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Tumor-associated macrophages in oral
premalignant lesions coexpress CD163 and
STAT1 in a Th1-dominated microenvironment

Kazumasa Mori'", Shigeki Haraguchi'®, Miki Hiori?, Jun Shimada' and Yoshihiro Ohmori**

Abstract

Background: Tumor-associated macrophages (TAMs) are implicated in the growth, invasion and metastasis of
various solid tumors. However, the phenotype of TAMs in premalignant lesions of solid tumors has not been
clarified. In the present study, we identify the phenotype of TAMs in leukoplakia, an oral premalignant lesion, by
immunohistochemical analysis and investigate the involvement of infiltrated T cells that participate in the
polarization of TAMs.

Methods: The subjects included 30 patients with oral leukoplakia and 10 individuals with normal mucosa. Hematoxylin
and eosin slides were examined for the histological grades, and immunohistochemical analysis was carried out using
antibodies against CD68 (pan-M®), CD80 (M1 M®), CD163 (M2 M®), CD4 (helper T cells: Th), CD8 (cytotoxic T cells),
CXCR3, CCRS5 (Th1), CCR4 (Th2), signal transducer and activator of transcription (STAT1), phosphorylated STATT (pSTAT1)
and chemokine CXCLO. The differences in the numbers of positively stained cells among the different histological grades
were tested for statistical significance using the Kruskal-Wallis test. Correlations between different types of immune cells
were determined using Spearman’s rank analysis.

Results: An increase in the rate of CD163" TAM infiltration was observed in mild and moderate epithelial
dysplasia, which positively correlated with the rate of intraepithelial CD4™ Th cell infiltration. Although CCR4™ cells
rarely infiltrated, CXCR3" and CCR5" cells were observed in these lesions. Cells positive for STAT1 and chemokine
CXCLY9, interferon- (IFN)-induced gene products, and pSTATT were also observed in the same lesions. Double
immunofluorescence staining demonstrated that the cells that were positive for CD163 were also positive for

STATT.

Conclusions: CD163" TAMs in oral premalignant lesions coexpress CD163 and STAT1, suggesting that the
TAMs in oral premalignant lesions possess an M1 phenotype in a Th1-dominated micromilieu.

Background

Oral squamous cell carcinoma (OSCC), which accounts
for approximately 2 % of total new cancer cases, is the
most common type of oral cancer [1]. Despite recent
advances in our understanding and in the treatment
of other types of cancer, the five-year survival rate
after diagnosis of OSCC remains low at approximately
50-60 % [2]. The survival rate of patients with early-
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stage OSCC is higher than that of advanced patients,
exceeding 70 % [3]. Therefore, early detection of
OSCC is indispensable for improving prognosis.

Oral leukoplakia is a premalignant lesion of the oral
mucosa that is characterized by a circumscribed thicken-
ing of the mucosa covered by whitish patches [4]. Al-
though hospital-based follow-up studies have shown that
between <1 % and 18 % of oral premalignant lesions will
develop into oral cancer, a certain clinical subtype of
leukoplakia with epithelial dysplasia has been shown to
be at an increased risk for malignant transformation [5].
However, histological assessment of epithelial dysplasia
has also demonstrated that not all lesions that show
dysplasia will develop into oral cancer, and some will
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even regress [5]. Therefore, the development of other
methods for predicting the malignant potential of
premalignant lesions has been proposed. Recent studies
have examined the molecular profiles of oral pre-
malignant lesions in terms of the risk for malignant
transformation [6]. Genetic alterations and molecular
abnormalities have been identified in oral premalignant
lesions. A loss of heterozygosity (LOH) at chromosome
9p and 3p and the absence of p19, a tumor-suppressor
protein, are frequently observed in oral premalignant
lesions [7, 8].

Although genetic alterations in epithelial cells are es-
sential for the development of premalignant lesions, re-
cent studies have shown that the nature of the tumor
microenvironment and circumjacent stromal cells, in-
cluding infiltrated immune cells, can significantly modify
the outcome of these alterations [9, 10]. Numerous stud-
ies have demonstrated that tumor-associated macro-
phages (TAMs) initiate and promote tumorigenesis in
many types of solid tumors [11-13], and a strong correl-
ation between an abundance of TAMs and poor progno-
sis has been demonstrated in breast, prostate, cervical,
and bladder cancers [11]. However, contrary to their
tumor promoting function, TAMs that infiltrated colon
and lung cancers have been associated with a better
prognosis in patients [14—18]. Analysis of the pheno-
types of the infiltrated TAMs revealed that the TAMs in-
volved in poor patient prognosis share many common
features with alternatively activated macrophages or M2
macrophages, which express high levels of the scavenger
receptors CD163 and CD204, high levels of the
chemokines CCL17, CCL22 and CCL24, and low levels
of IL-12 [12, 19]. In contrast to alternatively activated
macrophages, the TAMs associated with a better patient
prognosis share a phenotype with classically activated
macrophages or M1 macrophages, which express HLA-
DR, inducible nitric oxide synthase (iNOS), and tumor
necrosis factor-a (TNF-«) [17, 18]. These lines of evidence
indicate that the functional competence of macrophages
is heterogeneous and that the functional properties are
acquired and modified in response to changes in the
tumor microenvironment [12, 13].

Previous studies have observed the increased infiltra-
tion of mononuclear cells in oral premalignant lesions
and OSCC [20-24]. We and others have previously ob-
served an increased number of TAMs during the pro-
gression of OSCC, and this number positively correlates
with the histopathological grade of OSCC and poor
prognosis in OSCC patients [25—29]. These results sug-
gest that TAMs participate in the progression and devel-
opment of OSCC. Although the phenotypes of TAMs in
various types of solid tumors have been extensively char-
acterized, the phenotypes and functional properties of
the TAMs that infiltrate premalignant lesions of solid
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tumors remain to be determined. This study aimed to
examine TAM density in oral leukoplakia, a premalig-
nant lesion of the oral cavity, and to characterize the
macrophage phenotype (M1 or M2). We also investi-
gated the involvement of infiltrated T cells that con-
tribute to the induction of macrophage phenotypes.

Methods

Tissue specimens

Biopsy specimens were obtained from patients treated at
the Division of Oral and Maxillofacial Surgery, Meikai
University School of Dentistry. A total of 30 specimens
diagnosed as oral leukoplakia were used in this study,
and the clinicopathological characteristics of the patients
examined in this study are listed in Table 1. Median age
at the time of diagnosis was 61.0 years old, and 20 of the
30 patients were men. The most frequently affected site
was the gingiva (43.3 %), followed by the buccal mucosa
(26.7 %), tongue (13.3 %), palate (10 %), and lip (6.7 %).
Biopsy specimens (seven from the tongue, two from the
gingiva, and one from the palate) diagnosed as normal
oral mucosa were used as controls. The current study
was reviewed and approved by the Research Ethics
Committee of Meikai University School of Dentistry
(reference #: A0290), and written informed consent
for participation in this study was obtained from the

Table 1 Clinicopathological characteristics of the patients with
oral precancerous lesions

Clinical variables % (n)
Age

<60 333 (10
260 66.7 (20)
Mean 61.0 years
Gender

Male 66.7 (20)
Female 333 (10)
Region

Gingiva 433 (13)
Buccal mucosa 26.7 (8)
Tongue 133 (4)
Palate 10.0 3)
Lip 6.7 (2)
Histological grade

Without dysplasia 16.7 (5)
Mild 233 (7)
Mild to moderate 16.7 (5)
Moderate 16.7 (5)
Moderate to severe 133 (4)
Severe 133 (4)
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patients. These tissues were fixed for 24—-48 h in 4 %
formaldehyde freshly prepared from paraformaldehyde
in phosphate-buffered saline (PBS) at 4 °C. The tissue
specimens were sliced into 4-pm sections and mounted
onto 3-aminopropyltriethoxysilane-coated glass slides.
Three oral pathologists independently examined the
hematoxylin and eosin slides and re-evaluated the histo-
logical diagnosis based on the WHO Classification of
Head and Neck Tumors [30]. When the diagnoses were
not in agreement, the biopsy specimen was re-examined
and discussed until a consensus was reached.

Immunohistochemical staining

The tissue sections were deparaffinized, immersed in
10 mM citrate buffer (pH 6.0) and heated in a microwave
oven for 15 min for antigen retrieval. For CD68 antigen
retrieval, the tissue sections were treated with proteinase
K (20 pg/ml, Roche Diagnostics, Basel, Switzerland) at
room temperature for 15 min. After rinsing in PBS, the
sections were incubated with 3 % hydrogen peroxide in
methanol for 10 min to block endogenous peroxidase ac-
tivity. Endogenous avidin and biotin were blocked using
the Avidin/Biotin Blocking Kit (Zymed Laboratories, San
Francisco, CA, USA) at room temperature for 10 min. To
reduce nonspecific antibody binding, the samples were ex-
posed to 2 % bovine serum albumin (BSA) for 30 min. A
list of the primary antibodies used in this study is shown
in Table 2. Tissue sections were incubated with primary
antibody at 4 °C in a humidified chamber overnight. Then,
the tissue sections were washed in PBS and incubated
with horseradish peroxidase-labeled anti-mouse or anti-
rabbit antibodies (Dako EnVision System, HRP-Labeled
Polymer, Dako, Kyoto, Japan) for 30 min. Peroxidase activ-
ity was visualized by immersion of the tissue sections
using the AEC Substrate Kit (Dako), which produced a
brown reaction product. Finally, the tissue sections were

Table 2 Primary antibodies used in this study
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counterstained with Mayer’s hematoxylin and mounted.
As a negative control, the primary antibody was replaced
with 2 % BSA.

To evaluate the positively stained cells after incubation
with each antibody, three high-power magnification
fields (200x) with the most abundant distribution of
positive cells were selected from each specimen. The
numbers of positively stained and unstained cells were
counted. The data are expressed as the mean percentage
of the ratio of the number of positive cells relative to the
total number of cells.

Double-labeled fluorescent immunostaining

The tissue sections were deparaffinized and immersed in
Tris—HCI buffered saline (TBS: pH 7.4) supplemented
with 0.5 % Triton-X 100 (Bio-Rad Laboratories, Hercules,
CA, USA) and 3 % H,O, at room temperature for 60 min.
All sections were pre-blocked in 10 % non-immune goat
serum (Zymed) for 1 h at room temperature to reduce
nonspecific antibody binding. After being rinsed in PBS,
the tissue sections were incubated with mouse anti-
human CD163 monoclonal antibody (1:100 dilution) and
rabbit anti-human STAT1 polyclonal antibody (1:500) or
rabbit anti-phosphorylated (Try701) STAT1 monoclonal
antibody (1:200) for 60 min at room temperature. The tis-
sue sections were subsequently incubated with Alexa
Fluor 488 goat anti-mouse IgG antibody at 1:2000 (Life
Technologies, Carlsbad, CA, USA) and Alexa Fluor 546
goat anti-rabbit IgG antibody at 1:2000 (Life Technolo-
gies) for 60 min at room temperature. The sections were
again washed in TBS prior to being cover-slipped with
anti-fade mounting medium (ProLong Antifade Kit, Life
Technologies). The primary antibodies were omitted in
the control experiments to verify the absence of secondary
antibody binding. The stained slides were viewed on a

Antigen Marker Antibody Dilution Vendor

CD68 Pan-M® Mouse anti-hCD68 Mab 1:80 Dako, Glostrup, Denmark

CD80 M1 MO Mouse anti-hCD80 Mab 1:200 R&D systems, Minneapolis, MN, USA
CD163 M2 MO Mouse anti-hCD163 Mab 1:200 Leica, Wetzlar, Germany

(@) Th Mouse anti-hCD4 Mab 1:100 NordiQC organization, Aalborg Denmark
CD8 CTL Mouse anti-hCD8 Mab 1:100 Dako, Glostrup, Denmark

CCR4 Th2 Mouse anti-hCCR4 Mab 1:100 Novus biological, Littleton, CO, USA
CCR5 Thi Rabbit anti-hCCR5 pab 1:200 Abcam, Cambridge, UK

CXCR3 Thi Mouse anti-hCXCR3 Mab 1:200 R&D systems, Minneapolis, MN, USA
CXCL9 Chemokine Th1 Mouse anti-hCXCL9 Mab 1:200 R&D systems, Minneapolis, MN, USA
STAT1 IFNy-inducible gene Rabbit anti-hSTAT1 Pab 1:200 Santa Cruz, Santa Cruz, CA, USA
Phospho-STAT1 pSTAT1 (Tyr701) Rabbit anti-pSTAT1 Mab 1:50 Cell signaling, Boston, MA, USA

CD cluster of differentiation, Mab monoclonal antibody, Pab polyclonal antibody, Th helper T lymphocyte, CTL cytotoxic T lymphocyte, CCR4 CC chemokine
receptor 4, CXCR3 CXC chemokine receptor 3, CXCL9 CXC chemokine ligand 9, STATT signal transducer and activator of transcription
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laser scanning confocal microscope (TCS SP-2, Leica,
Bensheim, Germany).

Statistical analysis

The significant differences in the numbers of positively
stained cells among the various pathological grades were
tested using the Kruskal-Wallis nonparametric test. Cor-
relations between the various types of infiltrated im-
mune cells were tested using nonparametric Spearman’s
rank analysis. Two-sided p values of <0.05 were judged
to be significant.

Results

Infiltration of CD163" macrophages in leukoplakia

We examined the infiltration of macrophages for various
pathological grades of leukoplakia using antibodies to
CD68 [31], CD80 [12, 32], and CD163 [33]. Few cells were
positively stained for these macrophage markers in the
normal mucosa (Fig. 1a, d, g), while CD68", CD80" and
CD163" cells were observed in specimens from leukopla-
kia lesions (x100: Fig. 1b, e, h and x 400: ¢, f, i). The ma-
jority of the infiltrated macrophages were distributed in
the subepithelial stroma. Although the percentages of in-
filtrated CD68" (Fig. 1j) and CD80" (Fig. 1k) cells did not
differ significantly by pathological grade, the number of
infiltrated CD163" cells was significantly increased in mild
to moderate and mild dysplasia compared to samples
without dysplasia (Fig. 11).

Because the tumor microenvironment modulates the
functional properties of TAMs, we examined the infiltra-
tion of T cells in leukoplakia. Both CD4" (Fig. 2) and
CD8" (data not shown) T cells were observed in the sub-
epithelial stroma of leukoplakia. Interestingly, a signifi-
cant increase in the percentages of CD4" T cells was
detected in the intraepithelial lesions of moderate and
severe dysplasia (Fig. 2b). Spearman’s rank correlation
coefficient was used to assess the potential relationship
between CD163" macrophages and CD4" T cells. The
percentages of CD163" macrophages positively corre-
lated with the intraepithelial CD4" T cells (p <0.0009;
Fig. 2c). However, there were no significant correlations
between CD68" cells and CD4" T cells, nor between
CD80" cells and CD4" T cells (Fig. 2d, e).

Infiltration of CXCR3™ T cells in leukoplakia and
correlation with STAT1* cells

Thi-derived IEN reportedly induces classically activated
M1 macrophages, whereas Th2-derived IL-4 and IL-13
induce alternatively activated M2 macrophages [12, 19].
To further analyze the subset of infiltrated T cells that
affect the phenotype of TAMs, we immunohistochemi-
cally examined the infiltrated CD4" T cells using anti-
bodies to chemokine receptor CXCR3 and CCR5,
markers for Th1 cells, and antibodies to CCR4, a marker
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for Th2 cells [34]. Although CCR4" T cells were rare in
normal mucosa and in leukoplakia lesions (data not
shown), CXCR3" (Fig. 3a, b) and CCR5" (Fig. 3¢, d) T
cells abundantly infiltrated the subepithelial stroma of
leukoplakia. These results indicate that CD4" Thl
cells are the predominant subset of T cells that infil-
trate leukoplakia.

Because Thl cells produce IFN, which induces M1
macrophages, we next assessed whether the IFN-
inducible gene products STAT1 [35] and CXCL9/Mig,
a chemokine for Thl [36], were expressed in leuko-
plakia (Fig. 4). STAT1" cells were widely distributed
in the subepithelial lesions of leukoplakia. The per-
centages of CXCR3" cells positively correlated with
the percentages of STAT1" cells (p=0.0465; Fig. 4c).
Tyrosine-phosphorylated STAT1 (pSTAT1), an active
form of STATI1, was also detected in the lesions
(Fig. 4d, e), though the frequency of pSTAT1-positive
cells was lower than that of STATI1-positive cells.
Cells positive for the IFN-inducible chemokine
CXCL9 were also observed in the subepithelial lesion
of leukoplakia (Fig. 4f, g). Taken together, these results
indicate that the leukoplakia lesions form a Th1-dominated
microenvironment and suggest that Thl-derived IFN af-
fects the infiltrated macrophages to polarize the M1

phenotype.

Colocalization of CD163™ cells with STAT1 in leukoplakia
To further characterize the CD163" macrophages in
leukoplakia, we examined the coexpression of CD163
and STAT1 or pSTAT1 using double-labeling im-
munofluorescence (Fig. 5). CD163" macrophages were
distributed in the subepithelial lesion, and the major-
ity of CD163" cells located in the papillary dermis
colocalized with STAT1 (Fig. 5a). The percentages of
CD163" macrophages and STAT1" cells were posi-
tively correlated (p=0.0034; Fig. 5b). Although the
percentages of single-stained cells for CD163 and
STAT1 were 16.4 % and 32.1 %, respectively, the per-
centage of double-stained cells was 51.5 % (n=4).
The CD163" cells also coexpressed pSTAT1 (Fig. 5c).
These results indicate that CD163" macrophages in
oral leukoplakia coexpress active STAT1 and suggest
that the CD163" macrophages possess an M1 pheno-
type in a Thl-dominated microenvironment.

Discussion

Macrophages are one of the major cellular components
in the tumor microenvironment, and macrophages have
been considered to be crucial to tumor development
[13, 37]. Although a number of studies have reported
the phenotypes and properties of these macrophages
(i.e., TAMs) in various human solid tumors, including
oral squamous cell carcinoma, the phenotypes of TAMs
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Fig. 1 CD68", CD80", and CD163" cells in oral normal mucosa and leukoplakia. Immunoreactivity against anti-CD68 (a-c), anti-CD80 (d-f), and anti-CD163
(g-i) in normal oral mucosa (a, d, g) and moderate grades (b, ¢, e, f, h, i) of oral leukoplakia (original magnification: ABD,EGH x 100, scale bar = 100 um;
C, F, I, x400, scale bar = 30 um). Percentages of CD68" (j), CD80™ (k), and CD163" (I) cells for various histological grades of leukoplakia are shown. Data
are expressed as box plots indicating the maximum, median, and minimum values. Statistically significant differences were observed in CD163" cells in
the mild to moderate and moderate grades of leukoplakia compared to cases without dysplasia. (*p < 0.05, Dunn test)
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Fig. 2 CD4" T cells in subepithelial and intraepithelial lesions of various histological grades of oral leukoplakia. Percentages of CD4" T
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the moderate and severe grades of dysplasia compared to cases without dysplasia (*p < 0.05, Dunn test). Correlation between infiltrated
CD163" and CD4" cells in leukoplakia (c). Statistically significant differences were determined using Spearman’s rank correlation coefficient
analysis (p=0.0009). There were no statistically significant correlations between CD68" and CD4" cells (d) and CD80* and CD4" cells (e)

in the premalignant lesions of these solid tumors remain
to be determined. Specifically, changes in the pheno-
types and functional properties of TAMs in premalig-
nant lesions during tumor development have not yet
been characterized. To this end, we examined dissected
specimens from 30 patients who underwent biopsy and re-
ceived a diagnosis of oral leukoplakia, an oral premalignant
lesion, by immunohistochemical analysis of several macro-
phage and T cell markers. The results demonstrated that
although CD163 has been considered a M2 macrophage
marker in many solid tumors [38—41], the CD163" macro-
phages in oral leukoplakia appear to possess an M1 pheno-
type characterized by the expression of IFN-inducible gene
products. Furthermore, infiltrated CXCR3" and CCR5*
Thl cells, a major IFN-producing cell type, were also ob-
served in the tumor microenvironment. These results sug-
gest that the infiltrated Thl cells, which produce IEFN,
affect the phenotype of CD163" macrophages in oral pre-
malignant lesions.

The macrophages were classified as M1 (classically acti-
vated) and M2 (alternatively activated) macrophages based
on the expression of macrophage gene products, including
receptors, cytokines, and effector molecules, induced by

classical macrophage-activating stimuli such as Thl-
derived IFN or the Th2-derived anti-inflammatory
cytokines IL-4 and IL-13 [12, 19, 42]. M1 macrophages
produce large amounts of pro-inflammatory cytokines, re-
active oxygen intermediates and reactive nitrogen inter-
mediates, such as nitric oxide (NO), which contribute to
the anti-tumor activity of macrophages [12]. In contrast,
M2 macrophages have been suggested to contribute to
angiogenesis, tissue remodeling, and tumor progression
by inducing the expression of mannose receptors, scav-
enging receptors, angiogenic factor such as vascular
endothelial growth factor (VEGEF), and low levels of
pro-inflammatory cytokines [12]. Although the M1/M2
concept of macrophage polarization helps explain the
functional properties of macrophages in various infec-
tious and immunological diseases, recent accumulated
evidence has shown that the infiltrated TAMs in human
solid tumors appear to consist of a heterogeneous popu-
lation [40, 43]. TAMs in human cutaneous SCC appear
to consist of a mixed subpopulation of CD163" cells
that express M1 markers, M2 markers or both M1 and
M2 markers [43]. In agreement with this previous study,
we have also demonstrated that CD163" cells express an
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CXCR3

Fig. 3 Immunohistochemical staining of oral leukoplakia with the anti-CXCR3 and anti-CCR5 antibodies. Immunoreactivity against anti-CXCR3
(a, b) and anti-CCR5 (¢, d) antibodies for moderate grades of oral leukoplakia (original magnification: A, C: X100; B, D: x400). CXCR3™ and CCR5™
Th1 cells were mainly distributed in the subepithelial lesion. Scale bar= 100 um (a), 300 um (c), and 30 um (b, d)

\

M1 marker in oral premalignant lesions. Related to
these findings, we and others have previously reported
that CD163" macrophages are the major TAMs in
OSCC and that an increased number of CD163" macro-
phages correlates with a poor prognosis [27, 28, 44, 45].
Our preliminary double-labeling immunofluorescence
data for CD163 and STAT1 shows that the CD163"
TAMs in OSCC also coexpress STAT1. These results
suggest that CD163" TAMs with the M1 phenotype
persist in the tumor microenvironment from the pre-
malignant to the malignant stage. The functional het-
erogeneity of the CD163" TAMs that express Ml
markers in OSCC in terms of antitumor or protumor
potency remains to be determined. CD163" TAMs
need to be further characterized to better understand
the role of TAMs in the progression of OSCC.

TAMs acquire functional competence in response to
various cytokines and mediators encountered within the
tumor microenvironment [46]. Tumor-associated im-
mune cells, as well as tumor cells themselves, are the
major sources of mediators that affect the functional
properties of TAMs. A mouse tumor model of mam-
mary carcinomas demonstrated that IL-4-expressing
CD4" T cells indirectly promote the invasion and metas-
tasis of mammary adenocarcinomas by promoting the
protumor function of TAMs [47]. The importance of
Th2 cytokines, including IL-4, IL-10, and IL-13, in the
regulation of the protumor functions of TAMs has also

been demonstrated in human lung adenocarcinomas
[40, 48]. However, the role of infiltrated T cells in the
polarization of TAMs in premalignant lesions of human
solid tumors is not completely understood. In the
present study, we evaluated the relationship between in-
filtrated T cells and the polarization of TAMs in oral
leukoplakia and found a positive correlation between
the numbers of CD4" T cells and CD163" macrophages.
Intriguingly, the infiltrated CD4" T cells in oral leuko-
plakia consisted of CXCR3" and CCR5" Thl cells, a
major IFN-producing cell type, and CCR4" Th2 cells
were rare in the lesion. Consistent with the increased in-
filtration of Th1 cells and STAT1" cells, the expression
of an IFN-inducible gene product [35] was also in-
creased in the lesion. These results suggest that the
tumor microenvironment of oral leukoplakia creates a
Thl-dominated microenvironment that polarizes TAMs
toward the M1 phenotype. Our double-labeled immuno-
fluorescence analysis demonstrated that CD163" macro-
phages coexpressed active STAT1 (pSTAT1). Thus, it is
highly likely that the infiltrated Thl cells modulate the
phenotype of TAMs in oral premalignant lesions.

The recruitment of CXCR3" Thl cells is mediated
by IFN-inducible chemokines such as CXCL9 and
CXCL10 [49], which are produced by a variety of cell
types, including epithelial cells, fibroblasts, and mac-
rophages, in response to IFNs [50, 51]. IFNs and TNF
or CD40 ligand synergistically induce the expression
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Fig. 4 Immunohistochemical staining of oral leukoplakia with the anti-STAT1, anti-pSTAT1 and anti-CXCL9/Mig antibodies Immunoreactivity
against anti-STAT1 (a, b), anti-tyrosine (Try701)-phosphorylated- STAT1 (pSTAT1) (d, e) and anti-CXCL9/Mig (f, g) antibodies for moderate grades
of oral leukoplakia (original magnification: A, D, F: x100; B, E, G: x400). STAT1™ and CXCL9" cells were mainly distributed in the subepithelial lesion.
Scale bar =300 um (a, d), 100 um (f), 50 um (e, g) and 30 um (b). Correlation between infiltrated CXCR3" and STAT1" cells in leukoplakia (c).
Statistically significant differences were determined using Spearman'’s rank correlation coefficient analysis (p = 0.0465)

of these chemokines [52, 53]. Although the initial results suggest that the persistent IFN-stimulating en-
triggering molecules that induce these chemokines are  vironment from the premalignant to malignant lesion
unknown, epithelial cells in the dysplastic lesion, may allow tumor cells to acquire resistance to the anti-
which are continuously stimulated by carcinogens and tumor responses of IFNs via cancer immunoediting
are genetically altered, may produce these chemo- [55]. IFN-induced M1 macrophages have been shown to
kines. In fact, our immunohistochemical analysis dem-  act as important effectors during cancer immunoediting
onstrated that CXCL9 was present in the subepithelial in a mouse tumor model [56]. Further in vivo studies
lesion of leukoplakia. After the recruitment of CXCR3"  using animal models of OSCC are needed to explore the
Th1 cells, the secretion of IFN could further skew the functional role of IFN-stimulated M1 macrophages in
oral premalignant lesions toward a Thl-dominated the progression of malignant transformation.

microenvironment. Intriguingly, a previous proteomic We histopathologically graded the biopsy specimens
analysis of OSCC revealed that the IFN signaling path-  of oral leukoplakia based on the WHO classification
way is significantly enhanced in OSCC lesions and that  [30] and explored the relationship between the histo-
the expression of IFN-inducible gene products, includ- logical grading and the levels of infiltrated immune
ing STAT1, was up-regulated [54]. Taken together, these  cells. Significant increases in CD163" macrophages
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Fig. 5 Colocalization of CD163" TAMS with STATT1 in oral leukoplakia. Double-labeled fluorescent immunostaining for CD163 (green) and STAT1 or pSTAT1
(red) in oral leukoplakia with moderate dysplasia. The cells double-stained for both the anti-CD163 and anti-STAT1 antibodies are shown (a, yellow). These
cells colocalized to the subepithelial lesion (original magnification: x200). Scale bar = 100 um. b Correlation between infiltrated STAT1" and CD163™ cells in
oral leukoplakia. Statistically significant differences were determined using Spearman'’s rank correlation coefficient analysis (p =0.0034). ¢ The
cells double-stained for both the anti-CD163 and anti-pSTAT1 antibodies are shown (arrow heads)

(Fig. 1) and intraepithelial CD4" T cells (Fig. 2b) were
observed in moderate dysplasia compared to samples
without dysplasia (Fig. 1). The immunohistochemical
analysis showed that CD163" macrophages were
mainly distributed in the subepithelial region. Al-
though the etiological roles of CD163" macrophages
and intraepithelial CD4" T cells in the development
of dysplasia are unclear, CD163" macrophages may
contribute to the infiltration of intraepithelial CD4" T
cells. Because intraepithelial lymphocyte migration is
accompanied by fragmentation of the basement mem-
brane [57], CD163" macrophages may secrete matrix
metalloproteinases (MMPs) that degrade the basement
membrane [58]. A loss of basement membrane com-
ponents has been correlated with the invasive poten-
tial of malignant epithelial neoplasms [59]. CD163"
macrophages and the infiltration of T cells into the
epithelial lesion may contribute to the early architec-
tural disturbance of the epithelium during the devel-
opment of dysplasia.

Conclusion

In summary, we have identified an increase in CD163"
macrophages in oral premalignant lesions and shown
that CD163" macrophages coexpress STAT1, an M1-
related marker. Our results also suggest that recruited
CXCR3" and CCR5" Thl cells that produce IFN in the
dysplastic lesion influence the polarization of the TAMs
toward an M1 phenotype.
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