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Abstract

Background: “Biomarker-driven targeted therapy,” the practice of tailoring patients’ treatment to the expression/
activity levels of disease-specific genes/proteins, remains challenging. For example, while the anti-ERBB2 monoclonal
antibody, trastuzumab, was first developed using well-characterized, diverse in vitro breast cancer models (and is now
a standard adjuvant therapy for ERBB2-positive breast cancer patients), trastuzumab approval for ERBB2-positive gastric
cancer was largely based on preclinical studies of a single cell line, NCI-N87. Ensuing clinical trials revealed only modest
patient efficacy, and many ERBB2-positive gastric cancer (GC) patients failed to respond at all (i.e., were inherently
recalcitrant), or succumbed to acquired resistance.

Method: To assess mechanisms underlying GC insensitivity to ERBB2 therapies, we established a diverse panel of GC
cells, differing in ERBB2 expression levels, for comprehensive in vitro and in vivo characterization. For higher throughput
assays of ERBB2 DNA and protein levels, we compared the concordance of various laboratory quantification methods,
including those of in vitro and in vivo genetic anomalies (FISH and SISH) and xenograft protein expression (Western blot
vs. IHC), of both cell and xenograft (tissue-sectioned) microarrays.

Results: The biomarker assessment methods strongly agreed, as did correlation between RNA and protein expression.
However, although ERBB2 genomic anomalies showed good in vitro vs. in vivo correlation, we observed striking
differences in protein expression between cultured cells and mouse xenografts (even within the same GC cell
type). Via our unique pathway analysis, we delineated a signaling network, in addition to specific pathways/biological
processes, emanating from the ERBB2 signaling cascade, as a potential useful target of clinical treatment. Integrated
analysis of public data from gastric tumors revealed frequent (10 – 20 %) amplification of the genes NFKBIE, PTK2, and
PIK3CA, each of which resides in an ERBB2-derived subpathway network.

Conclusion: Our comprehensive bioinformatics analyses of highly heterogeneous cancer cells, combined with tumor
“omics” profiles, can optimally characterize the expression patterns and activity of specific tumor biomarkers. Subsequent
in vitro and in vivo validation, of specific disease biomarkers (using multiple methodologies), can improve prediction of
patient stratification according to drug response or nonresponse.
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Background
A promising approach for the treatment of cancer is the
use of “targeted” therapies for patients possessing spe-
cific genomic anomalies or overexpressing certain onco-
proteins, resulting in attenuation of mitogenic signal
pathways comprised of such targeted biomolecules [1].
Targeted therapies can avoid the toxicity and eventual
drug resistance associated with standard chemo- or ra-
diotherapies [1]. The successful discovery of targeted
therapies is based on findings that the majority of cell
lines retain the “addictive” driver gene mutations of their
originating tumors [2], followed by rigorous in vitro and
in vivo preclinical cell line analyses of the candidate
therapeutic targets, justifying further progression toward
clinical trials [3].
The revolution of targeted therapies, also designated

“personalized” (or “precision”) medicine,” holds immense
potential, ultimately allowing simple processing of a bi-
opsy to generate massive genomic/transcriptomic data
regarding the heterogeneity of a specific tumor [4] active
oncogenic pathways, immunoevasive measures employed
by circulating cancer cells [5], and resistance mecha-
nisms of drug bypass [6].
While distinct cancer phenotype-associated “signatures,”

based on the presence of hundreds (perhaps eventually,
even thousands) of expressed/silenced genes, mutation
patterns, etc., such considerable assessments have yet to
be approved for the clinic [7].
Consequently, patient stratification methods remain

largely restricted to single or a few gene/protein bio-
markers. Other barriers to successful personalized medi-
cine include inadequate “clinical utility,” referring to
knowledge that a biomarker not only statistically segre-
gates two patient populations (“analytical validation”),
but that it does so in a clinical meaningful manner
(“clinical validation”) [8]. Toward this objective, Hayes et
al. assert that an individual biomarker test must be “accur-
ate, reproducible and reliable” and that regulatory bodies
have lagged in vetting biomarkers to the same extent as
new pharmaceuticals [8]. Consequently, high-quality pre-
clinical studies, using assays relevant to the clinical ques-
tion at hand, are greatly needed.
Despite these remaining obstacles, several biomarker-

based therapies have now been clinically approved, in-
cluding erlotinib, cetuximab and gefitinib (targeting the
epidermal growth factor receptor) [9], bevacizumab (tar-
geting the vascular endothelial growth factor receptor)
[10], and imatinib and dasatinib (targeting the bcr-abl
translocated tyrosine kinase gene) [11].
However, like conventional drugs, resistance to targeted

therapies often arises, due to heterogeneity of expression
of the target, additional genomic alterations, or a shift in
cancer cell growth reliance to alternative signal pathways
(i.e, loss of “addiction” to the targeted pathway) [6, 12].

Consequently, there is an urgent need to identify more reli-
able biomarkers that predict which patients will best re-
spond to specific targeted compounds vs. those with
inherent or predicted acquired resistance. One example of
such a therapeutically targeted biomarker is the anti-
ERBB2 monoclonal antibody, trastuzumab (Herceptin®,
Genentech), developed using multiple, diverse ERBB2-
overexpressing breast cancer cell lines [13, 14], which is
now a standard adjuvant therapy for ERBB2-positive breast
cancer patients [15]. ERBB2, commonly known as HER2
(human epidermal growth factor receptor-2), has no
known direct ligand-binding domain, but is a common
dimerization partner for the three other EGFR family pro-
teins, stimulating its autophosphorylation activity [16]. Fol-
lowing activation, the ERBB2 intracellular “docking” site
interacts with src-homology-2 (SH2) domain proteins, ini-
tiating signaling that ultimately results in cell proliferation
and the inhibition of cell cycle arrest and apoptosis [17].
While trastuzumab has been well established as suc-

cessful against ERBB2-positive breast cancer, preclinical
studies of the efficacy of trastuzumab against gastric
cancer (GC) were largely restricted to a single cell line,
NCI-N87, expressing extremely high levels of ERBB2
[18, 19]. Although trastuzumab is now nearly globally
approved for GC, the largest phase III clinical trial to
date showed only a limited benefit (median overall sur-
vival of 13.8 months in those receiving trastuzumab plus
chemotherapy, compared to 11.1 months for patients re-
ceiving chemotherapy alone) [20]. One could postulate
that the difference in trastuzumab clinical efficacy be-
tween gastric and breast cancers is correlated to the pau-
city of preclinical studies of divergent GC cell lines.
Similarly, a poor response rate was observed in a phase
1/II trastuzumab clinical trial for ovarian cancer, follow-
ing limited preclinical studies [21].
In this study, we show wide disparity between in vitro

(culture) vs. in vivo (xenograft) ERBB2 protein expression
in a panel of 25 diverse GC cell lines, and through our
unique subpathway analysis (PATHOME) [22], we identify
a translationally relevant ERBB2 signal network and pos-
sible basis for resistance by overexpression of three previ-
ously uncharacterized ERBB2 subpathway genes.

Methods
Cell lines and mouse xenografts
Human gastric cancer cells were obtained from the
American Type Culture Collection (ATCC, Manassas, VA,
USA; http://www.atcc.org/) and the SNU Korean Cell Line
Bank (http://cellbank.snu.ac.kr/english/). The study was
conducted within 6 months of cell resuscitation, followed
by culture in RPMI-1640 (Hyclone, Thermo Fisher Scien-
tific; Rockford, IL, USA) and 10 % fetal bovine serum
(Hyclone, Thermo Scientific) at 37 °C in 5 % CO2. Short
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tandem repeat (STR) profiling was used to authenticate
identity of the cell lines.
For xenograft studies, athymic, 5-week-old male BALB/

c nude mice were purchased from Orient Bio Inc.
(Gyeonggi, Korea), and kept under specific pathogen-free
conditions. Animal experiments were performed under
approved protocols and accordance to institutional rec-
ommendations for the proper care and use of laboratory
animals. To assess in vivo ERBB2 levels, GC cells were
suspended in PBS at a concentration of 5x107 cells/ml,
and 100-μl inoculum volumes were injected subcutane-
ously into each mouse’s left and right flanks. The
engrafted mice were then observed for four weeks or until
subcutaneous tumors became evident.
The usage of animals in this study was reviewed and

approved (Project #: NCC-12-R160) by the ethics com-
mittee of the National Cancer Center Institutional Re-
view Board (IRB) in accordance with the institute’s rules
and regulations.

Construction of cell and xenograft microarrays
For the construction of cell microarrays, 5 × 106 cells
were pelleted and resuspended in 1 cc of 0.006 % ethel-
2-cyanoacrylate containing acetone (Henkel Loctite 401
Super Glue, Henkel, Düsseldorf, Germany), and 5 to 10
volumes 3 % of PVA (Sigma Chemical Co., St. Louis,
MO, USA), added to new microcentrifuge tubes, and
recentrifuged. The final cell pellets were then wrapped
with lens paper and embedded with paraffin to build
blocks [23].

Western blot
Cells were washed with ice-cold phosphate-buffered sa-
line (PBS), scraped from culture flasks, and collected by
centrifugation at 2,000 x g. The cell pellets were then re-
suspended at 1×106 cells in 100-μl lysis buffer (50 mM
Tris-HCl, 150 mM NaCl, 2 mM EDTA, 0.5 % NP40, 1 %
Triton-X100) with protease and phosphatase inhibitor
cocktails (Thermo Fisher Scientific). Cell lysates were
kept on ice for 10 min and then centrifuged at 15,000 x
g for 15 min at 4 °C. Supernatants were collected and
protein concentrations determined by the DC protein
assay (Bio-Rad, Hercules, CA, USA). 20 μg of total cellular
protein was then resolved by SDS-PAGE and transferred
to a PVDF membrane (Bio-Rad). After blocking with Tris-
buffered saline containing 0.05 % Tween 20 (TBST) and
5 % nonfat milk for 1 h, the membranes were incubated
with antibodies against ERRB2 (Abgent, San Diego, CA,
USA) and β-actin (Cell Signaling Technology, Beverly,
MA, USA) in TBST at 4 °C overnight, and then washed
three times with TBST. The washed membranes were
then probed with horseradish peroxidase-conjugated anti-
rabbit IgG at 1:3000 (Cell Signaling) for 1 h at room
temperature, and washed again with TBST. Proteins were

visualized by chemiluminescence using the ECL reagent
(GE Healthcare, Little Chalfont, UK), and data analyzed
using Image Lab (Bio-Rad) software.

IHC, FISH and SISH of cell lines and xenograft microarrays
Immunohistochemical (IHC) staining was performed on 4-
μm tissue sections from paraffin-embedded tissue blocks
using the automated staining instrument BenchMark XT
and an iVIEW DAB Detection Kit with the PATHWAY
ERBB2/HER-2/neu (4B5) antibody (Ventana Medical Sys-
tems, Tucson, AZ, USA), according to the manufacturer’s
protocol.
Fluorescent in situ hybridization (FISH) was per-

formed on 2-μm tissue sections from paraffin-embedded
tissue blocks. Upon xylene deparaffination, antigens
were retrieved using TT Mega Milestone (ESBG Scien-
tific, Markham, Ontario, Canada) with CC2 (Cell Condi-
tioning Solution 2, Ventana). Digestion was then
performed for 45 min at RT with Pepsin Solution (Krea-
tech, Inc., Durham, NC, USA). The slides were then
washed, dehydrated with ethanol, and air-dried. The
PathVysion Kit (PathVysion Her-2 DNA Probe Kit;
Abbott, Abbott Park, IL, USA) was then used for in
situ hybridization, and DAPI II Counterstain (Abbott)
was used for staining nuclei.
Silver in situ hybridization (SISH) was performed on 4-

μm tissue sections from paraffin-embedded tissue blocks
using an ultraView SISH DNP Detection Kit and IN-
FORM ERBB2/HER2 Dual ISH DNA Probe Cocktail, and
an automated IHC/ISH slide-staining system, Benchmark
XT (Ventana).

Computational construction of an ERBB2-downstream
network from ERBB2 high- and Low-expressing GC tumor
transcriptome datasets, and analysis for genetic anomalies
within that network
Using TCGA gastric cancer RNA-Seq datasets retrieved
from the UCSC cancer genomics browser (version
TCGA_STAD_exp_HiSeq-2015-01-28) [24], a total of
470 cancer samples with pathologic M stage M0 were
selected and split into two groups, according to ERBB2
expression: (1) an ERBB2-high expressing sample group
(highest 25th percentile); and (2) an ERBB2-low ex-
pressing sample group (lowest 25th percentile). Each
group consisted of 83 samples. We then applied our
established systems biology algorithm, PATHOME [22],
using a p-value cutoff of 0.05, to distinguish statistically
significant RNA-Seq expression data results and delin-
eate signaling networks for the ERBB2 high- vs. low-
expressing GC tumor groups. From the network, we
selected ERBB2-downstream signaling genes (51 genes,
including ERBB2 itself ) and their possible anomalies
(using cBioPortal).
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Immunohistochemical (IHC) and fluorescence In situ
hybridization (FISH) staining and grading
IHC staining was performed using the BenchMark XT
automated staining instrument (Ventana) as follows:
formalin-fixed, paraffin-embedded tissue blocks were
sectioned at a thickness of 3 μm. The sections were then
deparaffinized and rehydrated with EZ prep (Ventana)
and washed with Tris-buffered saline. The antigens were
retrieved by heat treatment for 30 min in pH 8.0 Tris-
EDTA buffer (CC1, Ventana) at 95 °C. Endogenous per-
oxidases were blocked with 3 % H2O2 for 10 min at RT.
Nonspecific binding was blocked using a ready-to-use
protein blocker solution (Ventana) for 20 min at RT. A
primary antibody against ERRB2 (1:1000, rabbit poly-
clonal, A0485, DAKO, Glostrup, Denmark) was then ap-
plied to the slide section for 40 min at 42 °C, followed
by HRP-labeled secondary Ab for 20 min at RT, and
DAB for 8 min (I-View DAB, LSAB, Ventana), with
hematoxylin counterstain.
ERBB2 immunostaining was evaluated according to

the criteria of Hoffman et al. [25]. Staining was from 0
to 3, as follows: 0, no reactivity or membranous reactiv-
ity in <10 % of cells, as follows: 1+, faint membranous
reactivity in >10 % of cells; 2+, weak to moderate
complete or basolateral membranous reactivity in >10 %
of cells; and 3+, moderate to strong complete or baso-
lateral membranous reactivity in >10 % of cells. Biopsy
samples with cohesive either IHC3+ or ISH+ clones
were considered positive irrespective of proportion
(i.e., <10 %). In cases of IHC2+ staining, FISH for ERBB
was then performed.
FISH was performed according to the manufacturer’s

protocols using the automated staining instrument Bench-
Mark XT (Ventana). Mean HER2:CEP17 ratios were then
calculated after 20 tumor cells were counted. The FISH
result was considered amplification-present when the
HER2:CEP17 ratio was ≥2.0 [18], and negative when the
HER2:CEP17 ratio was <1.8 [26]. If the ratio was between
1.8 and 2.0, counting was repeated on an additional 20
tumor cells.

Results
Characteristics of a 220-GC tumor cohort and ERBB2-positive
cell lines
While ERBB2 expression is well correlated with poor
breast cancer prognosis [27, 28], similar studies in gas-
tric cancer (GC) have been inconsistent [29, 30]. How-
ever, while it is now approved for GC in many nations, a
phase III trastuzumab trial revealed only a modest clin-
ical benefit for ERBB2-positive GC patients [20]. While
later studies showed ERBB2 gene amplification to be
fairly homogenous in GC tumors [31], its protein ex-
pression levels were much more variable [29, 30].

Consequently, we assessed ERBB2 amplification/muta-
tion in 25 highly diverse, ERBB2-positive GC cell lines
useful for further trastuzumab study (see below). Examin-
ation of a dataset (2014-Jan-12) from The Cancer Genome
Atlas (TCGA) [32], through cBioPortal (cbioportal.org)
[33], revealed that of 220 tumor samples, a 5 % ERBB2
mutation rate in diffuse, microsatellite-instable (MSI) and
chromosome-instable (CIN) gastric cancer subtypes
(Fig. 1a), consistent with previous studies [34]. In the sec-
ond dataset (2014-Jan-28), we found ERBB2 amplification
in 13 % of 293 samples, entirely within tumors having low
(<30 %) rates of microsatellite-instability (Fig. 1b), thus
showing ERBB2 copy number to negatively correlate with
the presence of repetitive elements. This data represents
typical ERBB2 genomic anomalies seen in gastric cancer
[34], which may or may not result in its protein over-
or underexpression (see the preclinical tumor models
section below).
To further explore the existence and diversity of

ERBB2-positive GC cell lines, using the Cancer Cell
Line Encyclopedia (CCLE) [35], we found that among
37 tumor types, gastric cancer ranked second in ERBB2
mRNA expression (superseded only by breast cancer,
Fig. 1c). Of GC cell lines, as expected, we found that
NCI-N87, the basis for most preclinical anti-ERBB2
studies, most highly expressed ERBB2 (Additional file
1: Figure S1). ERBB2 mRNA expression levels revealed
overexpression in eight out of 38 GC cell lines in the
CCLE (21.1 %), with quite high standard deviations,
similar to the 25-GC cell line panel used in our study.

Establishment of a diverse GC cell line panel and
improved methodologies for inter and intra-sample
assessments of ERBB2 protein expression and gene
amplification
To model GC patient genotype/phenotype differences
(e.g., disease subtype, ERBB2 gene amplification vs. protein
overexpression, etc.), prior to selection for trastuzumab
therapy, we established a panel of 25 highly heterogeneous
GC cell lines, using 8 of 14 cell lines from the CCLE, and
17 other cell lines we identified from published literature
and public depositories (Additional file 2: Table S1). As
expected, NCI-N87 cells showed the highest levels of
ERBB2 gene amplification and protein overexpression
(Additional file 1: Figure S1) [36]. Only six of the cell lines
had the same Lauren classification [37] as their original
tumors (the phase III trastuzumab study demonstrated
the diffuse subtype to be the most responsive) [20]. This
cell number is still a small number compared to informa-
tion from the CCLE [35] and patient samples (Fig. 1c).
The panel also included several SNU (Seoul National
University) GC cells, each with some type of genomic ab-
erration (including single-nucleotide variants, ERBB2 gene
amplification, etc.), the well-known GC cell line SNU-216,
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having both ERBB2 gene amplification and protein over-
expression [18], the cell line NCC-24, originated from an
Epstein-Barr virus infection [38], and several other highly
distinctive lines (e.g., the MKN series derived from
Japanese patient GC metastases) [39]. As many of the cells
were derived from Asian GC patient tumors, we also
strongly assume that many originated from H. Pylori in-
fection [40]. Moreover, similar to breast cancer, we believe
this unique, diverse GC line panel reflects the high hetero-
geneity of GC tumors. Based on others’ convincing asser-
tions that cell lines can accurately reflect the genomic and
transcriptomic anomalies of specific GC subtypes [41, 42],
we hypothesize that study of the effects of targeted thera-
peutics on distinct signaling networks (e.g., our independ-
ently developed “subpathway” approach) [22], in addition

to the identification of possible mechanisms of resistance
and drug response-predictive biomarkers, can strongly fa-
cilitate the process of translational drug discovery.

Improved methodologies for rapid and simple
determination of ERBB2 protein expression and gene
amplification
As discussed above, the targeted drug discovery process
begins with study of the effects of the compound of
interest on in vitro (cell lines) and in vivo (xenografts)
preclinical models of specific cancers. For targeted ther-
apies, it is often desirable to examine the target gene’s
copy number, in association with its protein expression
levels, and it has been indicated that trastuzumab treat-
ment of gastric cancer is more effective when ERBB2

Fig. 1 ERBB2 gene mutation, amplification, and expression in tumors and cell lines. a ERBB2 mutations were observed in 11 (5 %) out of 220
patients. b Out of 293 GC patients, 38 (13 %) had ERBB2 amplifications, but not deletions. Interestingly, 38 patients did not have MSI-H status.
a and b used The Cancer Genome Atlas (TCGA: http://cancergenome.nih.gov/). c Expression of the ERBB2 gene throughout various cancer cell
lines. We used the Cancer Cell Line Encyclopedia (CCLE). The X-axis represents origins of the cancer cells, and the numeric followed by the origin indicates
the number of cell lines assigned to that origin (www.broadinstitute.org/ccle)

Chang et al. BMC Cancer  (2016) 16:200 Page 5 of 13

http://cancergenome.nih.gov/
http://www.broadinstitute.org/ccle


gene amplification correlates with high ERBB2 protein
expression [30]. Consequently, rapid and straightforward
methodologies for examining gene copy number vari-
ation and protein expression are highly desirable. Meas-
urement of gene amplification is typically performed by
fluorescence in situ hybridization (FISH) and silver in
situ hybridization (SISH), while biopsy target protein ex-
pression is typically determined using immunohisto-
chemistry (IHC) and/or Western blot. To those ends, we
found that for examining cell lines, the cell microarray
(CMA) is a more physiologically relevant method (i.e., 3-
dimensional growth), compared to mere monolayer
growth on plates pre-coated with poly-lysine or various
extracellular matrix proteins. The CMA is an array of
cells fixed into blocks from which a round slice of the
sample is placed on a glass slide. The sample can subse-
quently be used for IHC of the desired protein of inter-
est or FISH/SISH determinations of gene copy number.
CMA also eliminates potential cell variability due to pas-
sage number and contamination [43].
Similarly, for rapid and straightforward examination of

in vivo gene copy number and protein expression, the
xenograft microarray (XMA) is an array of tumor tissue
samples made after injecting and growing cancer cells
subcutaneously in nude mice [44]. Once the cells com-
prise a tumor of the desired size, tumor is dissected out
and used for the construction of a microarray. In this
study, both CMA and XMA were developed to rapidly
and accurately determine ERBB2 protein expression
(IHC) and gene amplification (FISH and SISH) (Fig. 2).

Discordance between in vitro and in vivo ERBB2 protein
levels in GC cell lines
We next assessed the extent of correlation between pro-
tein (IHC, Fig. 2a) and gene copy number (SISH and
FISH, Fig. 2b). With the exception of NCI-N87 GC cells
(>4.0), we observed fairly similar low levels of ERBB2
gene expression level (~1.0–1.5).
Of likely greater clinical relevance, we assessed whether

ERBB2 gene/protein expression levels were reproducible
between in vitro (cell culture) and in vivo (mouse xeno-
graft) conditions. As shown in Fig. 2a (blue bars), eleven of
the 25 GC cell lines showed ERBB2 expression, as deter-
mined by IHC of CMA. Remarkably, however, merely 16
of the lines were tumorigenic and expressed ERBB2 protein
in vivo (as determined by IHC of XMAs), including eight
lines in which protein expression was completely absent in
vitro (CMAs) (Fig. 2a, left panel). One GC line, MKN-45,
formed tumors while ERBB2 expression was barely detect-
able. Also curiously, three cell lines (SNU-16, NCC-20, and
IM95M) with fairly high ERBB2 expression in vitro, en-
tirely failed to grow tumors (Fig. 2a, right panel).
Similarly, with the exception of NCI-N87 cells, we also

noted a discordance of gene amplification (low) and

protein expression (high) in SNU5 GC cells, using
CMAs (Fig. 3a) and XMAs (Fig. 3b), while 5/6 cell lines
we examined in more depth showed highly heteroge-
neous ERBB2 protein expression (Fig. 3a – b). Of the
total 15/25 tumorigenic lines overall, expression levels
were quite heterogeneous (0.1 – 3), similar to findings in
human GC tumors [20, 29]. Future “omics” analysis of
this cell line panel will allow us to determine their de-
grees of similarity with specific disease subtypes. We fur-
ther believe that drug testing on diverse cell lines might
better represent the many heterogeneous cell types
present in specific human (e.g., gastric, pancreatic, etc.)
tumors [30]. These results also demonstrate the strong
contribution of the tumor microenvironment to growth
of tumor xenografts, including its in vivo influence on
implanted cancer cells.

Assessment of correlation between ERBB2 expression and
GC stage in Asian vs. Caucasian patient tumor cohorts
While tumor ERBB2 overexpression/gene amplification
correlates with poor prognosis in breast cancer [17, 26,
27], similar studies in gastric cancer have been inconsist-
ent [29, 45]. Thus, we assessed the prognostic value of
ERBB2 expression with respect to GC disease grade, in
Asian (GEO accession: GSE36968) [46] vs. Caucasian
(GEO accession: GSE63288) [47] patient tumors. For de-
termining statistically relevant associations, we used one-
way ANOVA and Tukey’s tests. As shown in Additional
file 3: Table S2 and Additional file 4: Figure S2A, the Asian
dataset showed no significant association between disease
stage and ERBB2 expression. The Caucasian dataset, how-
ever, did show an odd pattern of stage differences associ-
ated with ERBB2 expression, which further varied by
statistical method. For example, using one-way ANOVA,
disease stages I, II, and III could each be distinguished
from normal stomach by ERBB2 positivity; using Tukey’s
test, however, only stage II could be differentiated from
normal tissue, and stage III from stage II, based on ERBB2
expression (Additional file 4: Figure S2B and Additional
file 5: Table S3). These results again underscore the incon-
sistent prognostic value of ERBB2 for GC, and our add-
itional finding that Asian GC patients lacked any stage
relatedness to ERBB2 expression might indicate additional
race-related ERBB2 cofactors involved in GC etiology,
based on the higher disease incidence in that population
compared to Caucasians.

Computational construction of an ERBB2 downstream
network from ERBB2 high- and low-expressing GC datasets,
and analysis for genetic anomalies within that network
Finally, we examined ERBB2 expression in GC tumor
RNA-seq datasets from The Cancer Genome Atlas
(TCGA) [32]. We divided the GC tumor datasets into
two groups according to high vs. low ERBB2 expression
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(see details in the Materials and Methods). To under-
stand signaling common to both ERBB2 high- and low-
expressing GC patients, we employed our established
systems biology algorithm [22], resulting in an ERBB2-
centric network (Fig. 4a). As shown, we found 26
KEGG pathways associated with ERBB2 high- vs. low-
expressing patients; these are listed in Fig. 4b. We also
observed that within the network, individual pathways
significantly cross-talked with one another (see cluster
(12) in Fig. 4a).
From the network (Fig. 4b), we further dissected how

ERBB2 transduced its signal into its downstream net-
work (Fig. 4c), and how trastuzumab might target
ERBB2-relating signaling. The ERBB2 downstream net-
work consisted of 51 genes, from which we identified
genetic alterations using CBioPortal (cbioportal.org).
Three genes, PIK3CA, PTK2, and NFKBIE, positively
correlated with ERBB2 expression (Fig. 5a), while Fig. 5b
shows each of these genes to harbor large regions of

amplification. Our analysis strongly suggests that an-
other cascade, consisting of highly amplified PTK2 and
NFKBIE, could be strongly involved in ERBB2-related
signaling in high ERRB2-expressing, trastuzumab GC
patients. To further validate these computational results,
we will further examine our 25-cell line panel for PTK2
and NFKBIE aberrations, both in vitro and in vivo.

Discussion
In this study, we endeavored to extensively characterize
the potential of ERBB2 as a clinical biomarker through a
myriad of in vitro and in vivo diverse gastric cancer (GC)
models and human tumors, with an overall objective of
replicating GC tumor heterogeneity and identifying
pathways/networks that could contribute to trastuzu-
mab resistance.
Similar to the earliest, preclinical discovery phases for

all antineoplastic therapies, the efficacy of trastuzumab
for GC was based on cell line studies. These studies,

Fig. 2 Assessment of concordance of in vitro ERBB2 protein levels. a ERBB2 protein expression, as assessed by immunochemistry (IHC) of cell
lines (red bars) or xenografts (blue bars) b Assessment of ERBB2 copy number by fluorescence in situ hybridization (FISH, green bars) or silver in
situ hybridization (SISH, yellow bars) in cell lines (upper panel) or xenografts (lower panel)

Chang et al. BMC Cancer  (2016) 16:200 Page 7 of 13



Fig. 3 Assessment of concordance of in vivo ERBB2 proteins levels in five distinct gastric cancer cell lines, as determined by H&E (hematoxylin
and eosin stain, left panel) and immunohistochemistry (IHC, middle panel) and ERBB2 gene expression levels, as determined by silver in situ
hybridization (SISH, right panel), using five separate cell (CMAs) a or xenograft b microarrays (XMAs)
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Fig. 4 Signaling network is common to both ERBB2 high- and low-expressing gastric cancer patients in TCGA. a The network was delineated by
our established systems biology algorithm, PATHOME [22]. The network consists of subsets of multiple KEGG pathways, as indicated by the numerals.
Nodes represent gene symbols, with the depth of red indicating greater upregulation in the ERBB2 low-expressing patient group. The depth of the
blue color indicates upregulation in ERBB2 high-expressing patients group. b KEGG information provided according to the numerals in a. c ERBB2
downstream signaling. We extracted ERBB2 downstream from Fig. 4a, revealing 51 downstream genes (including ERBB2 itself)
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however, were largely performed on a single cell line,
NCI-N87, in which the ERBB2 gene is highly amplified,
and its protein product is expressed at very high levels
[18, 19]. While gene amplification was found relatively
constant in ERBB2-positive GC tumors [31], its protein
expression was highly heterogeneous, often, even within
the same tumor [22]. This finding might suggest that a
significant number of GC patient tumors are intrinsically
resistant to trastuzumab, but this has yet to be statisti-
cally or analytically validated [48, 49].
While for some cancers, intrinsic drug resistance to tar-

geted therapies may be modest or negligible (e.g., breast
cancer response to trastuzumab), most cancers eventually
gain acquired resistance to targeted therapies [1]. Ac-
quired resistance can arise due to numerous factors,
including somatic mutations, downregulation of the thera-
peutic target, intratumoral heterogeneity, epigenetic aber-
rations, and a shift of cancer cell reliance to alternative or
target-downstream mitogenic signaling pathways. In-
deed, our data analysis of ERBB2-positive tumors in
The Cancer Genome Atlas revealed amplification and/
or missense mutations in the ERBB2 signal pathway
downstream genes NFKBIE, PTK2, and PIK3CA. Being

downstream of, and thus bypassing, the therapeutic tar-
get, represents one mechanism of cell survival that can
lead to drug resistance and tumor relapse, possibly re-
quiring additional therapies. For example, a recent re-
port showing highly aggressive (“triple negative”) breast
cancer was vulnerable to double inhibition of HER2/
mTORC1 (HER2 by trastuzumab and mTORC1 by a
selective inhibitor, INK-128) [50]. Other dual-therapy
regimens being examined are combined inhibition of
AKT/mTOR and MDM2 in glioblastoma [51], and
combined c-MET and EGFR in non-small lung cancer
[52]. With further regard to HER2 in breast cancer, it
was found that the EGFR inhibitor gefitinib did not en-
hance the anti-cancer activity of trastuzumab when
used alone [53].
While disappointing clinical trials often arise from

preclinical studies of inadequate quality, improved in
vitro and in vivo cell line models must continue to
serve as a basis for the first step (i.e., screening) of
discovery of candidate anti-cancer compounds, com-
bined with rigorous network analysis of the potential
therapeutic target. Moreover, various guidelines have
been offered to improve candidate drug screening

Fig. 5 Identification of genetic alterations of ERBB2 downstream signaling genes between the high- vs. low-expressing groups. a From the ERBB2
downstream genes (including ERBB2 itself), we identified genetic alterations (e.g., copy number variations, mutations) between the two GC patient
groups using cBioPortal (cbioportal.org) at its default setting. The y-axis represents the percentage of patients with the altered gene, in terms of
copy number variations and mutations. The red bar indicates the high ERBB2-expressing sample group, and the blue bar indicates the low ERBB2-
expressing sample group. The three genes (PIK3CA, PTK2, NFKBIE), indicated by numbers showed the most alteration in the high ERBB2-expressing
group, compared to the low ERBB2-expressing group. b The genetic alteration profile for the three genes (PIK3CA, PTK2, and NFKBIE) indicated in
the numbers above, is shown for the high ERBB2-expressing GC patients
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using cell lines and tumor xenografts [3]. Recent
“omics” profiling can also facilitate cell lines that best
represent their respective tumors, similar to recent
studies identifying distinct breast cancer cell lines
with genomic profiles (including copy number alter-
ations) that represent specific breast cancer disease
subtypes [41, 42].
In summary, we assert that drug screening should be

performed using multiple, diverse cell lines from the
same tumor type, particularly for highly heterogeneous
tumors (i.e., gastric or pancreatic tumors). Combining
this approach, with bioinformatics analyses of subtype-
specific tumors (followed by cell line validation of the
computational results) could even further improve pre-
clinical drug screening (and possible mechanisms of
therapy resistance), and aid in the discovery of predictive
response biomarkers, as has been asserted by others. In-
tegration of all these approaches will improve success
rates in “personalizing” particular therapies to patients
who are most likely to benefit.

Conclusions
“Personalized medicine,” or tailoring therapies to spe-
cific individuals based on their expression of various
biomarkers, has had some amount of success. However,
highly aggressive cancers might fail to respond to the
therapy at all (innate recalcitrance) or acquire resist-
ance following treatment, due to clonal selection of
tumor cells that downregulate the target, gain activity
of downstream or parallel signaling pathways, or are
highly heterogeneous. Moreover, while the FDA (and
other regulatory bodies) exhaustively vet new drugs,
such strict regulation of biomarkers has yet to be estab-
lished. Consequently, to better design preclinical com-
pound candidates (and biomarker assays) for eventual
translation, one must consider all of these factors. We
assert that our approach, using highly heterogeneous
cancer cell lines, consideration of the behavior of tumor
xenografts, and rigorous network analysis to delineate
possible signaling “subpathways” that can bypass spe-
cific biomarker-driven targets, can achieve many of
these elusive goals.
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