AEA) were mediated
through prostamides produced by COX-2 in some types
of cancer [20]. These findings are important for molecu-
lar targeted cancer therapy, since COX-2 has been found
to be highly expressed in many cancer cells. However,
we expected that targeting 5-LO, may be another poten-
tial therapeutic strategy. In this study, using head and
neck squamous cell carcinoma (HNSCC) cancer cells,
we investigated the precise role of AA-catabolizing
enzymes in regulating the receptor-independent anti-
cancer effects of several endocannabinoids that are simi-
lar to AA in chemical structure. Since both 5-LO and
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COX-2 are associated with AA metabolism, we hypothe-
sized that 5-LO might be also be related to the catabol-
ism of some endocannabinoids, including DHEA, EPEA
and NALA, all of which are similar in structure to AA.
Although we have already analyzed and observed (espe-
cially through the induction of angiogenesis) the car-
cinogenic role of 5-LO in head and neck cancer cells
[17], here, we further investigated the possibility of tar-
geting 5-LO as a possible cancer treatment.

Methods

Cell culture

SNU-1041, SNU-1066 and SNU-1076 cells (human
HNSCC cell lines) were obtained from the Korean Cell
Line Bank (Seoul National University, Seoul, Korea),
while PCI-1 (human HNSCC cell lines) was obtained
from the Pittsburgh Cancer Institute (University of
7Pittsburgh, PA) [17]. HOK 16B is an immortalized cell
from pharyngeal mucosa (a gift from Dr. Jeffrey N.
Myers in M.D. Anderson Cancer Center, University of
Texas) [21]. Cells were maintained at 37 °C in a humidi-
fied, 5 % CO,, 95 % air atmosphere and routinely sub-
cultured using trypsin-EDTA.

Reagents

Endocannabinoids - docosahexaenoyl ethanolamide
(DHEA), eicosapentaenoyl Ethanolamide (EPEA) and N-
arachidonoyl-L-alanine (NALA), antagonists of CB1 and
VR1 (AM251, cayl0448), antioxidants (NAC and GSH),
and inhibitors of 5-LO (AA861, zileuton and ebselen)
were obtained from Cayman Chemical (Ann Arbor, MI).

Cell proliferation assay

Cells were seeded in culture plates and incubated for the
specific time at 37 °C prior to treatment with specific
drugs for the indicated time. After treatment, Cell
Counting Kit-8 (Dojindo Lab., Tokyo, Japan) was used to
measure cell proliferation according to the manufac-
turer’s instructions.

Measurement of apoptosis by Annexin-V staining assay
Apoptosis of SNU-1041 and SNU-1076 by DHEA and
NALA was assessed using an Annexin-V staining kit
(Koma Biotech, Seoul, Korea). After exposure to 20 uM
of DHEA or NALA for 60 h, cells were harvested and
washed with cold PBS and re-suspended in binding buf-
fer containing fluorescein isothiocyanate (FITC)-conju-
gated annexin V protein and propidium iodide. Annexin
V binding and PI staining were determined by flow cyto-
metric analysis (Becton Dickinson, San Jose, CA, USA).
Apoptotic cells were defined as PI-negative and annexin
V-positive.
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Plasmids expressing FAAH and 5-LO

Using each cDNA, we established pcDNA3.1 expressing
vectors (pcDNA3.1-lacZ, -FAAH and -5LO). Cells were
transfected with 0.5-1 pg of plasmids by electroporation
using Microporator MP-100 (NanoEnTek Inc., Seoul,
South Korea), following the protocol provided by the
manufacturer. Then, cells were seeded in culture plates
and incubated for an additional 36 h before another
treatment of AEA.

Transfection of siRNA

Individual siRNAs against COX-2 (D-004557-04), 5-LO
(L-004530-00) and non-targeting control (D-001210-01)
were obtained from Dharmacon RNA Technologies
(Lafayette, CO). The best conditions of siRNAs applica-
tion (used doses and treatment time) were established
beforehand by western blotting and EIA [17]. Cells were
transfected with 200 nM of siRNA by electroporation
using Microporator MP-100 (NanoEnTek Inc., Seoul,
South Korea), following the protocol provided by the
manufacturer. Then, cells were seeded in culture plates
and incubated for an additional 48 h before another
treatment of tested drugs (like DHEA).

Quantification of PGE, and LTB, production
The amount of the desired factor released by the cells
was determined using PGE, or LTB, enzyme immuno-
assay kits (EIA) (Cayman Chemical, Ann Arbor, MI) ac-
cording to the manufacturer’s instructions.

Cell co-culture with transwell system

SNU-1041 cells were transfected with 200 nM of siRNA
against 5-LO or non-targeting control and placed at
once in the lower side of a transwell (NUNC Company,
Denmark) chamber partitioned by a polycarbonate
membrane (8.0 pm pore size, Corning Incorporated,
Costar). Then SNU-1041 cells (with no transfection)
were seeded in the upper side and co-cultured for 48 h.
Subsequently, cells were treated with 30 uM of DHEA
or NALA for additional 48 h. Both cells (in upper and
lower side) were separately applied to the cell prolifera-
tion assay (at a total of 96 h).

Measurements of production of reactive oxygen species
(ROS)

The generation of ROS was measured by using the
DCFH,-DA assay [22]. Intracellular ROS production was
determined directly in cell monolayers in black 96-well
flat-bottom microtiter plates using a Fluoroskan Ascent
FL microplate reader (Labsystems, Sweden). Cells in
complete medium were incubated with the indicated
drugs for 18 h. To measure the production of ROS, cells
were treated with 5 uM DCFH,-DA at 37 °C for 30 min,
and the fluorescence of DCF was measured at 530 nm
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after excitation at 485 nm (DCFH,-DA, after deacetyla-
tion to DCFH,, is oxidized intracellularly to its fluores-
cent derivative DCEF). Assays were performed in
modified Hank’s buffered salt solution (HBSS).

Western blot analysis

Denatured protein lysates were resolved by 4-12 %
NuPAGE gels (Invitrogen, Carlsbad, CA) and transferred
to nitrocellulose membranes (Schleicher & Schuell,
Dachen, Germany). The membranes were incubated
with anti-5-LO (BD, Franklin Lakes, NJ); anti-p-Akt
(Ser473), anti-pan-Akt (Cell signaling, Danvers, MA); or
monoclonal anti-B-actin (Santa Cruz Biotechnology,
Santa Cruz, CA) for 2 h at room temperature or over-
night at 4 °C. Membranes were then washed (4 times)
with TBS-T and incubated with horseradish peroxidase-
conjugated secondary antibody (Pierce, Rockford, IL) for
1 h. Immunoreactive proteins were visualized by devel-
oping them with Lumi-light western blotting substrate
(Roche Diagnostics GmbH, Mannheim, Germany),
followed by exposure in a LAS-3000 (Fuji Film Co.,
Tokyo, Japan) according to the manufacturer’s instruc-
tions. This was followed by quantitation of specific
bands with the Multi Gauge software (Fuji Film Co.,
Tokyo, Japan).

Statistical analysis

Data are presented as the mean + standard deviation
(SD) of at least triplicates, or as a representative of 3
separate experiments. Significance was determined be-
tween treated and untreated groups by two-sided Stu-
dent’s t-test. P values <0.05 were considered statistically
significant.

Results

DHEA and NALA effectively inhibit the proliferation of
HNSCC cell lines

DHEA and NALA effectively inhibited cell viability in
the HNSCC cell lines we tested, but EPEA only had a
weak inhibitory effect on cancer cell proliferation
(Fig. 1a). Non-cancerous cell lines (HOK16B and fibro-
blasts) were not affected by DHEA and NALA at the
tested doses (10-30 uM) (Fig. 1a). DHEA and NALA ef-
fectively induced the cell death in the HNSCC cell lines
(Fig. 1b). CB1 is expressed only in SNU-1066 and no ex-
pression of CB2 is observed in all the cells tested, while
VR1 expression is observed in all cells (in our own
study) [23]. We also found that the anti-cancer effect of
DHEA and NALA was not reversed by antagonists of
the endocannabinoid receptors CB1 and VR1 (AM251
and cay10448) (Fig. 1c). From these observations, we as-
sumed that the anti-cancer effect induced by DHEA and
NALA was mediated through a receptor-independent
action. The cell lines SNU-1041 and SNU-1076 were
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Fig. 1 DHEA and NALA effectively inhibit cell proliferation and induce cell death in HNSCC cell lines. a Cells were treated with 20 uM of DHEA,
EPEA and NALA. At 72 h, cells were subjected to cell proliferation assay. b SNU-1041 and SNU-1076 were treated with 20 uM of DHEA and NALA.
At 60 h, cells were subjected to Annexin-V staining assay. ¢ SNU-1041 and SNU-1076 were treated with DHEA (20 pM) and NALA (20 uM) plus
AM251 (2 uM) or cay10448 (2 uM). At 72 h, cells were subjected to cell proliferation assay. Results are expressed as a percentage relative to
control (% of control). P values were based on comparison with control (*P < 0.001, **P < 0.05) or DHEA/NALA-treated group (*P<0.05)

chosen for further analysis of the cancer-killing effect of
DHEA and NALA.

The anti-cancer action of DHEA and NALA occurs at an
intracellular location

FAAH is known to catabolize polyunsaturated fatty acid-
based endocannabinoids (like AEA) to polyunsaturated
fatty acid and ethanolamide [24]. To verify the possibility
that DHEA and NALA affected cell viability through a
receptor-independent action that occurred after intracel-
lular transport, cells were transfected with plasmids ex-
pressing fatty acid amide hydrolase (FAAH). The activity
of transfected FAAH was confirmed by using arachido-
noyl p-nitroaniline-based assay (Additional file 1: Figure
S1). We observed that the growth-inhibitory action of
DHEA and NALA was completely blocked (Fig. 2).
These observations suggested that DHEA and NALA

might have anti-cancer effect through intracellular
localization by a receptor-independent mechanism in
HNSCC cell lines. The used cells in this study had little
FAAH activity (data not shown).

Anti-cancer effect of DHEA and NALA was reversed by
inhibition of 5-LO, but not by inhibition of COX-2

AEA, which is structurally similar to AA, has been re-
ported to have an anti-cancer effect when it is catabo-
lized by COX-2 [20]. Therefore, we hypothesized that
the mechanism by which DHEA and NALA inhibited
cell proliferation might also be a result of their catabol-
ism by COX-2. However, we found that inhibition of
COX-2 had no effect on the ability of DHEA and NALA
to inhibit cell proliferation of HNSCC (Additional file 2:
Figure S2). Next, we tried to investigate if 5-LO might
regulate the ability of DHEA and NALA to inhibit cell
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Fig. 3 Anti-cancer effect of DHEA and NALA was reversed by inhibition of 5-LO, but not by inhibition of COX-2. (@) SNU-1041 and (b) SNU-1076 were
treated with DHEA or NALA (20 uM) plus AA861 (5 uM) or zileuton (5 uM) or Ebselen (5 uM). At 72 h, cells were subjected to cell proliferation assay
(Left). The siRNA of 5-LO was transfected at 200 nM doses (the si-NC was used for negative control of siRNA). Forty-eight hours later cells were treated
with DHEA or NALA (20 pM). At additional 48 h, cells were subjected to cell proliferation assay (Right). Results are expressed as a percentage relative to
control (% of control). P values were based on comparison with DHEA-treated group and NALA-treated group (*P < 0.005, P <001). € 5-LO siRNA was
transfected into SNU-1076 cells. At 48 h, total cell lysates were prepared and the expression of 5-LO was determined by western blotting (upper). Data
are presented as a representative of 3 separate experiments. At 48 h, cells were treated with 20 uM of arachidonic acid. After an additional 2 h, cultured
media were collected and applied to LTB, EIA (lower). The inhibitory effect of 5-LO siRNA was compared with that of 5-LO inhibitors — AA861 and
zileuton. Results are expressed as a percentage relative to the control (% of control)

proliferation. The high expression and activity of 5-LO
in HNSCC cells were already measured in our previous
study [17]. Cells were treated with 5-LO inhibitors
(AA861, zileuton, and ebselen) and 5-LO siRNAs to-
gether with DHEA or NALA before cell proliferation
was measured. We were able to demonstrate that 5-LO
mediated the growth-inhibitory actions of DHEA and
NALA in SNU-1041 (Fig. 3a) as well as in SNU-1076
(Fig. 3b). The inhibition of 5-LO activity by its inhibitors
and by its siRNA was confirmed by using an leukotriene
B, (LTB,) EIA (Fig. 3c).

The anti-cancer effects of DHEA and NALA are not medi-
ated by any products generated by the 5-LO pathway
Because of the structural similarity between AA and
DHEA/NALA, we could detect weak LTB,-like products
synthesized by 5-LO from DHEA and NALA using an
LTB, EIA kit (Fig. 4a). However, when cells transfected
with siRNAs of negative control (NC) or 5-LO were co-
cultured with cells in upper side (with basic condition)
and treated with DHEA and NALA, we observed that
cell viability was partially reversed only in 5-LO siRNA-
transfected cells (Fig. 4b).

DHEA and NALA increase ROS production

In our own study, we observed that AEA increased
intracellular oxidative stress, including lipid peroxidation
[23]. Since DHEA and NALA are very similar to AEA,
we assumed that DHEA and NALA might affect cell via-
bility by increasing intracellular ROS production. As ex-
pected, we observed an increase in ROS production as a
result of DHEA and NALA treatment in SNU-1041
(Fig. 5a) and SNU-1076 (Fig. 5b). These data suggest
that ROS production induced by DHEA and NALA
seems to be involved in mediating the anti-cancer effects
of DHEA and NALA in HNSCC cells.

5-LO inhibition as well as antioxidant treatment partially
reversed DHEA- and NALA-inhibited cell proliferation
Next, to identify the role of increased ROS in the ability
of DHEA and NALA to inhibit cell proliferation, we
treated SNU-1041 with DHEA/NALA and the antioxi-
dants NAC and GSH. The antioxidants partially reversed
DHEA-/NALA-inhibited cell proliferation (Fig. 6a).

Together with Fig. 5, this finding confirms that DHEA-/
NALA-induced ROS might play a role in the anti-cancer
effect of DHEA and NALA on HNSCC cells. In addition,
we found that 5-LO siRNAs blocked the increase of
DHEA/NALA-induced ROS production in SNU-1041
and SNU-1076 (Fig. 6b).

5-LO-induced ROS mediates the decrease of
phosphorylated Akt by DHEA and NALA

It was already known that Akt activity is important in
maintaining the cell viability of several cancer cells, in-
cluding HNSCC cells [25, 26]. To identify the role of in-
creased ROS in the ability of DHEA/NALA to affect the
phosphorylated form of Akt in HNSCC cells, we treated
SNU-1041 with DHEA/NALA and the antioxidants
NAC. DHEA and NALA decreased the phosphorylated
form of Akt and the antioxidants reversed DHEA/
NALA-inhibited p-Akt in SNU-1041 (Fig. 7a). In
addition, we found that 5-LO inhibition by siRNAs re-
versed the decrease of DHEA/NALA-inhibited p-Akt in
SNU-1041 (Fig. 7b).

Exogenous transfection of plasmids expressing 5-LO pro-
motes the anti-cancer action of DHEA and NALA in
HNSCC cells

Finally, we investigated the effect of enhanced 5-LO ac-
tivity on the anti-cancer action of DHEA and NALA in
SNU-1041. Transfecting cells with plasmids expressing
5-LO, we observed that the growth-inhibitory activity of
DHEA and NALA significantly improved with increasing
5-LO expression (Fig. 8a). The expression of transfected
5-LO was verified by western blotting (Fig. 8b). In
addition, ROS production in the presence of DHEA or
NALA increased proportionally with expression of 5-
LO, which was more prominently than in the presence
of AA (the basic substrate of 5-LO pathway) (Fig. 8c).

Discussion

Since psychotropic side effects by cannabis are reported
to be mediated by classic cannabinoid receptors [1],
there might be some concern about the idea of adopting
endocannabinoids as a cancer treatment. However, it has
been also reported that the cell-killing effect of several
endocannabinoids is mediated by cannabinoid receptor-
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independent mechanisms [6, 7, 23]. In addition to classic
receptors like CB1 and CB2, GPR55 and GPR35 were re-
cently reported as putative receptors of endocannabi-
noids [13, 27]. Given these observations, it might be
possible to find a way to avoid the psychotropic side ef-
fects of endocannabinoids and wuse them as

chemotherapeutic agents. In our study, we hoped to find
a CB receptor-independent effect of the endocannabi-
noids in order to develop them as new cancer therapeu-
tics without psychotropic side effects.

Although DHEA was reported to activate classic can-
nabinoid receptors [6], the anti-cancer action of DHEA
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seemed to be mediated by receptor-independent path-
ways in our study, since antagonists of cannabinoid re-
ceptors had no effect on it. Our observation of the
perfect reversal of the anti-cancer effect of DHEA and
NALA by transfecting FAAH into HNSCC cells con-
firms that DHEA and NALA can be degraded by FAAH.

The fact that COX-2 and 5-LO are highly expressed in
cancer cells than in non-cancerous cells suggests that
they might be useful molecular targets for cancer ther-
apy [18, 28]. Their inhibition has been shown to have ef-
ficient suppressive effects on cancer cell viability in
several types of cancer, such as colon cancer [14, 19]. In
our previous study using HNSCC cells, we observed lit-
tle anti-proliferative effect by inhibiting COX-2 and 5-
LO directly [29]. However, in this study, we observed
that COX-2 and/or 5-LO activity might be able to
promote the cell-killing action induced by some endo-
cannabinoids. This observation suggests that COX-2
and/or 5-LO might be used as specific targets for cancer
therapy in ways other than simply inhibiting their activ-
ities. Indeed, we identified that DHEA and NALA were
able to kill HNSCC cells through 5-LO-mediated ROS
production in a receptor-independent manner, even

though HNSCC cells might have expression of their re-
ceptors such as CB1 and/or VRI1.

Until now, it has not been reported that endocannabi-
noids like DHEA and NALA might be the substrates for
5-LO, even though various polyunsaturated fatty acid
(PUFAs) like DHA are known to be degraded by 5-LO
[30]. We could efficiently detect LTB,-like products gen-
erated from DHA and AEA by 5-LO, but could only de-
tect low levels of the products from DHEA and NALA
(Fig. 4a). Since SNU-1041 and SNU-1076 have little
FAAH activity, we assumed that we could detect LTB,-
like products directly generated from DHEA and NALA,
not those from DHA and AA converted by FAAH.

In cell co-culture experiment, we observed that inhib-
ition of cell viability by DHEA and NALA treatment was
partially reversed in 5-LO siRNA-transfected cells of
lower side (Fig. 4c and d). It means that the anti-cancer
effects of DHEA and NALA are not mediated by LTB,-
like products generated by the 5-LO pathway but medi-
ated by other mechanisms such as ROS production,
which should be induced through the processes of oxy-
genation and peroxidation by 5-LO. If any end-products
of 5-LO released to culture medium showed cell killing
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Fig. 6 5-LO inhibition as well as antioxidant treatment partially reversed DHEA- and NALA-inhibited cell proliferation. a Cells were treated with
20 uM of DHEA and NALA plus NAC (1 mM) or GSH (2 mM). At 72 h, cells were subjected to cell proliferation assay. Results are expressed as a
percentage relative to control (% of control). P values were based on comparison with DHEA-treated group and NALA-treated group (*P < 0.001,
*P<0.01). b Cells were transfected at 200 nM doses of 5-LO siRNA (the siNC was used for negative control of siRNA). Forty-eight hours later cells
were treated with DHEA or NALA (20 uM). At additional 18 h, cells were subjected to the DCFH,-DA assay to measure the change of ROS level.
Results are expressed as a percentage relative to control (% of control). P values were based on comparison with DHEA-treated group and
NALA-treated group in siNC (*P < 0.01, #p < 0.05)

action, 5-LO siRNA-transfected cells in lower chamber
should have been killed as well.
Other studies also observed the increase of intracellular

are included in the membrane associated proteins in the
eicosanoid and glutathione metabolism (MAPEG) super-
family related with glutathione-dependent catalysis [33].

oxidative stress during AA metabolism, independently of
produced eicosanoids [31, 32]. Furthermore, 5-LO activat-
ing protein (FLAP) and leukotriene C4 (LTC,) synthase

FLAP and LTC, synthase might cause glutathione deple-
tion (which leads to increased ROS) in the conversion of
AA to leukotrienes by 5-LO [34].
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Fig. 7 5-LO-induced ROS mediates the decrease of Akt activity by DHEA and NALA. a SNU-1041 cells were treated with DHEA or NALA (40 uM)
plus NAC (1 mM). At 24 h, cells were harvested and applied to western blotting. b Cells were transfected with the indicated siRNA (200 nM).
Forty-eight hours later cells were treated with DHEA or NALA (40 uM). After additional 24 h, cells were harvested and applied to western blotting
(si-NC was used for control). The membranes were incubated with anti-B-actin plus anti-p-Akt or anti-pan-Akt for 2 h at room temperature
(B-actin was used to show an housekeeping gene). Data are presented as a representative of 3 separate experiments

In particular, the observation that DHEA and
NALA produced more ROS through the 5-LO path-
way than AA is very interesting and suggests the
possibility of development of a new alternative strat-
egy that is different from direct inhibition of COX-2
or 5-LO (Fig. 9). By properly exploiting the charac-
teristics of DHEA and NALA, we may be able to
develop novel analogs of endocannabinoids with an

ability to efficiently induce 5-LO-mediated ROS pro-
duction without activating cannabinoid receptors
which induce psychotropic side effects. Even though
COX-2 was found not to mediate ROS production
by DHEA and NALA in this study, more research is
needed to elucidate any relationship between several
endocannabinoids and COX-2 as well as 5-LO in
various cancer cells.
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expressing 5-LO were transfected into SNU-1041 (LacZ expressing plasmid was used for controls). Thirty-six hours later cells were treated with DHEA
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SNU-1041. Thirty-six hours later cells were treated with DHEA, NALA and AA (10 uM). At additional 18 h, cells were subjected to the DCFH,-DA assay to
measure the change of ROS level. Results are expressed as a percentage relative to control (% of control). P values were based on comparison with

DHEA-treated group and NALA-treated group in LacZ (*P < 0.005, *P < 0.01)

J

Akt pathway is important in maintaining the cell viabil-
ity of several cancer cells, including HNSCC cells [25, 26].
Even though it was reported that ROS might affect Akt
pathway positively or negatively, depending on tested cell
type [35], we observed the decrease of phosphorylated
form of Akt by ROS in our cell model. Since inhibition of
p-Akt is likely to lead to the decreased cell viability, we
think that cell death of HNSCC cells by DHEA and NALA
was mediated at least partially through Akt inhibition by
increased ROS production.

The fact that inhibition of 5-LO did not completely re-
verse the effects of DHEA and NALA suggests that the
5-LO pathway is not the only pathway involved in the
DHEA- and NALA-mediated inhibition of HNSCC pro-
liferation and Akt phosphorylation. Considering that the
identification of new endocannabinoid receptors is still
under investigation, we think that further study is
needed to investigate the possibility of the involvement
of unknown receptors and other action mechanisms
(not off-target effects) in the anticancer effects of some
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Fig. 9 The possibility of development of a new alternative strategy that can utilize COX-2 or 5-LO activity itself in cancer cells. Considering our
observation that DHEA and NALA produced more ROS through the 5-LO pathway than AA, we suggest the possibility of development of a new
alternative strategy that can utilize COX-2 or 5-LO activity itself in cancer cells but is different from direct inhibition of COX-2 or 5-LO

endocannabinoids such as DHEA and NALA in order to
enhance their utility as new anticancer agents. In
addition, although we suggest the possibility of using the
5-LO activity of cancer cells to kill these cells, further
study is needed to investigate the differing roles of the
5-LO pathway in the homeostasis of various types of
cancer cells because 5-LO inhibition may provide a
novel therapeutic strategy for some cancers such as
prostate cancer [36—38].

Here, for the first time, we showed that 5-LO might be
related to the catabolism of some endocannabinoids, in-
cluding DHEA and NALA, and observed that 5-LO
could mediate the cell-killing action of DHEA and
NALA by up-regulating ROS production in HNSCC
cells. Since it was identified that DHEA could be physio-
logically synthesized from DHA in the human body and
NALA from AA, the application of proper doses of
DHEA and NALA would be clinically effective, non-
toxic anti-cancer treatments. Our observations suggest
the possibility that DHEA, induced by the dietary sup-
plement DHA, might mediate an anti-cancer effect in
some cancers such as HNSCC.

Conclusions

From these findings, we suggest that ROS production in-
duced by the 5-LO pathway mediates the anti-cancer ef-
fects of DHEA and NALA on HNSCC cells. Finally, our
findings suggest the possibility of a new cancer-specific
therapeutic strategy, which utilizes 5-LO activity rather
than inhibiting it.
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