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Combination of metformin and 5-aminosalicylic
acid cooperates to decrease proliferation and
induce apoptosis in colorectal cancer cell lines
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Abstract

Background: The link between inflammation and cancer has been confirmed by the use of anti-inflammatory
therapies in cancer prevention and treatment. 5-aminosalicylic acid (5-ASA) was shown to decrease the growth and
survival of colorectal cancer (CRC) cells. Studies also revealed that metformin induced apoptosis in several cancer
cell lines.

Methods: We investigated the combinatory effect of 5-ASA and metformin on HCT-116 and Caco-2 CRC cell lines.
Apoptotic markers were determined using western blotting. Expression of pro-inflammatory cytokines was determined
by RT-PCR. Inflammatory transcription factors and metastatic markers were measured by ELISA.

Results: Metformin enhanced CRC cell death induced by 5-ASA through significant increase in oxidative stress and
activation of apoptotic machinery. Moreover, metformin enhanced the anti-inflammatory effect of 5-ASA by decreasing
the gene expression of IL-1β, IL-6, COX-2 and TNF-α and its receptors; TNF-R1 and TNF-R2. Significant inhibition of
activation of NF-κB and STAT3 transcription factors, and their downstream targets was also observed. Metformin also
enhanced the inhibitory effect of 5-ASA on MMP-2 and MMP-9 enzyme activity, indicating a decrease in metastasis.

Conclusion: The current data demonstrate that metformin potentiates the antitumor effect of 5-ASA on CRC cells
suggesting their potential use as an adjuvant treatment in CRC.
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Background
Colorectal cancer (CRC) is the third most common can-
cer with a lifetime risk of 5 %. A functional link between
chronic inflammation and cancer has long been sus-
pected but the complete underlying molecular pathways
remain unknown [1]. Inflammatory bowel diseases
(IBD), including ulcerative colitis (UC) and Crohn’s dis-
ease (CD) are chronic inflammatory disorders of the
gastrointestinal tract that lead to impairment of the
gastrointestinal structure and function [2–4]. Patients
suffering from IBD are at an increased risk of developing
CRC, this depends on disease duration, as well as, the
extent and severity of inflammation [4]. IBD-associated
CRC accounts for 1–2 % of all CRC cases, however, IBD

patients are six times more likely to die from CRC than
the general population [4, 5]. Although carcinogenesis in
IBD follows a different sequence of genetic alterations
than that observed in sporadic CRC, patients with spor-
adic CRC have elevated inflammatory cytokine levels in-
dicative of subclinical inflammatory disease [6–8].
Mesalamine [5-aminosalicylic acid (5-ASA)] is the drug

of choice in IBD, mainly UC, for maintenance of remis-
sion and treatment of mild relapses. It is a weak COX and
LOX inhibitor as it is structurally related to NSAIDs, but
unlike these compounds it has low systemic resorption
and very few side effects even at high doses for long time
periods [9]. Epidemiological investigations suggested that
long term 5-ASA consumption decreases the risk of devel-
oping CRC in IBD patients [10, 11]. In addition, several
experimental studies showed that 5-ASA decreases
growth and survival of CRC cells [12–15]. The anti-
proliferative and pro-apoptotic effects of 5-ASA on several
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tumor-derived cell lines have been previously reported
and different mechanisms have been proposed namely, in-
hibition of; Wnt/β-catenin pathway [16], EGFR activation
[17–19], NF-κB [20], and COX-2 expression [21]. More-
over, Rousseaux et al. showed that mesalamine activates
PPAR-y and enhances its expression in CRC cells [22].
Type 2 DM prevalence is estimated to be 8–18 % in

newly diagnosed cancer patients, [23]. Evidence indicates
that type 2 DM is positively associated with incidence
and mortality of CRC with a 30 % increased relative risk
compared with non-diabetic individuals [24]. The associ-
ated hyperglycemia and hyperinsulinemia result in direct
stimulation of cell growth and DNA synthesis along with
an increase in pro-inflammatory cytokines production
[25]. Metformin, a biguanide derivative, is an oral anti-
diabetic drug used as the first line pharmacological treat-
ment in type 2 DM. It acts mainly by inhibiting hepatic
glucose production and decreasing peripheral tissue re-
sistance to insulin. This reduces the circulating glucose
and insulin levels thus reducing the incidence of
diabetes-related complications [26].
Metformin is a safe drug with the most frequent ad-

verse effects being gastrointestinal symptoms but they
are usually mild and transient [27]. Many studies re-
vealed the beneficial effect of metformin in decreasing
CRC risk [28, 29]. Moreover, it was found to synergistic-
ally increase apoptosis of CRC cells in-vitro when com-
bined with other chemotherapy drugs [30, 31].
Since inflammation and hyperglycemia are associated

with increased risks of cancer as well as of the major
causes of cancer progression, the aim of the present
study was to evaluate the effect of combining 5-ASA
and metformin on CRC cell lines.

Methods
Drugs
Metformin was obtained from CID Co. (Cairo, Egypt). It
was freshly dissolved in culture medium, Roswell Park
Memorial Institute 1640 (RPMI-1640), as 80 mM stock
solution. 5-ASA was kindly provided by Minapharm
(Cairo, Egypt) and dissolved in phosphate buffered saline
(PBS) just before use. It was added to the medium with
the final maximum concentration of PBS 0.1 % v/v, and
experiments carried out protected from light.

Chemicals and antibodies
PBS, RPMI-1640 medium, and sulphorodamine-B (SRB)
were all purchased from Sigma Aldrich (St Louis, Mis-
souri, USA). Polyclonal anti-human Bax and Bcl-2 anti-
bodies were obtained from Invitrogen (Carlsbad, CA,
USA). Monoclonal anti-human β-actin was obtained
from Sigma-Aldrich. All other chemicals were of reagent
grade and used without further purification.

Cell culture
The two available human colorectal cancer cell lines,
Caco-2 and HCT-116, were obtained from the American
Type Culture Collection (Manassas, USA). They were
maintained and grown at the Egyptian National Cancer
Institute (Cairo, Egypt) in RPMI-1640 supplemented with
10 % fetal bovine serum, 2 mM L-glutamine, 1.5 g/l so-
dium bicarbonate and 1 % penicillin/streptomycin. Cells
were cultured in a humidified incubator at 37 °C in 5 %
carbon dioxide (CO2). No ethical approval was required
for any aspect of this study.

Cytotoxicity assay
Cytotoxicity was evaluated using the SRB assay. Briefly, ex-
ponentially growing cells were seeded in 96-well microtitre
plates at an initial density of 5 × 103 /well. After 24 h, met-
formin and 5-ASA were added with various concentrations
and incubated at 37 °C for 48 h to determine their IC50s
(the concentration of the drug required to produce 50 % in-
hibition of cell growth). Cells were fixed with 10 %
trichloroacetic acid for 1 h at 4 °C and stained with 0.4 %
SRB for 30 min., wells were then washed four times with
1 % acetic acid and air-dried. The dye was solubilized with
10 mM Tris base (pH 10.5) and the optical density (O.D.)
was measured spectrophotometrically at 570 nm with the
microplate reader (Tecan SunriseTM, Männedorf,
Switzerland). The percentage of cell survival was calculated
as follows: survival fraction =O.D. (treated cells)/O.D. (con-
trol cells).
The IC50 values of the two cancer cell lines after 48 h

treatment were calculated using sigmoidal dose response
curve-fitting models (Graphpad Prism Software, version
5.03, Inc. Avendia de la Playa La Jolla, USA).
Caco-2 and HCT-116 cells were then treated with a

combination of subIC50 concentrations of metformin
and different concentrations of 5-ASA to determine the
concentration at which 5-ASA would give a significant
difference than metformin alone.

Oxidative stress markers
Caco-2 and HCT-116 cells were grown in 75 cm2 flasks and
allowed to adhere for 24 h. Cells were treated with metfor-
min, 5-ASA or the combination of both substances for 48 h
then collected by trypsinisation. The cell pellet was washed
twice with PBS. To the cell suspension 1 ml of 20 % (w/v)
trichloroacetic acid (TCA; Sigma, USA) containing 0.8 %
(w/v) thiobarbituric acid (TBA; Sigma, USA) was added and
mixed well. MDA (decomposition product of the lipid per-
oxidation process) level was determined colorimetrically by
measuring the pink pigment product resulting from the re-
action of one molecule of MDA with two molecules of TBA
at 535 nm. Protein was measured by the method of Brad-
ford and MDA is expressed in nmol MDA per mg protein.
For determination of total SH group, protein precipitation
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was carried out using 10 % TCA then samples were centri-
fuged at 3000 rpm for 10 min at 4 °C. The resultant super-
natant was mixed with phosphate buffer and Ellman’s
reagent (Sigma-Aldrich, Milan, Italy). The method de-
pends on the reduction of thiol reagent; Ellman’s re-
agent by the sulfhydryl SH group in GSH to form the
yellow chromophore; 5-thionitrobenzoic acid, measured
spectrophotometrically at 412 nm. GSH is expressed in
nmol GSH per mg protein.

Real-time PCR analysis
Analysis of COX-2, IL-1β, IL-6, TNF-α, TNF-R1, and
TNF-R2 RNA expression was performed by real-time
PCR. Caco-2 and HCT-116 cells, treated with metformin
and 5-ASA, were collected by trypsynisation. Total RNA
was extracted from cells using TRIzol reagent (Invitro-
gen, Milan, Italy), according to the manufacturer’s in-
structions. Concentration and purity of the RNA was
checked by A260/A280 optical density ratio. RNA (1 μg/
sample) was retro-transcribed into complementary DNA
(cDNA) and 1 μl of cDNA/sample was then amplified
using the following conditions: denaturation 1 min at
95 °C, annealing 30s at 60 °C for COX-2, TNF-R2, IL-1β,
and β-actin or 30s at 57 °C for TNF-α, TNF-R1 and IL-
6, followed by 30s of extension at 72 °C. Primers se-
quence was as shown in Table 1 and they were obtained
from Invitrogen (Milan, Italy). RT-PCR was performed
using the IQ SYBER Green Supermix (Bio-Rad Labora-
tories, Milan, Italy). mRNA levels were calculated rela-
tive to β-actin, which was unaffected by metformin and
5-ASA treatment.

Western blot analysis
Aliquots of protein supernatants containing equal amounts
of protein and sodium dodecyl sulphate (SDS) reducing buf-
fer were boiled for 5 min. They were then electrophoresed
on SDS-polyacrylamide gels and transferred to polyvinyl-
diene difluoride membranes. The membranes were blocked
with 5 % non-fat dry milk and probed with specific primary
antibodies of monoclonal anti-Bax and Bcl2 antibodies
followed by incubation with peroxidase-conjugated second-
ary antibodies. The blots were developed with Amersham

ECL western blotting kit (GE Healthcare, Amersham Place,
Little Chalfont, U.K) according to the manufacturer’s in-
structions. The blots were quantified by ChemiDoc XRS
4.6.9 (Bio-Rad Laboratories Inc., Hercules, CA, USA.) soft-
ware and protein loading was corrected for β-actin as load-
ing control.

ELISA techniques
The different proteins were determined in both cell lines
according to the kit manufacturer’s instructions. For NF-
κB the Kamiya Biomedical assay kit (Seattle, USA) was
used, while the RayBiotech (Georgia, USA) was used for
TNF-α, IL-6, STAT3, MMP-2 and −9. The assay em-
ploys the quantitative sandwich enzyme immunoassay
technique. A monoclonal antibody specific for human
NF-κB, TNF-α, IL-6, STAT3, MMP-2 or −9 has been
pre-coated onto a microplate. Samples were pipetted
into the wells and the measured human biomarkers
present in the solutions were bound by the immobilized
antibody. A yellow color is developed which is propor-
tional to the amount of NF-κB/ TNF-α/IL-6/ STAT3/
MMP-2/MMP-9 bound. The intensity of the color is
measured at 450 nm.
Caspase-3 activity was measured based on spectro-

photometric detection of the chromophore p-nitroaniline
(pNA) at 405 nm after cleavage from its labelled substrate
DVD-pNA. Protein concentration of the samples was
analyzed and normalized in lysis buffer to equal protein
concentrations. Colorimetric assay (Caspase-3/CPP32,
BioVision, Milpitas, USA) was used according to the
manufacturer’s instructions.

Scratch wound healing assay
Caco-2 and HCT-116 cells were grown in 6 well plates
and allowed to adhere for 24 h. Gently and slowly the
monolayer was scratched in one direction with a new 1 ml
pipette tip across the center of the well. The resulted gap
distance therefore equals to the outer diameter of the end
of the tip. The wells were then washed twice with medium
to remove the detached cells. Cells were treated with met-
formin, 5-ASA or the combination of both substances for
48 h. Cells were washed twice with 1x PBS, then fix the

Table 1 Primer sequences

Gene Primer

COX-2 FWD: 5′-CCC TTC CTT CGA AAT GCA AT-3′ REV: 5′-CAT TTG AAT CAG GAA GCT GC-3′

IL-1β FWD: 5′-GGA CAA GCT GAG GAA GAT GC-3′ REV: 5′-TTT TTT GCT GTG AGT CCC GG-3′

IL-6 FWD: 5′-GAG ACT TGC CTG GTG AAA AT-3′ REV: 5′-CAG GGG TGG TTA TTG CAT CT-3′

TNF-α FWD: 5′ ACA AGC CTG TAG CCC ATG TT-3′ REV: 5′ AAA GTA GAC CTG CCC AGA CT-3′

TNF-R1 FWD: 5′-CGC TTC AGA AAA CCA CCT CAG AC-3′ REV: 5′-CCA AAG AAA ATG ACC AGG GGC-3′

TNF-R2 FWD: 5′-GCT CTG ACC AGG TGG AAA CTC AAG-3′ REV: 5′-GGA TGA AGT CGT GTT GGA GAA CG-3′

β-actin FWD: 5′-TCT GGC ACC ACA CCT TCT ACA ATG-3′REV: 5′-AGC ACA GCC TGG ATA GCA ACG-3′
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cells with 3.7 % paraformaldehye for 30 min and they were
stained with 1 % crystal violet in 2 % ethanol for 30 min.
Photos were taken for the stained monolayer on a micro-
scope. The gap distance was measured using the Leica
Qwin-Plus software (Leica Microsystems, UK).

Statistical analysis
All the data are expressed as mean ± SD from three different
experiments and comparisons between means were carried
out using one way analysis of variance (ANOVA) followed
by Tukey-Kramer multiple comparisons test. A probability
level of less than 0.05 was accepted as being significant in all
types of statistical tests. All statistical analysis was performed
using GraphPad InStat, version 5.0 (GraphPad, San Diego,
California, USA).

Results
Co-incubation of metformin enhanced 5-ASA-mediated
inhibition of cell counts in Caco-2 and HCT-116 cells
Caco-2 cells were treated with 13 mM metformin, 2.5 mM
5-ASA, or the combination of both for 48 h. Similarly,
HCT-116 cells were treated with 8 mM metformin, 3 mM
5-ASA, or the combination of both for 48 h. Significant

inhibition of cell proliferation were seen in all treatment
groups with the combination group showing the highest in-
hibition reaching 55 % of the control compared to nearly
40 % reached by the solo treatments in both cell lines Fig. 1.

Exaggerated increase in oxidative stress upon combined
treatment with metformin and 5-ASA
Combination of subIC50 concentrations of both drugs pro-
duced a pronounced increase in MDA level (Fig. 2a) and a
greater decrease in the intracellular GSH level than each
drug alone (Fig. 2b). In Caco-2 cells the combination of
metformin and 5-ASA resulted in a significant increase in
MDA level of 3 folds compared to, 1.9 and 1.75 folds pro-
duced by either of the treatments. In addition, a reduction
of GSH exceeding 85 % was observed compared to nearly
50 % decrease produced by each drug alone. A similar
effect was produced when both drugs were added to
the HCT-116 cells where MDA level showed an eleva-
tion mounted to 2.5 folds compared to nearly 1.7 fold
increase produced by solo treatments. Moreover, intra-
cellular GSH depletion reached 65 %, while only a 35 %
decrease in GSH levels was observed after adding met-
formin or 5-ASA alone.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

a a a
a

abcabc

Contro
l

Contro
l

Met (1
3mM)

5-ASA (2
.5mM)

Met (8
mM)

5-ASA (3
mM)

Metfo
rm

in

+ 5-ASA
Metfo

rm
in

+ 5-ASA

noitcarFgnivivruS

Caco-2 HCT-116

0 2 4 6
0.0

0.5

1.0

1.5

Caco-2

HCT-116IC50=4mM

IC50=3.5mM

Concentration of 5-ASA (mM)

n
oit

c
ar

F
g

ni
vi

vr
u

S

0 10 20 30 40 50
0.0

0.5

1.0

1.5

HCT-116

Caco-2

IC50=10mM

IC50=15mM

Concentration of Metformin (mM)

n
oitcar

F
g

nivivr
u

S

(a) (b)

(c)

Fig. 1 Effect of different concentrations of (a) 5-ASA and (b) Metformin on surviving fractions of Caco-2 and HCT-116 cells treated for 48 h.
c Surviving fraction of Caco-2 and HCT-116 cells after treatment with subIC50 concentrations of metformin, 5-ASA and a combination of
both for 48 h. All data are expressed as mean ± SD of 3 separate experiments performed in triplicates. The statistical significance of the
results was analyzed using one way ANOVA followed by Tukey-Kramer multiple comparison test. a Significantly different from control,
b from metformin and c from 5-ASA (P <0.05)
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Co-incubation of metformin enhances 5-ASA-induced
apoptosis
The addition of metformin to 5-ASA succeeded in activat-
ing the caspase-3 enzyme more than the individual treat-
ments in both cell lines reaching 3 fold the control group
(Fig. 2c). Solo treatments in Caco-2 and HCT-116 cells in-
creased active caspase-3 to levels ranging from 1.2–1.7 folds.
The increase in caspase-3 activity was accompanied by in-

creased apoptotic Bax levels and decreased expression of the
anti-apoptotic Bcl-2 protein in both cell lines (Fig. 3), follow-
ing treatment with 5-ASA, metformin or their combination
after 48 h. The combination group showed the most signifi-
cant change in Bax levels, as compared to individual treat-
ments where it produced a 16 and 13 folds increase in
Caco-2 and HCT-116 cells, respectively. On the other hand,
the anti-apoptotic Bcl-2 expression decreased by 85 % and
80 % in Caco-2 and HCT-116 cells after combination
treatment.

Combination of metformin and 5-ASA downregulates
TNF-α, TNF-α receptors (TNF-R1 and TNF-R2), and IL-1β
and inhibits the activation of NF-κB
All treatment groups produced a prominent decrease in the
expression of TNF-α and its receptors (Fig. 4). In Caco-2
cells, the combination group did not significantly differ from

the 5-ASA group although it produced 85 % decrease in
TNF-α expression while 5-ASA produced 80 % decrease.
However, in HCT-116 cells the combination of both drugs
downregulated TNF-α expression by 80 % compared to
60 % decrease produced by either drug. These results were
in agreement with the protein levels of TNF-α that de-
creased significantly after the combination treatment com-
pared to either of the drugs alone in both cell lines as shown
in Fig. (4e). Moreover, following treatment of Caco-2 cells
with the two drugs, there was a downregulation of both
TNF-α receptors that was greater and statistically significant
compared to the solo drug treatments where TNF-R1 and
TNF-R2 gene expression levels decreased by 95 % and 90 %
compared to the control group. In addition, the combin-
ation group in HCT-116 cells decreased TNF-R2 ex-
pression level reaching solely 10 % compared to the
untreated cells.
Concerning IL-1β gene expression level, after treatment of

Caco-2 and HCT-116 cells with a combination of metformin
and 5-ASA, IL-1β levels decreased by 55 % compared to the
control (Fig. 4d). This decrease was statistically significant
from the metformin group but not the 5-ASA group. On
the other hand, a 75 % decrease was observed in the HCT-
116 cells that was significant from all treatment groups.
In parallel with the previous results, NF-κB levels

(Fig. 5c) showed significant decrease to 29 % and 51 %
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Fig. 2 Effect of treatment of Caco-2 and HCT-116 cells for 48 h with subIC50 concentrations of metformin, 5-ASA or the combination of both drugs on
oxidative stress markers measured as (a) MDA level (b) GSH level and on (c) caspase-3 activity. Data are indicative of 3 separate experiments.
The statistical significance of the results was analyzed using one way ANOVA followed by Tukey-Kramer multiple comparison test. a Significantly
different from control, b from metformin and c from 5-ASA (P <0.05)
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in Caco-2 and HCT-116 cells upon the addition of met-
formin to 5-ASA.

Intensified inhibition of IL-6 gene expression and inhibition
of STAT3 activation upon addition of metformin to 5-ASA
The expression of IL-6 (Fig. 5a) after exposure to metformin
or 5-ASA was decreased significantly by 30 % for both drugs
in the Caco-2 cell line. On HCT-116 cells, metformin and
5-ASA produced a 65 % and 50 % decrease in IL-6 expres-
sion, compared to the control. Furthermore, the combin-
ation resulted in an exaggerated decrease of 80 % in IL-6
expression compared to either drug alone in both cell lines.
Confirming the gene expression results, the IL-6 protein
level showed a significant decrease after treatment in both
cell lines than the solo treatments as shown in Fig. (4f).
As illustrated in Fig. (5d) the greatest inhibition of STAT3

activity was observed in the combination group reaching
29 % and 50 % in Caco-2 and HCT-116 cell lines.

Metformin exaggerates the 5-ASA-induced inhibition of
COX-2 enzyme gene expression
The expression of COX-2 gene, after treatment of Caco-2
cells with metformin decreased by 75 % compared to con-
trol, while treatment with the anti-inflammatory agent 5-

ASA caused a further downregulation in the gene expres-
sion by 85 % (Fig. 5b). The COX-2 gene expression reached
its maximum inhibition (90 %) when the Caco-2 cells were
treated by both agents.
The same pattern was reflected on the HCT-116 cells,

where the COX-2 gene expression was downregulated by
metformin, 5-ASA and their combination in this descend-
ing order by 50 %, 60 % and 90 %, compared with the con-
trol group.

Pronounced suppression of matrix metalloproteinase-2
and −9 and inhibition of cell migration after combining
metformin and 5-ASA
The addition of metformin to 5-ASA in Caco-2 cells signifi-
cantly lowered MMP-2 and −9 levels to 33 % and 35 % re-
spectively (Fig. 6). Similarly, treatment of the HCT-116 cells
with a combination of both drugs decreased MMP-2 and −9
enzyme levels to 34 % and 21 % compared to the control.
The results of the scratch wound healing assay were in ac-
cordance with the MMP levels as the combination of both
drugs resulted in a 25 % decrease from control at zero time
in Caco-2 cells and a 20 % inhibition in HCT-116 cells.
Moreover the results of this assay confirm the fact that
HCT-116 cells are highly tumorigenic and metastatic Fig. 7.
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test. a Significantly different from control, b from metformin and c from 5-ASA (P <0.05)
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Discussion
In the current study, we used 2 colorectal cancer cell
lines Caco-2 and HCT116. Caco-2 cell line is colorectal
adenocarcinoma cells with intermediate characteristics,
as it is spontaneously differentiating tumor in normal
culture, it is tumorigenic but hasn’t a metastatic behav-
ior in vivo.. Treatment with very low drug concentra-
tions of metformin, 5-ASA and their combination was
coupled by a significant decrease in the surviving frac-
tion of CRC cells. The increased cell death could be ex-
plained by intracellular GSH depletion and increase in
MDA level, indicating that cell death could be initiated
or underwent under oxidative stress originating from
modulation of the intracellular redox system. Our results
are in accordance with previous studies showing that 5-
ASA or metformin can increase oxidative stress in

certain types of cancer thus leading to increased apop-
tosis [12, 32].
Another explanation for the increased apoptosis is

the inhibition of inflammation. The central players in-
volved in inflammation-mediated tumor progression in-
clude IL-1β, IL-6 and TNF-α [33]. Data from several
inflammation-associated cancer models implicate these
inflammatory cytokines in being the bridge between in-
flammation and tumorigenesis [34]. On CRC cells,
addition of metformin to 5-ASA significantly reduced
the gene expression of TNF-α and its receptors, TNF-
R1 and TNF-R2.
Altered expression of the genes coding for TNF-α and its

receptors was observed in neoplastic diseases [35]. In CRC,
malignant cell derived TNF-α, enhances the growth and
metastasis of the tumor as evidenced from animal models
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Fig. 4 Effect of treatment of Caco-2 and HCT-116 cells for 48 h with subIC50 concentrations of metformin, 5-ASA or the combination of both
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multiple comparison test. a Significantly different from control, b from metformin and c from 5-ASA (P <0.05)
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[36]. Chronic TNF-α production by malignant or host cells
or both may directly contribute to oncogene activation,
DNA damage and metastasis [37]. The main receptor me-
diating TNF-α effects is TNF-R1 which when stimulated,
induces activation of NF-κB after a series of intracellular

events [38]. On the other hand, the increased TNF-α level
could be due to the continuous activation of NF-κB [39].
NF- κB activation has long been known to suppress apop-
tosis as it promotes transcription of anti-apoptotic genes,
one of which is Bcl-2 [40]. The decline in TNF-α or TNF-
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R1 genetic expression will therefore decrease NF-κB activa-
tion and thus increase apoptosis. In our study, combination
of 5-ASA and metformin resulted in the greatest inhibition
in the TNF-α and TNF-R1 gene expression, and NF- κB
protein level with a subsequent increase in apoptosis, evi-
dent by decreased level of Bcl-2 protein expression.

Although TNF-α mediates its action mainly through
TNF-R1 activation, TNF-R2 has been linked to increased
colon cancer cell growth and proliferation [41, 42]. It was
found that both IL-6 and TNF-α interact to induce TNF-R2
expression and function in colon cancer cells, suggesting
that a specific microenvironment of multiple cytokines is

Combination

Control

Caco-2

HCT-116

5-ASA

Metformin

MetforminControl

5-ASA Combination

Fig. 7 Photos of the stained monolayer of Caco-2 and HCT-116 cells without treatment and after treatment for 48 h with subIC50 concentrations
of metformin, 5-ASA or the combination of both drugs
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required to induce TNF-R2, as found in IBD or IBD associ-
ated CRC.
Our study revealed a pronounced down-regulation of

TNF-R2 gene expression in Caco-2 and HCT-116 cell lines
in all treatment groups with the greatest effect being that of
the combination group. There were no previous studies
conducted on 5-ASA or metformin that assessed their ef-
fect on TNF-R2 expression. In this study evidence of
the effect of both drugs either alone or in combination
on TNF-R2 expression levels was demonstrated.
Together with TNF-α, IL-1β also increases NF-κB tran-

scription thus increasing tumor adhesiveness, invasion and
angiogenesis [43]. Likewise, activation of NF-κB results in
an increase in IL-1β [39]. Polymorphisms of IL-1β are asso-
ciated with increased cancer risk [44]. Caco 2 cells ex-
presses active COX 2 and epidermal growth factor receptor
(EGFR). On the other hand HCT-116 cell line are undiffer-
entiated colorectal carcinoma cells that don’t express
COX2 and are positive for transforming growth factor beta
1 (TGF beta 1) and beta 2 (TGF beta 2) expression. In the
current study, combining metformin with 5-ASA showed a
remarkable decrease in IL-1β gene expression in both cell
lines respectively. The decrease in NF-κB protein level, cell
proliferation, increase in apoptosis and decrease in MMP-2
and −9 expression, all support the inhibition of the down-
stream signaling pathway of IL-1β.
Adding to the panoply of molecules, IL-6 is one of the

best characterized pro-tumorigenic cytokines. IL-6 is not
only produced by immune cells but also by epithelial
and malignant cells. Its production is induced by a var-
iety of stimuli one of which is NF-κB. Therefore, IL-6
production can be stimulated indirectly by TNF-α or IL-
1β that activate the NF-κB or directly by PGE2 [45]. IL-6
promotes colon cancer cell proliferation, survival, migra-
tion, invasion, metastasis, angiogenesis and inflamma-
tion [46]. These effects are a result of the activation of
the downstream target of IL-6, the STAT3 transcription
factor. Persistent activation of STAT3 has been reported
in a variety of human tumors, including the colon [47].
This persistent activation can also be the reason of in-
creased interleukins levels [48].
The current study revealed that addition of metformin

to 5-ASA resulted in a prominent decrease in IL-6
mRNA levels that was accompanied by a decrease in
STAT3 level and therefore increased cell death. It is
demonstrated herein that the combination group
expressed the lowest Bcl-2 and highest Bax protein
levels. This was associated with increased caspase-3 ac-
tivity and apoptosis in both cell lines. This effect may be
attributed in part to the suppression of IL-6 and STAT3.
COX-2 is another important pro-inflammatory medi-

ator that is implicated in the process of carcinogenesis.
It was shown to be upregulated early in CRC and plays a
major role in its progression [49] by regulating the

process of proliferation, angiogenesis and metastasis
[50]. It was previously demonstrated that one of the
mechanisms of 5-ASA to decrease proliferation was by
inhibiting COX-2 enzyme [21]. Metformin as well, has
been reported to inhibit inflammatory responses and
COX-2 expression [51], however, its effect on COX-2 ex-
pression in CRC cells has not been clarified. Our data
show that combination of both drugs resulted in an ex-
aggerated inhibition of COX-2 expression than that pro-
duced by the solo treatments suggesting a synergistic
effect. This explains the inhibition of MMP’s level that
was observed in the combination group since COX-2
overexpression increases invasiveness of CRC cells by in-
ducing MMP expression [52]. It was reported that COX-
2 inhibitors decrease MMP-2 and −9 expression [53].
Therefore, the decrease in MMP-2 and −9 level could be
due to inhibition of COX-2 and the NF-κB and STAT3
signaling pathways. Several studies showed that metfor-
min or 5-ASA can inhibit MMP’s expression [54–56].

Conclusions
Our data (Fig. 8) clarify that treatment of CRC cells with
a combination of 5-ASA and metformin increases cell
death than either drug alone. This increase in apoptosis
may be due to inhibition of the STAT3 and NF-κB sig-
naling pathways. The decreased level of cytokines that
stimulate those pathways (TNF-α, IL-1β and IL-6), low-
ered protein levels of the activated transcription factors
(STAT3 and NF-κB) and decreased protein or expression

Fig. 8 Addition of 5-ASA and metformin on CRC cells inhibit the NF-κB
and STAT3 signaling pathways. Inhibition of gene expression of IL-1β
and TNF-α decreases activation of NF-κB resulting in inhibition of target
gene expression. Moreover, decrease in IL-6 mRNA levels reduces STAT3
activation and thus decreasing target gene transcription. The target
genes for both pathways include COX-2, Bcl-2, IL-6 and MMP’s. Low
levels of COX-2 and IL-6 gene expression and Bcl-2, MMP-2 and −9
protein levels confirm the inhibition of both the signaling pathways
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levels of their target genes (TNF-α, IL-6, COX-2, MMP-
2, MMP-9 and Bcl-2) confirm the inhibition of the key
pathways in inflammation-mediated tumor promotion
and progression.
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