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Enhancing SHP-1 expression with @
5-azacytidine may inhibit STAT3 activation
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(CEP-701)-resistant FLT3-ITD positive acute
myeloid leukemia
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Abstract

Background: Tumor-suppressor genes are inactivated by methylation in several cancers including acute myeloid
leukemia (AML). Src homology-2 (SH2)-containing protein-tyrosine phosphatase 1 (SHP-1) is a negative regulator of
the JAK/STAT pathway. Transcriptional silencing of SHP-T plays a critical role in the development and progression of
cancers through STAT3 activation. 5-Azacytidine (5-Aza) is a DNA methyltransferase inhibitor that causes DNA
demethylation resulting in re-expression of silenced SHP-1. Lestaurtinib (CEP-701) is a multi-targeted tyrosine kinase
inhibitor that potently inhibits FLT3 tyrosine kinase and induces hematological remission in AML patients harboring
the internal tandem duplication of the FLT3 gene (FLT3-ITD). However, the majority of patients in clinical trials
developed resistance to CEP-701. Therefore, the aim of this study, was to assess the effect of re-expression of SHP-1
on sensitivity to CEP-701 in resistant AML cells.

Methods: Resistant cells harboring the FLT3-ITD were developed by overexposure of MV4-11 to CEP-701, and the
effects of 5-Aza treatment were investigated. Apoptosis and cytotoxicity of CEP-701 were determined using
Annexin V and MTS assays, respectively. Gene expression was performed by quantitative real-time PCR. STATs
activity was examined by western blotting and the methylation profile of SHP-T was studied using MS-PCR and
pyrosequencing analysis. Repeated-measures ANOVA and Kruskal-Wallis tests were used for statistical analysis.

Results: The cytotoxic dose of CEP-701 on resistant cells was significantly higher in comparison with parental and
MV4-11R-cep + 5-Aza cells (p = 0.004). The resistant cells showed a significant higher viability and lower apoptosis
compared with other cells (p < 0.001). Expression of SHP-T was 7-fold higher in MV4-11R-cep + 5-Aza cells compared
to parental and resistant cells (p =0.011). STAT3 was activated in resistant cells. Methylation of SHP-T was
significantly decreased in MV4-11R-cep + 5-Aza cells (p = 0.002).

Conclusions: The restoration of SHP-1 expression induces sensitivity towards CEP-701 and could serve as a target in
the treatment of AML. Our findings support the hypothesis that, the tumor-suppressor effect of SHP-1 is lost due to
epigenetic silencing and its re-expression might play an important role in re-inducing sensitivity to TKIs. Thus, SHP-1
is a plausible candidate for a role in the development of CEP-701 resistance in FLT3-ITD+ AML patients.
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Background

Acute myeloid leukemia (AML) is a hematological ma-
lignancy that occurs as a result of genetic aberrations in
hematopoietic progenitor cells [1, 2]. Epigenetic silen-
cing due to DNA hypermethylation is a frequent mech-
anism of inactivation of tumor suppressor genes (TSG)
in variety of human cancers including AML [3]. 5-
Azacytidine (5-Aza) is a chemotherapeutic agent that in-
duces DNA demethylation by inhibition of DNA methyl-
transferase (DNMT) enzymes [4, 5]. The suppression of
DNMTs in cancer cell lines induces hypomethylation
resulting in decreased viability [6]. CEP-701 is a tyrosine
kinase inhibitor (TKI) that potentially inhibits FLT3
tyrosine kinase and induces hematological remission in
patients with AML. However, the majority of AML pa-
tients have only moderate and transient responses to
tyrosine kinase inhibitors (TKIs) [7-9].

SHP-1 is a non-transmembrane protein tyrosine phos-
phatase expressed primarily in hematopoietic stem cells
[10-12]. SHP-1 is a TSG that, in normal cells, negatively
regulates Janus kinase/signal transducers and activators
of transcription (JAK/STAT) signaling. The loss of SHP-
1 suppressor function results in JAK or STAT activation
in cancer cells [13-20]. The JAK/STAT signaling path-
way is one of the most important signaling cascades that
regulate various cell biological activities including im-
mune response, cell growth, and differentiation [21].

Transcriptional silencing of SHP-I due to promoter
methylation has been reported in lymphoma and
leukemia as well as in many hematopoietic cell lines [12,
22, 23]. Epigenetic silencing of SHP-1 in myeloprolifera-
tive neoplasms and K562 cells results in constitutive ac-
tivation of JAK/STAT signaling [24]. The restoration of
SHP-1 expression by a demethylating agent such as 5-
Aza-2-deoxycytidine (5-Aza2dc) resulted in decreased
JAK3, p-JAK3, and p-STAT3 but not STAT3 protein
[25]. STAT3 and STATS5 are constitutively activated in
myeloid tumors [26]. Resistance to imatinib in chronic
myeloid leukemia is conferred by the activation of
STAT3 signaling, and the sensitivity is restored by
STATS3 inactivation [27].

We hypothesized that JAK/STAT negative regulators
may lose their tumor suppression function in TKI-
resistant AML cells due to epigenetic silencing, and the
re-expression of these genes could re-induce sensitivity
to CEP-701. Therefore, gene expression and methylation
profiling of SHP-I and its downstream targets were
studied in FLT3-ITD positive AML cells resistant to
CEP-701 before and after treatment with 5-Aza.

Methods

Lestaurtinib (CEP-701)

CEP-701 was purchased from LC Laboratories (Woburn,
MA, USA) and dissolved in DMSO before use. The
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stock preparation was 1 mM, which was stored at —20 °C
according to the manufacturer’s protocol.

Development of resistant cells

MV4-11, an AML cell line with FLT3-ITD, was obtained
from the Department of Haematology, Universiti Sains
Malaysia (USM), having originally been purchased from
American Type Culture Collection (ATCC). The cells
were cultured with RPMI 1640 (Life Technologies,
Grand Island, NY, USA) supplemented with 10 % fetal
bovine serum (FBS; Life Technologies, Grand Island, NY,
USA) at a density of 5 x 10* cells/mL in a humid incuba-
tor with 5 % CO, at 37 °C. A subclone of this line that
was resistant to CEP-701, termed MV4-11R-cep, was de-
veloped according to the protocol described previously
[28]. Briefly, log phase growing MV4-11 cells were co-
cultured at a starting dose of 20 nM CEP-701 followed
by a step-wise increase in concentration of 10-20 nM
for 12 months until the cells were able to survive at the
IC5o dose of CEP-701 on parental MV4-11. The resistant
cell lines were grown in normal medium without CEP-
701 for at least 48 h before starting the experiments.

5-Azacytidine treatment

5-Azacytidine (5-Aza; Sigma-Aldrich Corp., MO, USA)
was dissolved in RPMI-1640 and the stocks at 500 pM
were prepared for immediate use or stored at -20 °C, to
be used within 2—3 days. Resistant cells were sub-cultured
in working solution (5 pM) and incubated in a humidified
incubator with 5 % CO, at 37 °C for 4-5 days until conflu-
ent. MV4-11R-cep + 5-Aza cells were then sub-cultured in
normal medium without treatment for at least one pas-
sage before re-treatment with CEP-701.

Growth inhibition assay

MV4-11 cells were seeded in 96-well culture plates at a
density of 1 x 10* viable cells/100 pL/well in triplicates,
and were treated with CEP-701. Colorimetric CellTiter
96 AQueous One Solution Cell Proliferation assay (MTS
assay; Promega, Madison, WI, USA) was used to deter-
mine the cytotoxicity. The ICs, values were calculated
using GraphPad Prism 3.02 (San Diego, California,
USA). Each experiment was performed in triplicate.

Apoptosis assay

Annexin V-FITC binding assay (BD Pharmingen, San
Diego, California, USA) was used as recommended by
the manufacturer and analyzed by flow cytometry (BD
FACSCanto™, San Jose, California, USA). Analysis was
performed with Diva software (FACS Diva, 6.1.2, San
Jose, California, USA). Each experiment was performed
in triplicate.
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RNA extraction

Total RNA was extracted from MV4-11, MV4-11R-cep,
and MV4-11R-cep + 5-Aza cells using the Rneasy® Mini
Kit (Qiagen, Valencia, California, USA), the purity and
concentration was measured with a NanoDrop ND-1000
spectrophotometer V3.3.0 (NanoDrop Technologies,
Berlin, Germany).

Quantitative reverse transcriptase PCR (RT-qPCR)

High Capacity RNA-to-cDNA kit (Applied Biosystem,
Foster City, California, USA) was used to synthesize
c¢DNA according to the manufacturer’s protocol. Taq-
Man Gene Expression assays (Applied Biosystems) were
performed on an Applied Biosystem 7500 Fast Real-
Time PCR System according to the manufacturer’s
protocol.  Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as an internal control. ABI 7500
software v2.0.6 (Applied Biosystem) was used to perform
relative quantification of 5 target genes, SHP-1, SOCS-1,
SOCS-3, STAT5a, and JAK2 using the comparative
threshold cycle (Ct) method.

DNA extraction

DNA was extracted from MV4-11, MV4-11R-cep, and
MV4-11R-cep + 5-Aza cells using the NucleoSpin® Tis-
sue kit (Macherey-Nagel, Diiren, Germany) following
the manufacturer’s instructions. The concentration and
purity of DNA were measured by NanoDrop.

Methylation-specific polymerase chain reactions (MS-PCR)
One microgram of DNA was treated with bisulfite using
the EZ DNA Methylation-Gold™ Kit (Zymo Research, Ir-
vine, NY, USA) according to the manufacturer’s instruc-
tions. MS-PCR was performed as described previously
[29] and modified DNA was subjected to two separate
PCRs. MS-PCR primers were designed to amplify the
methylated (M) or unmethylated (U) alleles. SHP-I
(GeneBank: NM_002831) was amplified using previous
designed primers [22]. Universal methylated DNA
(Zymo Research, Irvine, NY, USA) was used as a positive
control. The 50-puL PCR reaction contained 200 ng of
bisulfite-treated DNA, ReddyMix PCR master mix (Bio-
line Ltd., London, UK) and 0.2 uM of each primer. PCRs
were performed in a thermal cycler (PTC-200, Alameda,
California, USA). The amplified PCR products were de-
natured for 2 min at 95 °C followed by 40 cycles: 95 °C
for 25 s, 59 °C for 35 s, 52 °C and 72 °C for 65 s, and ex-
tension at 72 °C for 5 min. PCR products were electro-
phoresed on 2 % agarose gels, and visualized by
ethidium bromide staining under ultraviolet transillu-
mination. Results from triplicate experiments were used
to determine methylation status.

Page 3 of 11

Pyrosequencing analysis

Twenty microliters (1 pg) of purified DNA from each
sample were sent to EpigenDx (Hopkinton, MA, USA)
for pyrosequencing analysis. The assay was designed to
target six CpG islands in the promoter regions of the
SHP-1 gene.

Western blot analysis

Protein from MV4-11, MV4-11R-cep, and MV4-11R-
cep + 5-Aza cells was extracted by RIPA buffer (Sigma-
Aldrich, MO, USA). The three cell lines were incubated
with 300 nM CEP-701 for 3 days before protein extrac-
tion. BioRad protein dye (BioRad, Hercules, California,
USA) and a spectrophotometer (BioPhotometer Plus,
Eppendorf, Germany) were employed for the measure-
ment of protein concentrations. Preparation of immuno-
blotting was performed as described previously [30].
Antibodies used were anti-STAT1, anti-p-STAT1, anti-
STAT3, anti-p-STAT3, anti-STAT5, anti-p-STAT5, and
anti-B-actin (Thermo Scientific, Waltham, MA, USA).

Statistical and bioinformatics analysis

Repeated-measures ANOVA and Kruskal-Wallis tests
were employed for statistical analyses. All statistical
analyses were performed using the SPSS software
package (Version 20, SPSS, Armonk, NY, USA) and a
p value <0.05 was considered as significant.

Results

Long-term co-culture of MV4-11 cells with low doses of
CEP-701 resulted in resistant cells

To verify the resistance of MV4-11R-cep cells to CEP-
701, we determined the cytotoxicity and apoptosis of
CEP-701 on MV4-11R-cep and parental MV4-11 cells.
MV4-11 cells were inhibited by 290 nM CEP-701
whereas the resistant MV4-11R-cep cells were only
inhibited by a higher dose (3340 nM). The IC5, of CEP-
701 on MV4-11R-cep was more than 10-fold higher than
that on MV4-11 (p =0.004) (Fig. 1-a). There was a sig-
nificant decrease in the percentage of apoptotic cells in
MV4-11R-cep compared with parental MV4-11 based
on incubation of parental and resistant cells in serial
concentrations of CEP-701 (p < 0.001) (Fig. 1-b).

Higher sensitivity to CEP-701 in MV4-11R-cep treated with
5-Aza

The MTS assay showed a decrease in the ICsy of
CEP-701 on MV4-11R-cep + 5-Aza cells compared
with that of MV4-11R-cep cells (p=0.011) (Fig. 1-a).
The IC5y on MV4-11R-cep + 5-Aza was also lower
than that of MV4-11 cells, however this difference
was not significant (p = 0.099).
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Fig 1 Cell growth inhibition, profile plot of apoptotic cells, and western blot analysis. a Cell growth inhibition by CEP-701 in MV4-11 (ICso = 290
nM), MV4-11R-cep (ICso = 3340 nM), and MV4-11R-cep + 5-Aza cells (ICso =200 nM). The cells were exposed to serial concentrations of CEP-701 for
72 h, and quantified by cell proliferation assay. Each result is presented as the median percentage of proliferation to unexposed control cells. b
Repeated-measures ANOVA between groups based on concentrations was applied. The profile plot shows the adjusted mean (estimated marginal
means) of apoptotic cells for all concentrations of CEP-701 (0, 100, 200, and 300 nM). Although the mean percentages of apoptotic cells before
treatment with CEP-701 were almost equal for parental, resistant, and MV4-11R-cep + 5-Aza cells, there was a clear increase in the percentages of
apoptotic cells in MV4-11 and MV4-11R-cep + 5-Aza cells with increasing concentration of CEP-701, reaching 58 and 65 %, respectively, at 300 nM.
In contrast, the increase of apoptosis in the resistant cells was only 21 % at 300 nM PKC-412 (p < 0.001). ¢ The phosphorylation of STAT1, STAT3,
and STAT5 in MV4-11, MV4-11R-cep, and MV4-11R-cep + 5-Aza cells was assessed by western blotting. STAT3 was activated in MV4-11R-cep cells
but not in MV4-11 and MV4-11R-cep + 5-Aza cells. However, STAT1 and STAT5 showed no phosphorylation in all cells; a, b, ¢, d, e and f indicate
other cell lines not included in the present study but they are in agreement with the findings of this study

Induction of apoptosis in MV4-11 and MV4-11R-cep + 5-
Aza in response to CEP-701

The vitality and fraction of apoptotic and necrotic
cells of MV4-11, MV4-11R-cep, and MV4-11R-cep +
5-Aza cells after various incubations with CEP-701
are shown in Fig. 2. Upon incubation of cells in the

presence of 300 nM CEP-701, a significant reduction
of cell viability of 90 % down to 37 and 33 % was de-
tected in MV4-11 and MV4-11R-cep + 5-Aza cells, re-
spectively. In contrast, the resistant cell line MV4-
11R-cep still showed 77 % viable cells after treatment
(Fig. 2). Figure 3 depicts the course of apoptotic (Q2
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Fig. 2 The vitality and fraction of apoptotic cells in MV4-11, MV4-11R-cep, and MV4-11R-cep + 5-Aza cells. Apoptotic cells increased
significantly in (@) MV4-11 and (c) MV4-11R-cep + 5-Aza cells compared with (b) MV4-11R-cep cells by increasing concentrations of CEP-
701. There was a significant reduction of cell viability from 90% down to 37 and 33% in MV4-11 and MV4-11R-cep + 5-Aza cells, in association with 58
and 65% apoptotic cells, respectively. In contrast, we observed only 21% apoptotic cells in MV4-11R-cep cells at the highest CEP-701 concentration
with 77% viable cells remaining (p < 0.001)

and Q4) and necrotic (Q1) cells over 72 h measured of 100, 200, and 300 nM of CEP-701. The resistant cells
by Annexin V/FITC-FACS analysis in MV4-11, MV4-  showed a significant increase in the viability with obvious
11R-cep, and MV4-11R-cep + 5-Aza cells after addition decrease in apoptosis after incubation with CEP-701
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Fig. 3 CEP-701 induced decrease of vitality in MV4-11 and MV4-11R-cep + 5-Aza cells. Flow cytometric scatterplots of MV4-11, MV4-11R-cep, and
MV4-11R-cep + 5-Aza cells after addition of various concentrations of PKC-412 at 72 h. The data depict the course of apoptotic (Q2 and Q4), live
(Q@3), and necrotic (Q1) cells. The decrease of vitality induced by CEP-701 was concentration dependent and was greater in MV4-11 and MV4-11R-
cep + 5-Aza cells compared with MV4-11R-cep
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compared with the parental and MV4-11R-cep + 5-Aza
cell lines. Despite the mean percentage of apoptotic cells
before incubations with CEP-701 being almost equal for
MV4-11, MV4-11R-cep, and MV4-11R-cep + 5-Aza, there
was a sharp increase in apoptotic MV4-11 and MV4-11R-
cep + 5-Aza cells with increased drug concentration,
reaching 58 and 65 % apoptosis, respectively, at 300 nM
(Fig. 1-b). In contrast, there was no significant increase
in the apoptotic cells in MV4-11R-cep with increased
drug concentrations, with only 21 % apoptotic cells at
300 nM (p < 0.001).

Activated STAT3 in resistant acute myeloid leukemia cells
The activation status of STAT1, STAT3, and STAT5 pro-
teins were studied using western blot. Although these
proteins were expressed in all cell lines, STAT3 was only
activated in the resistant cells and not the parental and
MV4-11R-cep + 5-Aza cells. In contrast, there was no
differences in the activity of STAT1 and STAT5 between
resistant and parental or MV4-11R-cep + 5-Aza cells
(Fig. 1-¢).

Restoration of SHP-1 gene expression in MV4-11R-cep +
5-Aza cells

To investigate the correlation between re-expression
of SHP-1 and demethylation, gene expression by RT-
qPCR was performed on MV4-11, MV4-11R-cep, and
MV4-11R-cep + 5-Aza cells. The results showed a sig-
nificant up-regulation of SHP-1 in MV4-11R-cep + 5-
Aza cells compared with MV4-11 and MV4-11R-cep
cells (p=0.011 and p = 0.002, respectively; Fig. 4-a).

Low methylation of SHP-1 gene in MV4-11R-cep + 5-Aza
cells

To relate the expression of SHP-1 with methylation sta-
tus, MS-PCR and pyrosequencing analysis were per-
formed on DNA from the three cell lines as well as
positive and negative controls. MS-PCR revealed methyl-
ated SHP-1 in parental MV4-11 and resistant MV4-11R-
cep cells but not MV4-11R-cep + 5-Aza cells (Fig. 4-b).
The methylation status was confirmed by pyrosequencing
analysis, which revealed a significantly lower level of
methylation in CpG islands in the promoter region of the
SHP-1 gene when treated with 5-Aza compared with un-
treated MV4-11 and MV4-11R-cep cells (p = 0.023). How-
ever, there was no significant difference in the methylation
of CpG islands in the promoter region of SHP-1 in MV4-
11 cells compared with MV4-11R-cep cells (p =0.200;
Table 1 and Fig. 4-c).

Discussion
Resistance to TKIs remains a challenge in the treatment
of AML patients. The mechanism of acquired resistance
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to TKIs has been studied in vitro and in vivo [7, 31-35]
but is still not fully understood. Aberrant methylation of
tumor suppressor genes (TSG) such as SOCS-1, SOCS-3,
SHP-1, and PRG2 has been documented in a variety of
cancers including hematological malignancies [3, 36—42],
and is a plausible means by which cells can acquire ther-
apy resistance.

In the present study, FLT3-ITD+ AML cells resistant
to CEP-701 were developed by overexposure of parental
cells to the drug. Acquired resistance was confirmed by
cytotoxicity and apoptosis assays that showed significant
differences in parental compared with resistant cells.
The IC5o of CEP-701 on resistant MV-11R-cep was more
than 10-fold higher than that of parental MV4-11 cells
(p=0.004) and acquired resistance was associated with
low apoptosis (p <0.001). This is in agreement with pre-
viously reported studies on the development of resistant
cell lines to ABT-869 and PKC-412 [7, 31].

Gene expression analysis revealed low expression of
SHP-1 and PRG2 in MV4-11 and MV4-11R-cep cells (data
not shown for PRG2 gene). However, after treatment of
MV4-11R-cep cells with 5-Aza, we observed re-
expression of SHP-1 and PRG2 that was associated with
inhibition of STAT3 activity. Moreover, the transcriptional
silencing of SHP-1 and PRG2 genes was due to hyer-
methylation of CpG islands in the promoter regions of
both genes in MV4-11 and MV4-11R-cep cells. Transcrip-
tional silencing of TSGs is mediated by DNMTs in tumor
cells [43-46]. The gene expression analysis also showed
significant up-regulation of DNMT1, DNMT3a, and
DNMT3b (data not shown), which have been reported to
regulate the expression of TSGs through methylation of
CpG islands in the promoter regions [47, 48]. Methylation
profiling revealed hypermethylation of CpG islands in the
promoter regions of SHP-1 and PRG2 in MV4-11 and
MV4-11R-cep cells (data not shown for PRG2 gene).
These findings suggest that, the up-regulated DNMTs in
the parental and resistant cells methylate the CpG islands
of SHP-1 and PRG2 genes, resulting in their transcrip-
tional silencing. Our findings are consistent with previous
reports that revealed hypermethylation of SHP-1 and
PRG2 in leukemic cell lines [22, 38, 42, 49].

In hematological malignancies and leukemic cell lines,
the tumor-suppressing function of SHP-1 is lost because
of promoter methylation, resulting in constitutive activa-
tion of JAK/STAT signaling [22, 24, 39, 50, 51]. Epigenetic
silencing of one of the JAK/STAT negative regulators is
sufficient for activation of STAT signaling [40]. Methyla-
tion of SHPI is involved in the constitutive activation of
STAT3 [50], and a low level of SHP-1 is not sufficient to
inhibit activated STAT3 [25]. Transcriptional silencing of
SHP-1 also plays a role in the development of resistance
to imatinib in BCR-ABLI-positive CML cells [51]. Simi-
larly, constitutive activation of STAT3 and STAT5 are
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specific polymerase chain reaction (MS-PCR) showed methylation of SHP-T in MV4-11 and MV4-11R-cep cells but not in MV4-11R-cep + 5-Aza cells.
c Pyrosequencing analysis revealed low methylation levels of the CpG islands in the promoter region of SHP-1 in MV4-11R-cep + 5-Aza cells. The
Kruskal-Wallis test was applied followed by the Multiple Mann-Whitney Test with Bonferroni correction. The box blot showed a significant lower
(p =0.023) of methylation in the CpG islands of SHP-1 gene in MV4-11R-cep + 5-Aza cells compared with that in MV4-11 and MV4-11R-cep cells.
However, there was no significant difference in the methylation levels of CpG islands in the same region of SHP-1 genes between MV4-11 and
MV4-11R-cep cells (p =0.200)

\

common events in myeloid leukemia and have previ- cells blocked G-CSF-dependent proliferation and in-
ously been implicated in resistance to TKIs [7, 26, 52].  creased apoptosis [53]. However, epigenetic silencing
Bewry, et al. [27] suggested that, the activation of of PRG2 is associated with higher proliferation and
STAT3 is an important mechanism of imatinib resist- lowered apoptosis in pancreatic cancer cells [54] and
ance. Likewise, overexpression of PRG2 in myeloid leukemic cells [42].
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Table 1 Percentage of methylation of CpG islands in the promoter region of the SHP-T gene

Sample ID CpG-11 CpG-10 CpG-9 CpG-8 CpG-7 CpG-6 Mean Min Max
MV4-11 224 488 74.0 599 516 445 50.2 224 74.0
MV4-11R-cep 1.2 199 56.1 53.7 415 379 36.7 1.2 56.1
MV4-11R-cep + 5-Aza 49 42 6.1 6.2 55 1.5 4.7 1.5 6.2
Low Meth Control 6.8 6.9 2.7 105 83 59 6.8 2.7 10.5
Med Meth Control 522 53.0 52.1 427 484 49.1 496 42.7 530
High Meth Control 93.7 94.0 92.5 74.5 833 93.8 886 745 94.0

Pyrosequencing analysis showing methylation levels of six CpG islands of the SHP-T gene. A significant higher level of methylation was observed in the CpG
islands of SHP-1 in MV4-11 and MV4-11R-cep compared with in MV4-11R-cep + 5-Aza cells (p = 0.023), using the EpigenDx kit (Hopkinton, MA, USA)

In the present study, we observed activation of STAT3
in MV4-11R-cep cells but not in MV4-11 cells. The
findings suggest that, activated STAT3 could be involved
in the acquisition of resistance to CEP-701 in MV4-11R-
cep cells, which is consistent with previous reports in
which, the activation of STAT3 was associated with ac-
quired resistance to ABT-869 in AML [7], and to ima-
tinib in CML [27, 51]. After treatment of MV4-11R-cep
with 5-Aza, STAT3 was inactivated and cells showed
higher sensitivity to CEP-701. This finding is in accord-
ance with other reports [7, 25, 51]. Our data suggest a
crucial role for STAT3 in the development of resistance
to TKIs and inhibition of STAT3 phosphorylation pro-
vides an effective means of re-inducing sensitivity.

STATS3 is negatively regulated by TSGs such as SHP-1,
SOCS-1, and SOCS-3 (7, 41, 51, 55, 56]. Re-expression of
these genes by 5-Aza or 5-Aza2dc results in inactivation
of STAT3 [7, 25, 51, 57, 58]. In addition, inactivation of
STAT3 enhances apoptosis and restores sensitivity to-
wards TKIs [27, 59]. Similarly, we found that the re-
expression of SHP-1 and PRG2 is associated with inacti-
vation of STAT3 in 5-Aza-treated cells. Moreover, the
sensitivity of MV4-11 and MV4-11R-cep + 5-Aza cells
towards CEP-701 was significantly higher with low ICs,
at only 200 nM compared with 3340 nM in MV4-
11R-cep (p=0.011). The findings suggest that, the
restoration of expression of SHP-1 and PRG2 could
induce sensitivity towards CEP-701 through inactiva-
tion of STAT3. Our observations are supported by
previous reports [7, 25, 27, 31, 51, 59].

We also found that, increasing CEP-701 concentration
caused a significant increase of apoptosis in 5-Aza-treated
resistant cells compared with the untreated resistant cells
(» <0.001) In addition, we observed no significant differ-
ence when CEP-701 concentration was increased by 100
nM in untreated resistant cells whereas the 5-Aza-treated
resistant cells showed significant differences at each incre-
mental increase in TKI concentration. Taken together, our
results indicate that, re-expression of SHP-1 and suppres-
sion of STAT3 are associated with induction of apoptosis
in TKI-resistant FLT3-ITD+ AML cells. These findings
are similar to those previously reported [7, 60-62].

Enhanced re-expression of SHP-1 could therefore play
role in the management of CEP-701-resistant patients.
Further studies are needed to clarify the correlation be-
tween the re-expression of the SHP-I1 gene with STAT3
inhibition and to confirm the clinical utility of this
approach.

Conclusion

The epigenetic silencing of SHP-1 results in loss of its
tumor suppressor function and re-expression of SHP-1
by 5-Aza may enhance sensitivity to CEP-701 through
inactivation of STATS3.
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