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Abstract 

Background  GnRH agonist (GnRHa) has been reported to have direct effects and functional roles in the 
endometrium and embryos. Several meta-analyses have shown that GnRHa administration in the luteal phase 
improved the live birth rate or pregnancy rate in both fresh and frozen embryo transfer (FET) cycles. The aim of this 
study was to investigate whether luteal GnRHa administration could also improve in vitro fertilization (IVF) outcomes 
in patients undergoing hormone replacement therapy (HRT) cycles with GnRHa suppression.

Methods  The retrospective cohort study included a total of 350 patients undergoing GnRHa-HRT FET cycles. 
The study group included 179 patients receiving an additional single dose of GnRHa in the luteal phase following 
embryo transfer. A total of 171 patients in the control group did not receive luteal GnRHa. The baseline and cycle 
characteristics and reproductive outcomes were compared between the two groups.

Results  Baseline and cycle characteristics were similar between the two groups, except lower AMH levels were found 
in the luteal GnRHa group than in the control group. The luteal GnRHa group had a significantly higher ongoing 
pregnancy rate and live birth rate than the control group. The multivariate analysis revealed that luteal GnRHa 
administration was positively associated with ongoing pregnancy (OR 2.04, 95% CI 1.20–3.47, P = 0.008) and live 
birth (OR 2.03, 95% CI 1.20–3.45, P = 0.009). When the subgroup of patients with recurrent implantation failure was 
analyzed, the multivariate analysis also showed that luteal GnRHa administration had beneficial effects on ongoing 
pregnancy (OR 4.55, 95% CI 1.69–12.30, P = 0.003) and live birth (OR 4.30, 95% CI 1.59–11.65, P = 0.004).

Conclusions  Our data suggest that the addition of one luteal dose of GnRHa may improve the live birth rate in 
patients undergoing the GnRHa-HRT protocol.
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Introduction
Embryo transfer (ET) is a critical step in assisted 
reproductive technology (ART) treatment. Frozen–
thawed embryo transfer (FET) has become an effective 
and popular approach in ART mainly because of the 
development of vitrification [1]. FET cycles were 
associated with lower ovarian hyperstimulation 
syndrome risk and reduced risk of low birth weight, 
preterm birth, and small for gestational age infants [2, 3]. 
Among the endometrial preparation methods for FET, 
the hormone replacement therapy (HRT) protocol is 
quite popular because of its flexibility and convenience. 
However, endometrial receptivity may be impaired in 
the HRT cycle because of medication use [4].

Successful implantation requires good-quality embryos, 
receptive endometrium and synchronized embryo–
endometrial crosstalk. The gonadotropin-releasing 
hormone (GnRH) pathway plays an important role in the 
hypothalamus-pituitary-gonadal axis of reproduction 
[5, 6]. Both GnRH and GnRH receptors (GnRH-R) are 
expressed not only in the hypothalamic pituitary but 
also in the endometrium and embryos; their expression 
reaches the highest levels at the secretory-phase 
endometrium and at the stage of expanded blastocyst [7–
10]. Therefore, GnRH agonists (GnRHa) may have direct 
effects and functional roles in the endometrium and 
embryos. Indeed, GnRH has been reported to enhance 
endometrium receptivity and embryo development 
[11–14]. Several systematic reviews and meta-
analyses indicated that adding GnRHa to progesterone 
significantly improved the ongoing pregnancy rate and 
live birth rate compared with using progesterone alone 
for luteal phase support in fresh embryo transfer (fET) 
cycles [15–18]. Furthermore, a systematic review and 
meta-analysis including 20 studies and 5497 patients 
demonstrated that GnRHa administration in the luteal 
phase boosted the clinical pregnancy rate in both fET and 
FET cycles, and the beneficial effect was similar between 
the fET and FET cycles [19].

GnRHa downregulation combined with HRT cycles 
has been increasingly used in recent years. Although 
the efficacy of GnRHa pretreatment is controversial 
[20, 21], a recent systematic review and meta-analysis 
of 27 articles with 14,152 patients reported that HRT 
cycles with GnRHa suppression were associated with 
an increased live birth rate and clinical pregnancy rate 
compared to those without GnRHa suppression [22]. 
Additionally, some studies have demonstrated that 
GnRHa pretreatment in HRT cycles may have a beneficial 
effect on specific groups, such as adenomyosis [23, 24], 
recurrent implantation failure (RIF) [25, 26] and thin 
endometrium [27]. We wondered whether additional 
administration of GnRHa during the luteal phase still 

takes effect in the GnRHa-HRT protocol. However, to 
date, no studies have investigated this issue. Thus, we 
designed this retrospective cohort study to assess the 
effects of the luteal-phase administration of single-dose 
GnRHa on reproductive outcomes in patients undergoing 
GnRHa-HRT FET cycles.

Materials and methods
Study design and participants
This retrospective cohort study was performed at the 
Reproductive Medical Center of Kaohsiung Veterans 
General Hospital from January 2020 to September 
2021. The study was approved by the Institutional 
Review Board of Kaohsiung Veterans General Hospital 
(reference number of institutional review board: 
KSVGH22-CT12-14). Because of its retrospective 
design, the requirement for consent was waived by 
the Institutional Review Board of Kaohsiung Veterans 
General Hospital. All patient data were collected from 
electronic medical records and in  vitro fertilization 
(IVF) treatment sheets. Patients who received the first 
IVF-FET cycle in our reproductive medical center were 
included in this study. The exclusion criteria were as 
follows: (1) patients whose age was over 46 years old, (2) 
patients whose BMI was over 30 kg/m2 or less 18 kg/m2, 
(3) patients with uterine factor infertility, (4) patients 
who did not undergo GnRHa-HRT cycles, (5) patients 
who had thin endometrium (< 8 mm) after estradiol 
priming, (6) patients who received preimplantation 
genetic testing for aneuploidy (PGT-A), (7) patients who 
were oocyte recipients, (8) patients whose husbands 
underwent testicular sperm extraction (TESE) and (9) 
patients who were lost to follow-up. Finally, 350 patients 
undergoing the GnRHa-HRT protocol were identified 
and divided into the luteal GnRHa group (n = 179) 
and the control group (n = 171). The addition of luteal 
GnRHa administration was determined according to 
the patients’ consideration and preference after full 
consultation provided by a doctor. In the luteal GnRHa 
group, a single dose of GnRHa (Lupro 2 mg, Nang Kuang 
Pharmaceutical Co, Ltd., Tainan, Taiwan) was injected 
subcutaneously 2 hours after ET. The study flow chart is 
shown in Fig. 1.

Endometrial preparation and frozen–thawed embryo 
transfer
All participants included in this study underwent FET 
cycles using the GnRHa-HRT protocol. A single injection 
of 3.75 mg long-acting GnRHa (Leuplin Depot, Takeda 
Pharmaceutical Company Limited, Yamaguchi, Japan) 
was given subcutaneously on menstruation cycle Day 2 
or 3 after a thin endometrium (< 5 mm) was confirmed 
by transvaginal sonography. Twenty-eight to thirty days 
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later, when the transvaginal sonography confirmed the 
presence of a thin endometrium (< 5 mm), endometrial 
preparation was commenced with daily oral estradiol 
6-8 mg (Ediol, Synmosa Biopharma Corporation, 
Hsinchu County, Taiwan) and estradiol gel (Oestrogel 
gel, Besins, Drogenbos, Belgium). After consecutive 
administration for 14 days, a transvaginal ultrasound scan 
was performed to evaluate the endometrial thickness. If 
endometrial thickness was less than 8 mm, the dosage 
of estrogen was increased, and the medication duration 

was extended. If the endometrial thickness was still not 
sufficient after 20 days of estrogen administration, the 
cycle was cancelled. When the endometrial thickness 
reached at least 8 mm, luteal phase support was initiated 
using daily intravaginal gel 90 mg (Crinone 8% gel, Merck 
Serono, Hertfordshire, UK), daily oral dydrogesterone 
30 mg (Duphaston, Abbott, Olst, the Netherlands) 
and intramuscular injection of progesterone 125 mg 
(Progeston Depot, Tafong Pharmaceutical Co., Ltd., 
Changhua City, Taiwan) twice a week.

Fig. 1  Study flow chart. IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection; FET, frozen–thawed embryo transfer; BMI, body mass index; 
GnRHa, gonadotropin-releasing hormone agonist; HRT, hormonal replacement therapy; PGT-A, preimplantation genetic testing for aneuploidy; 
TESE, testicular sperm extraction
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A non-selective freeze-all strategy was introduced 
in our reproductive medical center. All embryos were 
cryopreserved using the vitrification technique. The 
cleavage-stage embryos and blastocysts were thawed and 
transferred on the 4th or 6th day after administration 
of progesterone, respectively. Day 3 embryo quality 
was evaluated according to the criteria from the 
Istanbul consensus workshop [28]. The percentage of 
fragmentation, the evenness of each blastomere and 
whether multinucleation was present were assessed to 
grade day 3 embryos as Grade 1 to Grade 3. Good-quality 
day 3 embryos were defined as 6-10 cells with Grade 2 
(10-25% fragmentation, equal-sized blastomeres in the 
majority of cells and no multinucleation); top-quality 
Day 3 embryos were defined as 6-10 cells with Grade 1 
(< 10% fragmentation, equal-sized blastomeres and no 
multinucleation) in this study. Day 5 embryo quality was 
assessed based on the Gardner and Schoolcraft scoring 
system. The degree of expansion (Grade 1-6), inner cell 
mass morphology (Grade A-C) and trophectoderm 
morphology (Grade A-C) were used to grade day 5 
embryos. Good-quality day 5 embryos were defined as 
Grade 3BB; top-quality Day 3 embryos were defined as 
Grade 3AA in this study. ET was carried out under the 
guidance of transabdominal ultrasound. In the luteal 
GnRHa group, a single dose of GnRHa (Lupro  2 mg, 
Nang Kuang Pharmaceutical Co, Ltd., Tainan, Taiwan) 
was injected subcutaneously 2 hours after ET. Once 
pregnancy was achieved, luteal support was continued 
until 10–12 gestational weeks.

Outcome measures
The primary outcome was live birth rate. The 
secondary outcomes included the clinical pregnancy 
rate, implantation rate and ongoing pregnancy rate. 
Biochemical pregnancy was confirmed by elevated 
serum β-human chorionic gonadotropin (hCG) levels 
(> 25 IU/L) at 14 days after ET. Clinical pregnancy was 
determined by visualization of fetal cardiac activity 
on transvaginal ultrasound at 6–7 weeks of gestation. 
Implantation rate was defined as number of intrauterine 
sac with a fetal heartbeat determined by transvaginal 
ultrasound by number of transferred embryos. A viable 
pregnancy beyond 12 weeks of gestation was considered 
ongoing pregnancy. Live birth was defined as the delivery 
of a viable fetus past 24 weeks of gestation. A loss of 
pregnancy before 24 weeks of gestation was regarded 
as miscarriage. Miscarriage was further divided into 
early miscarriage (≤ 12 weeks of gestation) and late 
miscarriage (> 12 weeks of gestation).

Statistical analysis
The Kolmogorov–Smirnov test was used to test 
the normal distribution of continuous variables. 
Quantitative variables of normally distributed data, 
large enough samples, or both were assessed using 
Student’s t test; otherwise, Mann–Whitney U test was 
applied. Chi-squared test or Fisher’s exact test was used 
for comparing categorical data. Multivariable logistic 
regression was used to identify the independent effects 
of additional luteal GnRHa on live birth and ongoing 
pregnancy in all populations and patients with RIF after 
adjusting for age, body mass index, infertility duration, 
types of infertility, basal follicle-stimulating hormone 
(FSH), anti-Müllerian hormone (AMH), endometrial 
thickness, day of ET, number of transferred embryos and 
quality of transferred embryos. The results are shown as 
the odds ratio (OR) and 95% confidence interval (CI). A 
two-tailed value of P <  0.05 was considered statistically 
significant. Data processing and statistical analysis were 
carried out using IBM SPSS Statistics version 20.0 (IBM 
Corp., Armonk, NY, USA).

Sample size calculation
The software G*Power 3.1 was used to calculate 
sample size. Live birth rate as the primary outcome 
was used to calculate sample size. Chi-squared test for 
independent samples was selected for the calculation. 
Live birth rate for the GnRHa-HRT protocol and HRT 
protocol were estimated to be 40 and 25%, respectively. 
With an alpha error of 0.05 and a power of 80%, it was 
postulated that the number of cases required for each 
group would be 152.

Results
As shown in Fig. 1, a total of 1376 IVF/ICSI cycles were 
conducted from January 2020 until September 2021 in 
our reproductive medical center. During the period, 
572 patients with their first IVF-FET cycle in our 
reproductive medical center were identified. Among the 
572 patients, there were 16 patients who were older than 
46 years old, 32 patients whose BMI was over 30 kg/m2 or 
less 18 kg/m2, 32 patients with uterine factor infertility, 
98 patients who did not undergo GnRHa-HRT cycles, 
9 patients who had thin endometrium (< 8 mm) after 
estradiol priming, 28 patients who received PGT-A, 2 
patients who were oocyte recipients, 4 patients whose 
husbands underwent TESE, and 1 patient who was lost 
to follow-up. Those patients were excluded from the 
study. The remaining 350 patients with the GnRHa-
HRT protocol were included and divided into the luteal 
GnRHa group (n = 179) and the control group (n = 171).
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The baseline characteristics of the study population 
are summarized in Table  1. There were no significant 
differences between the two groups regarding age, body 
mass index, infertility duration, previous IVF attempts, 
infertility types and causes. Furthermore, basal FSH 
levels in the two groups were similar. However, lower 
AMH levels were found in the luteal GnRHa group than 
in the control group.

As shown in Table  2, there were no significant 
differences between the two groups in terms of 
endometrial thickness, ET day, number of transferred 
embryos, percentage of ≥ one top-quality embryo 
transferred and quality of transferred embryos. A higher 
biochemical pregnancy rate (64.8% vs. 46.2%, P <  0.001), 
clinical pregnancy rate (55.3% vs. 40.4%, P = 0.005), 
implantation rate (33.4 ± 36.6% vs. 23.8 ± 33.6%, 
P = 0.012), ongoing pregnancy rate (50.8% vs. 35.1%, 
P = 0.003) and live birth rate (49.2% vs. 32.7%, P = 0.002) 
were observed in the luteal GnRHa group than in the 
control group. However, no significant difference in early 
and late miscarriage rate was observed between the two 
groups.

In Table  3, a binary logistic regression analysis was 
performed to assess the effects of additional luteal GnRH 
agonist in GnRHa-HRT cycles on ongoing pregnancy and 

live birth. Confounding parameters such as age, body 
mass index, infertility duration, types of infertility, basal 
FSH, AMH, endometrial thickness, day of ET, number of 
transferred embryos and quality of transferred embryos 
were included in the analysis. The multivariate analysis 
showed that the addition of a luteal GnRH agonist in 
GnRHa-HRT cycles had beneficial effects on the ongoing 
pregnancy rate (OR 2.04, 95% CI 1.20–3.47, P = 0.008) 
and live birth rate (OR 2.03, 95% CI 1.20–3.45, P = 0.009). 
Moreover, age and day of ET were independent factors 
that could affect the ongoing pregnancy rate and live 
birth rate.

We then attempted to investigate the effects of 
additional luteal GnRHa in patients with RIF. RIF was 
defined as failure to achieve a clinical pregnancy after 
at least three IVF or ICSI treatments with transfer 
of at least one good-quality embryo per transfer or 
transfer of 10 good-quality embryos according to a 
previous study [29]. As presented in Table  4, basal 
characteristics, including age, body mass index, 
infertility duration, infertility types, basal FSH and 
AMH, as well as cycle characteristics, including 
endometrial thickness, ET day, number of transferred 
embryos, percentage of ≥ one top-quality embryo 
transferred and quality of transferred embryos, were 

Table 1  Baseline characteristics of patients undergoing the GnRHa-HRT protocol with or without luteal GnRHa administration

Data are presented as the mean ± standard deviation or %

GnRHa gonadotropin-releasing hormone agonist, HRT hormonal replacement therapy, IVF in vitro fertilization, POR poor ovarian responders, PCOS polycystic ovarian 
syndrome, FSH follicle-stimulating hormone

Parameters Luteal GnRHa group (n = 179) Control group (n = 171) p value

Age (years) 37.0 ± 4.2 37.1 ± 4.5 0.871

Body mass index (kg/m2) 23.0 ± 2.8 23.3 ± 2.9 0.465

Infertility duration (years) 4.4 ± 2.9 4.7 ± 2.9 0.332

Previous IVF attempts (%) 0.710

  0-1 36.9%(66/179) 32.7%(56/171)

  2 22.9%(41/179) 25.1%(43/171)

  ≧3 40.2%(72/179) 42.1%(72/171)

Types of infertility (%) 0.541

  Primary infertility 44.7%(80/179) 48.0%(82/171)

  Secondary infertility 55.3%(99/179) 52.0%(89/171)

Causes of infertility (%) 0.708

  Tubal factor 8.4%(15/179) 5.8%(10/171)

  Male factor 9.5%(17/179) 7.6%(13/171)

  POR 10.6%(19/179) 9.9%(17/171)

  PCOS 17.3%(31/179) 16.4%(28/171)

  Endometriosis 15.1%(27/179) 11.7%(20/171)

  Unexplained 12.8%(23/179) 15.8%(27/171)

  Multiple 26.3%(47/179) 32.7%(56/171)

Basal FSH (IU/l) 4.7 ± 2.1 5.1 ± 4.2 0.249

Anti-Müllerian hormone(ng/mL) 3.39 ± 3.18 4.21 ± 3.90 0.036
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comparable between the two groups. Compared to 
the control group, the luteal GnRHa group had a 
significantly higher biochemical pregnancy rate (63.9% 
vs. 40.3%, P = 0.005), clinical pregnancy rate (54.2% vs. 
30.6%, P = 0.004), ongoing pregnancy rate (47.2% vs. 
23.6%, P = 0.004) and live birth rate (44.4% vs. 22.2%, 
P = 0.005). However, implantation rate and miscarriage 

rate were similar between the two groups. Furthermore, 
we performed a stratified analysis based on the day 
of embryo transfer and found that live birth rate was 
significantly higher in the luteal GnRHa group than in 
the control group both in the day 3 (38.5%% vs. 22.9%, 
P  = 0.018) and day 5 (64.0%% vs. 45.3%, P  = 0.022) 
embryo transfer (Supplementary Table 1).

Table 2  Cycle characteristics of patients undergoing the GnRHa-HRT protocol with or without luteal GnRHa administration

Data are presented as the mean ± standard deviation or %

GnRHa gonadotropin-releasing hormone agonist, HRT hormonal replacement therapy, ET embryo transfer

Parameters Luteal GnRHa group
(n = 179)

Control group
(n = 171)

p value

Endometrial thickness (mm) 11.1 ± 2.4 11.4 ± 2.6 0.164

Rate of ET day (%) 0.711

  Day 3 ET 58.1% (104/179) 56.1% (96/171)

  Day 5 ET 41.9% (75/179) 43.9% (75/171)

No. of transferred embryos 2.4 ± 0.8 2.5 ± 0.8 0.724

Quality of transferred embryos (%) 0.677

  Good quality only 69.3% (124/179) 67.8% (116/171)

  Good and poor quality 27.4% (49/179) 26.9% (46/171)

  Poor quality only 3.4% (6/179) 5.3% (9/171)

Rate of at least one top-quality embryo transferred (%) 83.8% (150/179) 83.6% (143/171) 0.965

Biochemical pregnancy rate (%) 64.8% (116/179) 46.2% (79/171) < 0.001

Clinical pregnancy rate (%) 55.3% (99/179) 40.4% (69/171) 0.005

Implantation rate (%) 33.4 ± 36.6% 23.8 ± 33.6% 0.012

Ongoing pregnancy rate (%) 50.8% (91/179) 35.1% (60/171) 0.003

Live birth rate (%) 49.2% (88/179) 32.7% (56/171) 0.002

Miscarriage rate (%) 11.1% (11/99) 18.8% (13/69) 0.159

  Early miscarriage rate (%) 8.1% (8/99) 13.0% (9/69) 0.294

  Late miscarriage rate (%) 3.0% (3/99) 5.8% (4/69) 0.377

Table 3  Analyses of factors affecting the ongoing pregnancy rate and live birth rate using logistic regression

OR odds ratio, CI confidence interval, BMI body mass index, FSH follicle- stimulating hormone; AMH anti-Müllerian hormone
a Adjustment for age, BMI, infertility duration, types of infertility, basal FSH, AMH, endometrial thickness, day of embryo transfer, number of transferred embryos and 
quality of transferred embryos

Ongoing pregnancy Live birth

Adjusted ORa (95% CI) p value Adjusted ORa (95% CI) p value

Luteal GnRHa vs. control 2.04 (1.20–3.47) 0.008 2.03 (1.20–3.45) 0.009

Age (years) 0.83 (0.76–0.90) < 0.001 0.83 (0.76–0.90) < 0.001

BMI (kg/m2) 1.09 (0.99–1.19) 0.078 1.07 (0.98–1.18) 0.145

Infertility duration (years) 1.04 (0.94–1.15) 0.421 1.02 (0.92–1.13) 0.676

Types of infertility 0.83 (0.48–1.43) 0.510 0.87 (0.50–1.49) 0.602

Basal FSH (IU/l) 0.94 (0.84–1.06) 0.307 0.91 (0.80–1.04) 0.161

AMH (ng/mL) 0.96 (0.88–1.05) 0.347 0.93 (0.85–1.02) 0.122

Endometrial thickness (mm) 1.03 (0.93–1.15) 0.519 1.00 (0.90–1.11) 0.959

Day of embryo transfer 2.32 (1.30–4.16) 0.005 2.32 (1.28–4.19) 0.005

No. of transferred embryos 1.03 (0.72–1.47) 0.878 1.07 (0.74–1.53) 0.724

Quality of transferred embryos 1.29 (0.77–2.16) 0.331 1.51 (0.89–2.56) 0.128
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Table 4  Subgroup analysis of RIF patients undergoing the GnRHa-HRT protocol with or without luteal GnRHa administration

Data are presented as the mean ± standard deviation or %

RIF recurrent implantation failure, GnRHa gonadotropin-releasing hormone agonist, HRT hormonal replacement therapy, FSH follicle-stimulating hormone, ET embryo 
transfer

Parameters Luteal GnRHa group
(n = 72)

Control group
(n = 72)

p value

Age (years) 38.7 ± 3.9 38.9 ± 4.0 0.720

Body mass index (kg/m2) 23.1 ± 2.9 23.3 ± 3.1 0.616

Infertility duration (years) 5.7 ± 3.1 5.3 ± 3.2 0.334

Types of infertility (%) 0.165

  Primary infertility 30.6% (22/72) 41.7% (30/72)

  Secondary infertility 69.4% (50/72) 58.3% (42/72)

Basal FSH (IU/l) 4.7 ± 2.2 5.5 ± 6.0 0.335

Anti-Müllerian hormone (ng/mL) 2.67 ± 2.66 3.08 ± 3.41 0.426

Endometrial thickness (mm) 10.9 ± 2.3 11.1 ± 2.2 0.554

Rate of ET day (%) 0.113

  Day 3 ET 72.2% (52/72) 59.7% (43/72)

  Day 5 ET 27.8% (20/72) 40.3% (29/72)

No. of transferred embryos 2.7 ± 0.8 2.8 ± 0.9 0.922

Quality of transferred embryos (%) 0.302

  Good quality only 62.5% (45/72) 54.2% (39/72)

  Good and poor quality 36.1% (26/72) 40.3% (29/72)

  Poor quality only 1.4% (1/72) 5.6% (4/72)

Rate of at least one top-quality embryo transferred (%) 76.4% (55/72) 81.9% (59/72) 0.412

Biochemical pregnancy rate (%) 63.9% (46/72) 40.3% (29/72) 0.005

Clinical pregnancy rate (%) 54.2% (39/72) 30.6% (22/72) 0.004

Implantation rate (%) 25.8 ± 28.7 17.7 ± 31.3 0.108

Ongoing pregnancy rate (%) 47.2% (34/72) 23.6% (17/72) 0.003

Live birth rate (%) 44.4% (32/72) 22.2% (16/72) 0.005

Miscarriage rate (%) 17.9% (7/39) 27.3% (6/22) 0.393

  Early miscarriage rate (%) 12.8% (5/39) 22.7% (5/22) 0.316

  Late miscarriage rate (%) 5.1% (2/39) 4.5% (1/22) 0.919

Table 5  Analyses of factors affecting the ongoing pregnancy rate and live birth rate in RIF patients using logistic regression

RIF recurrent implantation failure, OR odds ratio, CI confidence interval, BMI body mass index, FSH follicle- stimulating hormone, AMH anti-Müllerian hormone
a Adjustment for age, BMI, infertility duration, types of infertility, basal FSH, AMH, endometrial thickness, day of embryo transfer, number of transferred embryos and 
quality of transferred embryos

Ongoing pregnancy Live birth

Adjusted ORa (95% CI) p value Adjusted ORa (95% CI) p value

Luteal GnRHa vs. control 4.55 (1.69–12.30) 0.003 4.30 (1.59–11.65) 0.004

Age (years) 0.85 (0.74–0.97) 0.014 0.85 (0.74–0.97) 0.018

BMI (kg/m2) 1.18 (0.99–1.41) 0.062 1.08 (0.91–1.28) 0.393

Infertility duration (years) 1.04 (0.87–1.24) 0.653 0.97 (0.81–1.17) 0.783

Types of infertility 0.62 (0.23–1.65) 0.333 0.67 (0.25–1.80) 0.426

Basal FSH (IU/l) 0.88 (0.70–1.10) 0.257 0.85 (0.67–1.08) 0.179

AMH (ng/mL) 1.00 (0.82–1.21) 0.988 0.97 (0.79–1.18) 0.734

Endometrial thickness (mm) 0.90 (0.73–1.10) 0.288 0.84 (0.67–1.04) 0.102

Day of embryo transfer 2.31 (0.79–6.80) 0.128 1.85 (0.63–5.43) 0.266

No. of transferred embryos 0.56 (0.29–1.07) 0.080 0.56 (0.29–1.08) 0.085

Quality of transferred embryos 0.54 (0.19–1.51) 0.237 0.47 (0.16–1.36) 0.164
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As shown in Table  5, a binary logistic regression 
analysis was conducted to analyze the effects of additional 
luteal GnRHa in GnRHa-HRT cycles on ongoing 
pregnancy and live birth in the RIF subgroup. Age, body 
mass index, infertility duration, types of infertility, basal 
FSH, AMH, endometrial thickness, day of ET, number of 
transferred embryos and quality of transferred embryos 
were considered confounding factors in this analysis. The 
multivariate analysis revealed increased odds of ongoing 
pregnancy (OR 4.55, 95% CI 1.69–12.30, P = 0.003) and 
live birth (OR 4.30, 95% CI 1.59–11.65, P = 0.004) when 
luteal GnRHa was added in RIF patients undergoing the 
GnRHa-HRT protocol. In addition, age was negatively 
associated with ongoing pregnancy and live birth.

Discussion
This retrospective cohort study is the first to explore the 
possible effects of administration of single-dose GnRHa 
in luteal phase support on IVF outcomes in patients who 
underwent GnRHa-HRT cycles, and the results showed 
that additional luteal GnRHa was associated with a higher 
ongoing pregnancy rate and live birth rate. Moreover, 
the multivariate analysis revealed a 2.04-fold increase in 
the possibility of ongoing pregnancy (95% CI 1.20–3.47, 
P = 0.008) and a 2.03-fold increase in the possibility of 
live birth (95% CI 1.20–3.45, P = 0.009) when single-
dose GnRHa was added to luteal phase support in 
patients receiving HRT cycles with GnRHa suppression. 
Luteal GnRHa administration potentially takes its 
effects in two ways: induction of endogenous pituitary 
gonadotropin release and in situ activation of GnRH-R in 
the endometrium and embryos. However, different from 
the HRT protocol, GnRHa-HRT protocol downregulates 
the pituitary and will inhibit pituitary gonadotropin 
release induced by luteal GnRHa administration. 
Therefore, luteal GnRHa supplementation in the GnRHa-
HRT protocol only takes its effects through activation 
of the locally expressed GnRH/GnRH-R system in the 
endometrium and embryos.

GnRH analogs may have the potential to act on the 
endometrium and early stages of embryos. Both GnRH 
and GnRH-R have been reported to be expressed in 
both the epithelium and the stroma of the endometrium 
and reach the highest levels in the secretory phase 
of the menstrual cycle [7, 8, 30, 31], suggesting that 
the GnRH–GnRH-R pathway has functional roles in 
endometrium receptivity and implantation. GnRHa 
therapy may enhance the expression of endometrial 
integrin αvβ3, an adhesive molecule, and implantation-
related factors, such as HOXA10 and LIF, in humans 
[11, 12] and mice [32, 33]. Furthermore, in a study of 
human decidual stromal cells, GnRH has been found to 
be able to modulate matrix metalloproteinases (MMPs) 

and their endogenous inhibitors, tissue-specific inhibitor 
of matrix metalloproteinases (TIMPs) [34], both of 
which are associated with cyclic remodeling of the 
endometrium and decidualization [35]. GnRHa has also 
been demonstrated to directly stimulate cell invasion and 
migration of human decidual endometrial stromal cells, 
a key process of embryo implantation and pregnancy 
programming [36]. These supported that GnRHa may 
facilitate endometrial receptivity and implantation. 
Moreover, both GnRH and GnRH-R have been shown to 
be present in human, mouse and porcine preimplantation 
embryos [9, 10, 13]. The levels of GnRH and GnRH-R 
significantly increased at the early blastocyst stage and 
reached their highest levels at the expanded blastocyst 
stage [10, 14]. In addition, the expression of GnRH and 
GnRH-R was detected in both the inner cell mass and 
trophectoderm cells of blastocysts [14]. These results 
implied that the GnRH–GnRH-R pathway could be 
a potential modulator of early embryo development. 
In animal models, treatment with GnRHa in culture 
medium can promote embryo development and inhibit 
apoptosis. In contrast, treatment with a GnRH antagonist 
suppressed embryo development and induced apoptosis 
via the intrinsic mitochondrial pathway, but the adverse 
effects could be reversed by cotreatment with GnRHa 
[10, 13, 14]. In addition, treatment with GnRH antagonist 
in mouse blastocysts significantly reduced the levels of 
EGF and IGF-II [14], which have been reported to be 
associated with embryo development and inhibition of 
apoptosis in blastocysts [37, 38]. In a study of human 
extravillous cytotrophoblasts, GnRHa was suggested to 
have the capacity to promote trophoblast invasion by 
regulating the expression of urokinase-type plasminogen 
activator (uPA) and plasminogen activator inhibitor 
(PAI-1) [39]. Additionally, GnRHa could regulate the 
synthesis and secretion of hCG in the preimplantation 
embryo and placenta [40, 41]. This suggests that GnRHa 
may be involved in early embryo development.

Taken together, GnRH analogs play an important role 
in the establishment of receptive endometrium and the 
development of peri-implantation embryos, by which 
GnRHa could facilitate successful implantation and 
pregnancy. However, more human studies are required 
to confirm the effects of GnRHa on the endometrium 
and embryos. A Cochrane meta-analysis including 10 
randomized controlled trials (RCTs) and 2861 women 
demonstrated that live birth or ongoing pregnancy rates 
were higher in the progesterone plus GnRHa group 
than in the progesterone-only group [15]. Several other 
systematic reviews and meta-analyses reported similar 
results [16–18]. Furthermore, a systematic review and 
network meta-analysis of 89 RCTs with 29,625 women 
was performed to compare the effectiveness and safety 
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of various methods of luteal phase support and showed 
that the addition of GnRHa to progesterone significantly 
improved the live birth rate compared to progesterone 
alone [42]. Another systematic review and network meta-
analysis aimed to evaluate the effectiveness and safety 
of multiple-dose versus single-dose GnRHa protocols 
for luteal phase support in patients undergoing IVF/
ICSI cycles. The results indicated that the multiple-
dose GnRHa protocol might be the best strategy for 
improving the live birth rate and clinical pregnancy rate 
[43]. Nevertheless, these meta-analyses only included 
patients undergoing fET cycles. In terms of FET cycles, a 
systematic review and meta-analysis demonstrated that 
GnRHa administration in the luteal phase improved the 
clinical pregnancy rate in FET cycles, and the beneficial 
effect was similar to fresh cycles [19]. These studies 
supported our results in this article. However, a recent 
RCT including a total of 287 HRT–FET cycles showed no 
significant benefit in live birth rate and clinical pregnancy 
rate by administering two GnRHa boluses [44]. Therefore, 
more large-scale RCTs are needed to verify the beneficial 
effects of luteal GnRHa administration on IVF outcomes, 
especially in FET cycles.

Impaired endometrial receptivity and poor embryo 
quality were the two key causes of RIF [45]. The 
endometrium of the RIF patients showed decreased 
LIF expression and dysregulated LIF signaling [46, 
47]. GnRHa therapy may boost the expression of 
implantation-related factors, such as HOXA10 and LIF 
[11, 12, 32, 33]. As mentioned above, culture medium 
with GnRHa can enhance embryo development 
and inhibit apoptosis [10, 13, 14]. Furthermore, 
immunological factor, such as altered Th1/Th2 ratio 
and imbalances of natural killer cells, might be another 
possible cause of RIF [45]. GnRHa was reported to play 
a direct role in immune modulation in patients with 
RIF and adenomyosis [48, 49]. Thus, we speculated that 
additional GnRHa administration during the luteal phase 
may have a beneficial effect on reproductive outcomes 
in women with RIF. The multivariate analysis of our 
study supported this speculation, showing a 4.55-fold 
increase in the possibility of ongoing pregnancy (95% 
CI 1.69–12.30, P = 0.003) and a 4.30-fold increase in the 
possibility of live birth (95% CI 1.59–11.65, P = 0.004) 
when luteal GnRHa was added to progesterone in RIF 
patients undergoing GnRHa-HRT cycles. However, 
we must interpret the data from the subgroup analysis 
discreetly because of the small population. More large-
scale studies are required to prove our results.

One concern regarding GnRHa-HRT protocol 
is whether GnRH-R in the endometrium is also 
downregulated by long-acting GnRHa. Our data 
showed that luteal GnRHa administration still took 

effects in the GnRHa-HRT cycles. There might be four 
possibilities. First, GnRH-R in the endometrium was 
not downregulated by long-acting GnRHa. Second, 
long-acting GnRHa downregulated GnRH-R in the 
endometrium, but its effects faded out at the time of 
luteal GnRHa administration. Third, GnRH-R in the 
endometrium was downregulated by long-acting GnRHa. 
However, newly GnRH-R in the endometrium expressed 
during the luteal phase and was not downregulated by 
the long-acting GnRHa. Fourth, long-acting GnRHa 
downregulated GnRH-R in the endometrium and its 
effects continued during the luteal phase. The beneficial 
effects of luteal GnRHa administration came from 
acting on embryos. Further studies are required to 
investigate the issue. However, studies revealed that 
luteal GnRHa administration could improve fresh IVF 
outcomes under GnRHa long protocol [42]. Moreover, 
Xu et  al. demonstrated that higher mRNA and protein 
expression of HOXA10, MEIS1 and LIF in endometrium 
were observed in the depot GnRHa protocol compared 
to the long GnRHa and GnRH antagonist protocols 
[12]. These studies seemed to support that GnRH-R in 
the endometrium was not downregulated by GnRHa. 
Nevertheless, more studies are needed to confirm the 
assumption.

This study has several limitations. First, the main 
limitation of this study was its retrospective design and 
limited sample size. Large-scale RCTs are needed to verify 
our results. Next, whether to administer luteal GnRHa 
was determined on the basis of patients’ consideration 
and preference after physician consultation, which may 
introduce bias. Patients may refuse to use it because of 
financial pressure. Moreover, embryo selection was based 
on morphological grading, not euploidy, because PGT-A 
has not been widely used in our center. Therefore, the 
confounding effects from embryo aneuploidy could not 
be excluded. Fourth, the data from the subgroup analysis 
should be interpreted cautiously on account of the 
potential bias from the small population.

In conclusion, our data suggest that single-dose 
administration of GnRHa during the luteal phase may 
improve the live birth rate in patients undergoing the 
GnRHa-HRT protocol.
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