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Abstract 

Background  In utero environments can be highly influential in contributing to the development of offspring obe-
sity. Specifically, vitamin D deficiency during pregnancy is associated with adverse maternal and child health out-
comes, however its relationship with offspring obesity remains unclear. We assessed maternal vitamin D status across 
pregnancy, change in plasma vitamin D concentrations and associations with neonatal birthweight, macrosomia and 
large for gestational age.

Methods  Women (n = 221) aged 18–40 years with singleton (low-risk) pregnancies, attending antenatal clinics at a 
tertiary-level maternity hospital were recruited at 10–20 weeks gestation. Medical history, maternal weight and blood 
samples at three antenatal clinic visits were assessed; early (15 ± 3 weeks), mid (27 ± 2 weeks) and late (36 ± 1 weeks) 
gestation. Maternal 25(OH)D was analysed from stored plasma samples via liquid chromatography-tandem mass 
spectrometry (LC/MS/MS). Neonatal growth parameters were collected at birth. Unadjusted and adjusted linear and 
logistic regression assessed associations of maternal vitamin D with birthweight, macrosomia and large for gestational 
age.

Results  Mean plasma 25(OH)D increased from early (83.8 ± 22.6 nmol/L) to mid (96.5 ± 28.9 nmol/L) and late 
(100.8 ± 30.8 nmol/L) gestation. Overall 98% of women were taking vitamin D-containing supplements throughout 
their pregnancy. Prevalence of vitamin D deficiency (25(OH)D < 50 nmol/L) was 6.5%, 6.3% and 6.8% at early, mid and 
late pregnancy respectively. No statistically significant association was found between 25(OH)D or vitamin D defi-
ciency at any timepoint with neonatal birthweight, macrosomia or large for gestational age.

Conclusions  Prevalence of vitamin D deficiency was low in this cohort of pregnant women and likely related to 
the high proportion of women taking vitamin D supplements during pregnancy. Maternal 25(OH)D did not impact 
offspring birth weight or birth size. Future studies in high-risk pregnant populations are needed to further assess 
maternal vitamin D status and factors in utero which promote early life obesity.
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Background
Prevalence of childhood overweight and obesity are 
increasing globally [1, 2] and macrosomia (birth-
weight > 4000 g) [3, 4] and large for gestational age (LGA) 
[5] are established factors which independently predict 
risk of future adiposity and early childhood obesity [6–8]. 
Over the past decade, there has been an upwards trend 
of increasing birthweight across developed countries [9], 
with a number of modifiable factors such as maternal 
obesity, poor diet quality and physical inactivity during 
pregnancy having been shown to impact propensity for 
high birthweight, macrosomia and offspring adiposity 
[10–12]. Assessment of factors in utero which might pre-
dispose offspring to high birthweight is a necessary step 
in understanding maternal–fetal interactions and may 
inform novel and much needed approaches to under-
standing predictors of offspring overweight and obesity 
[1].

Emerging evidence has shown that vitamin D defi-
ciency (VDD) (25-hydroxyvitamin D concentration 
(25(OH)D) below 50  nmol/L (20  ng/mL)) [13] during 
pregnancy increases the risk for multiple adverse obstet-
ric and neonatal health outcomes [14–16]. Immune 
regulation of pregnancy progression is largely depend-
ent on vitamin D homeostasis during pregnancy [17] 
and adequate maternal vitamin D during pregnancy is 
critical to meet fetal calcium demands [18] and support 
healthy embryonic development [19]. Pregnant women 
are considered a ‘high risk’ group for VDD with an esti-
mated prevalence of 50—80% [20–22] and low levels of 
maternal vitamin D during pregnancy have been associ-
ated with impaired fetal growth [23], including low birth-
weight (LBW) and small for gestational age (SGA) births 
[19, 24–27].

Given that evidence points to vitamin D playing a role 
in increasing lipolysis and fatty acid oxidation while 
decreasing adipogenesis [28], and that VDD in adults has 
been associated with obesity [29, 30] and metabolic syn-
drome [28, 30], exploring the role of maternal vitamin D 
in development of neonatal birthweight and birth size is 
an important step in assessing and further understand-
ing modifiable risk factors for early life obesity. Recently, 
some evidence has emerged showing that low maternal 
vitamin D levels are associated with increased offspring 
adiposity in childhood and adolescence [31], although 
the causal relationship is unclear [31]. Some studies have 
also shown levels of maternal 25(OH)D to be significantly 
lower in LGA babies, compared to babies born SGA [32] 
and cord blood 25(OH)D to be significantly lower in 

LGA neonates compared to those born between 3000 g 
– 4000 g [33]. Yet, conflicting results have been observed 
overall [24, 34] and variation in diagnostic measurement 
of 25(OH)D, lack of longitudinal assessment of maternal 
25(OH)D across pregnancy [19], variation in gestational 
week of sampling and adjustment for seasonal variation 
may in part have contributed to inconsistent results [34].

Whilst only a very small proportion of vitamin D is 
obtained via dietary sources including oily fish and eggs, 
vitamin D produced endogenously from sunlight is the 
most important and abundant source, stimulating pro-
duction of 1,25-dihydroxyvitmain D3 (the biologically 
active form of vitamin D) through a two-step process 
of hydroxylation within the liver and then the kidneys. 
Women born in Asia, the Middle East and Africa are 
widely recognised as being at ‘high risk’ for VDD [15, 35] 
due to a range of biological and cultural characteristics. 
Factors including dark skin pigmentation [36] and wear-
ing of covered clothing due to religious reasons [37] can 
contribute to women from these regions being more vul-
nerable to VDD during pregnancy. Plasma concentra-
tions of vitamin D can further vary depending on latitude 
and air pollution [17], but vitamin D supplementation 
during pregnancy is recognised as a safe and effective 
approach to prevent deficiency [38]. The objectives of 
this study were to assess maternal vitamin D status across 
pregnancy, evaluate changes in plasma 25(OH)D concen-
trations with pregnancy progression and assess associa-
tions with neonatal birthweight, macrosomia and LGA, 
in a sample of low-risk pregnant women in Australia.

Methods
Study design and sampling
This was a retrospective longitudinal study involving 
women with low-risk pregnancies, and involved second-
ary analysis of data collected as part of the Creatine in 
Pregnancy Outcomes study (CPO) [39]. Further details 
of the CPO study protocol, recruitment of women and 
methodology have been reported previously [39]. Briefly, 
we analysed data from a sample of 221 women included 
in the original CPO study who attended low-risk ante-
natal clinics and were planning to give birth at Monash 
Health in Melbourne, Australia. Monash Health pro-
vides antenatal healthcare to more than 9,000 women 
each year across South-East Melbourne and is one of the 
largest maternity providers in the state of Victoria [40]. 
Women were recruited from antenatal clinics between 
10–20  weeks gestation and at consent elected to have 
samples, collected as part of the CPO study, stored as a 
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biobank for future research approved by Monash Health. 
Ethical approval for the original CPO study was granted 
in August 2015 from Monash Health (Ref 14140B) and 
Monash University (Ref 7785) and the current study was 
granted ethical approval in July 2109 by the Deakin Uni-
versity Human Research Ethics Committee (DUHREC) 
(2019–282). All methods were carried out in accordance 
with organisational ethical guidelines and regulations 
and informed consent was received prior to participation 
in the study as per ethical regulations.

Inclusion / exclusion criteria
Women were included in the CPO study if they were aged 
18–40, with a singleton pregnancy and were between 
10–20  weeks gestation at recruitment. Women needed 
to be classified as having a ‘low-risk’ pregnancy, meaning 
they had no known pre-existing medical or obstetric con-
dition. Women were excluded if they were non-English 
speaking, had a non-singleton pregnancy, had been pre-
viously diagnosed with Type 1 or Type 2 diabetes, were 
taking creatine supplements during pregnancy, disclosed 
ongoing alcohol or illicit drug use during pregnancy, or 
who were not attending their antenatal appointments 
as part of routine hospital care. The original CPO study 
included data for 284 women collected from 2015 to 
2017. A minimum two blood samples collection at two 
different visits for plasma 25(OH)D analyses was set as 
criterion for inclusion into the current study.

Measurement of study variables
This study used health and medical history data 
and blood samples collected at three time-points 
(mean ± SD); 15 ± 3  weeks gestation, 27 ± 2  weeks ges-
tation and 36 ± 1  weeks gestation. We defined these 
timepoints as early pregnancy, mid pregnancy and late 
pregnancy, respectively. Demographic data included 
maternal age, education, parity, smoking status and sex 
of the baby. Region of birth was defined using the cat-
egories: Australian / New Zealand (Australia and New 
Zealand); Asian / South Asian (India, Nepal, China, 
Afghanistan, Singapore, Sri Lanka, Philippines, Malaysia, 
Pakistan, Bangladesh, Thailand); European / UK / Can-
ada (Russia, Switzerland, Ireland, UK, Canada, Greece, 
France, Scotland, Poland, Germany, England); Middle 
Eastern / African/ South American (Lebanon, Israel, 
Kuwait, Iran, Venezuela, Mauritius, Ghana, Ethiopia, 
Colombia). The categories Asian / South Asian and Mid-
dle Eastern / African / South American were combined 
to define a ‘high risk’ cultural group for VDD, as women 
born in these regions are considered at higher risk for 
deficiency [15, 36]. Medical history data (e.g. pre-existing 
medical conditions and gestational diabetes diagnosis 
(GDM)) was recorded form hospital medical records and 

detail regarding whether women were taking a vitamin 
D-containing supplements (no supplement; vitamin D 
only; a pregnancy multivitamin (contains some vitamin 
D but a lower dose than ‘vitamin D only’ supplements); 
vitamin D supplement plus a pregnancy multivitamin) 
were collected at the first antenatal visit.

Anthropometry
Women’s height (cm) at the first antenatal clinic visit 
and weight (kg) using calibrated industrial scales at 
each clinic visit were measured by trained researchers. 
Maternal gestational weight gain (GWG) was calculated 
as weight at late pregnancy minus weight at early preg-
nancy and body mass index (BMI) (kg/m2) was calculated 
by using World Health Organisation (WHO) BMI crite-
ria, to categorise women as either healthy weight, over-
weight or obese [41]. Neonatal growth parameters were 
recorded at delivery and all outcomes reported in this 
study were extracted by trained, hospital-based research-
ers from the Monash Health Birthing Outcomes System 
(BOS) database, which uses a standardized method of 
reporting perinatal data in Victoria, Australia. Birth-
weight > 4000  g was used to classify macrosomia as is 
standard criteria and widely accepted [42–44]. Low birth 
weight was defined at < 2500  g as is also standard crite-
ria [45]. For babies born full term, WHO growth percen-
tiles were used to define SGA (< 10th percentile at birth) 
[45, 46] and LGA (> 90th percentile at birth) [42]. Fenton 
Growth Charts for Preterm Infants (< 37 weeks) [47, 48] 
were used to classify preterm babies (n = 9) as SGA and 
LGA.

Plasma 25‑hydroxyvitamin D
A databank and biobank of blood samples were collected 
at the five antenatal clinic visits as part of the original 
CPO study. Since few studies have assessed longitudi-
nal maternal 25(OH)D concentrations [49], we deemed 
assessment of plasma vitamin D at three antenatal vis-
its suitable for this study, which enabled change in con-
centration across early, mid and late pregnancy to be 
assessed. For each woman, blood samples at a first (early 
pregnancy), third (mid pregnancy) and fifth (late preg-
nancy) antenatal visit were prioritised. If samples were 
not available at the third or fifth visit, samples were ana-
lysed from visit four or five. It was important to allow 
maximum time between samples analysed given the half-
life of plasma 25(OH)D can be up to 25 days [50, 51] and 
up to 82 days following supplementation with vitamin D 
[51, 52].

Plasma 25(OH)D was assessed by liquid chroma-
tography-tandem mass spectrometry (LC/MS/MS) 
using a Shimadzu Nexeria ultra performance LC sys-
tem with a Sciex 3200QTRAP (SCIEX, Concord, ON, 
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Canada) at Monash Health Pathology. The intra-assay 
CV was 5.8% at 15.6  nmol/L, 6.0% at 58.0  nmol/L and 
3.0% at 140 nmol/L and the inter-assay CV was %. 7.2% 
at 34.9  nmol/L, 6.9% at 150  nmol/L. The LC/MS/MS 
method is considered the global reference standard for 
quantifying 25(OH)D [53, 54]. Vitamin D deficiency 
was defined as plasma 25(OH)D < 50 nmol/L as per cut-
points across multiple countries [55–57] and defined by 
the Endocrine Society Task Force on vitamin D [13].

Statistical analyses
Data were analysed using STATA/SE statistical software 
version 16.0. Descriptive analyses were used to sum-
marise maternal demographics, neonatal outcomes and 
maternal vitamin D levels, and are reported as either 
mean ± SD or n (%). For the 221 women in the analysis 
sample, multiple imputation by chained equations was 
used to impute missing data (50 imputed datasets), and 
inferential analyses were conducted by combining esti-
mates from each of the imputed datasets using Rubin’s 
rules. Under the data missing at random assumption, 
multiple imputation analyses are known to provide less 
biased estimates than available or complete case analy-
sis [58]. Available case analyses using the un-imputed 
data were also conducted as a sensitivity analysis. Asso-
ciations between vitamin D exposure variables (mater-
nal plasma 25(OH)D (nmol/L) and VDD) at early, mid 
and late pregnancy and continuous (birth length and 
weight, maternal GWG and BMI) and binary (macroso-
mia, LGA) outcomes were tested by fitting both unad-
justed and adjusted linear and logistic regression models, 
respectively using well established known confounders 
and covariates used previously in assessment of mater-
nal vitamin D and neonatal outcomes [19, 22, 34, 59]. 
We adjusted for region of birth in all models. For neona-
tal length and birthweight outcomes, maternal age, ges-
tational length and smoking were additionally adjusted 
for; for macrosomia and LGA outcomes, maternal age 
and early pregnancy BMI were additionally adjusted for 
[43]. For maternal GWG and final BMI outcomes, early 
pregnancy BMI and education were additionally adjusted 
for [60–62]. Season of 25(OH)D sample collection was 
defined as either summer (December-February), autumn 
(March–May), winter (June–August) or spring (Septem-
ber–November). The average ultra violet index (UBI) 
measures for summer, autumn, winter and spring in Mel-
bourne across the two-year time period of data collection 
were 10.0, 4.6, 2.2 and 6.5 respectively [63] (Supplemen-
tary data). However, season was not found to be associ-
ated with vitamin D exposure variables (data not shown) 
so was therefore not adjusted for in the final analyses. 
Statistical significance was set as p < 0.05.

Results
Participants
Of 273 women who were eligible to be included in 
the analyses, fifty-one women were not included due 
to missing data for vitamin D at all three timepoints 
(n = 34) and/or, all child outcomes (n = 31) and/or, all 
demographic data (n = 42). This left available data for 
222 women. One woman was further excluded as she 
was taking glucocorticoid steroid medication but not 
vitamin D supplements, which would likely impact 
25(OH)D levels [64]. Data were included for 221 
women, of which 7 women had one available vitamin 
D sample measured (due to insufficient sample avail-
able for two further measures), 92 women had two 
samples measured and 122 women had all three sam-
ples measured.

Demographic characteristics of the study cohort are 
presented in Table  1. The mean age of the women was 
31.5  years. Just over half (56.1%) were born in Aus-
tralia or New Zealand. On average, women delivered at 
39.2 weeks gestation. Almost half of the women (46.4%) 
were first time mothers and three quarters (77.1%) were 
tertiary educated. Almost all women (96.4%) were non-
smokers. Mean maternal BMI was 25.2  kg/m2 at early 
pregnancy and 29.2 kg/m2 at late pregnancy. Mean GWG 
was 11.0  kg and 9.6% of women were diagnosed with 
GDM during their pregnancy. An approximately equal 
proportion of babies born were male (51.6%) and female 
(48.4%) and mean birthweight was 3401.7  g. In total 
12.7% of babies were born macrosomic, 12.2% were LGA, 
3.6% of babies had low birth weight and 7.2% were born 
SGA.

Maternal vitamin D and use supplements
Data summarising individual maternal vitamin D lev-
els and mean (95% CI) levels across pregnancy are pre-
sented in Fig. 1. Mean (95% CI) 25(OH)D levels at early, 
mid and late pregnancy were 83.8  nmol/L (80.5–87.0), 
96.5 nmol/L (92.5–100.4) and 100.8 nmol/L (96.0–105.6) 
respectively. Differences in 25(OH)D levels at early, mid 
and late pregnancy and use of vitamin D supplements 
is presented in Table  2. There was a statistically signifi-
cant increase in mean 25(OH)D levels from early preg-
nancy (83.8  nmol/L) to mid pregnancy (96.5  nmol/L) 
and late pregnancy (100.8  nmol/L). Overall, 6.5%, 6.3% 
and 6.8% of women were vitamin D deficient at early, 
mid and late pregnancy, respectively. Of the total num-
ber of women who were deficient at early, mid and late 
pregnancy (n = 36), eight women were deficient at multi-
ple (two or three) timepoints with the remaining women 
being deficient at one timepoint only. Almost all women 
(97.7%) were reportedly taking some form of vitamin 
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D-containing supplement during pregnancy with 6.5% of 
women taking vitamin D only, 37.4% taking a pregnancy 
multivitamin only and over half (56.1%) taking a vitamin 
D supplement plus a pregnancy multivitamin. Of the five 
women who were not taking any form of vitamin D-con-
taining supplement, one woman was VDD and this was 
at early pregnancy only. Over one third (35.3%) of women 
were born in Asia / South Asia and Middle East/ Africa / 
South America and therefore classified as ‘high risk’ for 
VDD. Of these ‘high risk’ women, 70.5% were report-
edly taking a vitamin D supplement plus a pregnancy 
multivitamin and 21.8% were taking just a pregnancy 
multivitamin.

Associations of maternal vitamin D with birthweight, 
macrosomia and large for gestational age
Associations of maternal vitamin D across pregnancy 
with neonatal birthweight are presented in Table 3. In the 
unadjusted analyses, there was a statistically significant 
association between early pregnancy plasma 25(OH)D 
and birth length (0.02 cm, 95% CI, 0.00, 0.03, p = 0.020), 
however the association was no longer statistically sig-
nificant when the model was adjusted for important con-
founders (0.01 cm, 95% CI, 0.00, 0.02, p = 0.081). In the 
adjusted models, no statistically significant associations 
were found between plasma 25(OH)D across pregnancy 
and birth length, birthweight, LGA and macrosomia. 
Further, no statistically significant associations were 
found between VDD (plasma 25(OH)D < 50 nmol/L) and 
any neonatal outcomes at early, mid or late pregnancy. A 
separate sub-group analysis was conducted for women 
diagnosed with GDM (9.6%) which assessed correlations 
of plasma vitamin D with birthweight. In the unadjusted 
model there was a positive relationship between early 
pregnancy vitamin D and birthweight (r = 0.56, n = 20, 
p = 0.011) but no significant correlation with mid or late 
pregnancy vitamin D and birthweight (data not shown). 
We were unable to conduct any adjusted regression anal-
ysis for women with GDM due to the small proportion of 
available cases.

Associations of maternal vitamin D with gestational weight 
gain and BMI
Associations of maternal vitamin D across pregnancy 
with maternal GWG and BMI are presented in Table 4. 
Both mid and late pregnancy plasma 25(OH)D were neg-
atively associated with late pregnancy BMI (-0.03 kg, 95% 
CI, -0.06, -0.01, p = 0.003 and -0.04, 95% CI, -0.06,—0.01, 
p = 0.02 respectively) in the unadjusted analyses. In the 
adjusted analyses, no statistically significant associations 
were found between plasma 25(OH)D at early, mid or 
late pregnancy with maternal GWG or BMI. Vitamin D 
deficiency at mid pregnancy was negatively associated 
with GWG (-3.13  kg, 95% CI, -5.62, -0.65, p = 0.014) in 
the unadjusted analyses and this relationship remained 
statistically significant in the adjusted model (-2.70  kg, 
95% CI, -5.23, -0.17, p = 0.037). There were no statisti-
cally significant associations found between VDD and at 
early or late pregnancy with GWG or BMI.

Discussion
The main findings from this study were that neither 
plasma 25(OH)D measures at early, mid or late preg-
nancy, or VDD (plasma 25(OH)D < 50  nmol/L) were 
associated with neonatal birth length, birthweight, 

Table 1  Demographic characteristics of the study cohort

n = 221 unless otherwise specified; BMI (body mass index); GWG (gestational 
weight gain); GDM (gestational diabetes mellitus); LGA (large for gestational 
age); SGA (small for gestational age)

Characteristics Mean ± SD or n (%)

Maternal age (years) 31.5 ± 3.9

Gestation at delivery (n = 220) 39.2 ± 1.6

Parity (n = 211)

  1 98 (46.4%)

  2 88 (41.7%)

  3 25 (11.8%)

Education (n = 179)

  Tertiary 138 (77.1%)

  Sub-tertiary 41 (22.9%)

Region of birth

  Australia / New Zealand 124 (56.1%)

  Asia/ South Asia 65 (29.4%)

  Europe / UK / Canada 19 (8.6%)

  Middle East / Africa / South America 13 (5.9%)

Smoking

  Non-smoker 213 (96.4%)

  Current smoker 8 (3.6%)

  Early pregnancy BMI (kg/m2) 25.2 ± 4.7

  Late pregnancy BMI (kg/m2) (n = 220) 29.2 ± 4.8

  GWG (kg) (n = 220) 11.0 ± 4.6

  Diagnosed with GDM (n = 208) 20 (9.6%)

Sex of baby

  Male 114 (51.6%)

  Female 107 (48.4%)

  Birth weight (g) 3401.7 ± 540.7

  Birth length (cm) (n = 216) 50.0 ± 2.5

  Macrosomia 28 (12.7%)

  LGA 27 (12.2%)

  Low birth weight 8 (3.6%)

  SGA 16 (7.2%)
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Fig. 1  Individual and mean (95% CI) levelsª of maternal 25(OH)D at early, mid and late pregnancy

Table 2  Mean maternal vitamin D levels across pregnancy and use of vitamin D supplements

*Paired-samples t-test result p < 0.05 comparing mean (SD) of early pregnancy vitamin D and mid pregnancy vitamin D **Paired-samples t-test result p < 0.05 
comparing mean (SD) of early pregnancy vitamin D and late pregnancy vitamin D

ªVitamin D deficiency defined as serum 25(OH)D < 50 nmol/L
b Region of birth considered high risk for vitamin D deficiency (includes Asia/ South Asia/ Middle East/ Africa/ South America); 
c Region of birth considered not high risk for vitamin D deficiency (includes Australia/New Zealand/ Europe/ UK/ Canada)

Vitamin D measure mean ± SD or n (%)

Serum 25(OH) D (nmol/L)

  Early pregnancy (n = 185) 83.8 ± 22.6

  Mid pregnancy (n = 208) 96.5 ± 28.9*

  Late pregnancy (n = 162) 100.8 ± 30.8**

Vitamin D deficiencyª

  Early pregnancy (n = 185) 12 (6.5%)

  Mid pregnancy (n = 208) 13 (6.3%)

  Late pregnancy (n = 162) 11 (6.8%)

  Taking pregnancy vitamin D supplement (n = 219) 214 (97.7%)

  vitamin D supplement only (n = 214) 14 (6.5%)

  Pregnancy multivitamin only (n = 214) 80 (37.4%)

  vitamin D supplement plus pregnancy multivitamin (n = 214) 120 (56.1%)

Vitamin D supplement use by region of birth (n = 219) mean ± SD or n (%)
High risk for vitamin D deficiencyb 78 (35.3%)

vitamin D supplement only 5 (6.4%)

Pregnancy multivitamin only 17 (21.8%)

vitamin D supplement plus pregnancy multivitamin 55 (70.5%)

Not taking any form of VD supplement 1 (1.3%)

Not high risk for vitamin D deficiencyc 145 (64.7%)

vitamin D supplement 9 (6.3%)

Pregnancy multivitamin only 63 (44%)

vitamin D supplement plus pregnancy multivitamin 65 (45.5%)

Not taking any form of VD supplement 4 (2.6%)
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Table 3  Associations of maternal vitamin D across pregnancy with neonatal outcomes

Vitamin D measureª Neonatal outcome β (95% CI) OR (95% CI) P-value

Early pregnancy
  Crude Birth length (cm) 0.02 (0.00, 0.03) 0.020

Birthweight (g) 2.12 (-1.22, 5.47) 0.212

LGA 1.01 (0.99, 1.03) 0.433

Macrosomia 1.01 (0.99, 1.03) 0.415

  Adjustedc Birth length (cm) 0.01 (0.00, 0.03) 0.081

Birthweight (g) 0.37 (-2.52, 3.26) 0.801

LGA 1.01 (0.99, 1.03) 0.589

Macrosomia 1.00 (0.98, 1.02) 0.689

Mid pregnancy
  Crude Birth length (cm) 0.01 (0.00, 0.02) 0.054

Birthweight (g) 0.96 (-1.64, 3.56) 0.468

LGA 1.00 (0.98, 1.01) 0.512

Macrosomia 0.99 (0.98, 1.00) 0.195

  Adjustedc Birth length (cm) 0.01 (0.00, 0.02) 0.226

Birthweight (g) -0.70 (-2.85, 1.45) 0.522

LGA 1.00 (0.98, 1.01) 0.629

Macrosomia 0.99 (0.98, 1.01) 0.262

Late pregnancy
  Crude Birth length (cm) 0.01 (-0.01, 0.02) 0.411

Birthweight (g) -0.10 (-2.74, 2.55) 0.943

LGA 0.99 (0.98, 1.01) 0.216

macrosomia 0.99 (0.98, 1.01) 0.327

  Adjustedc birth length (cm) 0.01 (0.00, 0.02) 0.302

birthweight (g) -0.04 (-2.17, 2.09) 0.971

LGA 0.99 (0.98, 1.01) 0.332

macrosomia 1.00 (0.98, 1.01) 0.555

Vitamin D deficiencyb Neonatal outcome β (95% CI) OR (95% CI) P-value
Early pregnancy
  Crude birth length (cm) -0.84 (-2.26, 0.59) 0.248

birthweight (g) -159.53 (-470.47, 151.41) 0.313

LGA 0.63 (0.08, 4.94) 0.656

macrosomiad - -

  Adjustedc birth length (cm) 0.11 (-1.12, 1.34) 0.858

birthweight (g) 58.67 (-206.12, 323.46) 0.662

LGA 0.83 (0.010, 6.92) 0.861

macrosomiad -

Mid pregnancy
  Crude birth length (cm) -1.07 (-2.73, 0.59) 0.204

birthweight (g) -144.92 (-481.00, 191.16) 0.395

LGA 1.27 (0.26, 6.08) 0.769

macrosomia 1.29 (0.27, 6.10) 0.749

  Adjustedc birth length (cm) -0.05 (-1.36, 1.25) 0.936

birthweight (g) 128.39 (-134.94, 391.71) 0.337

LGA 1.22 (0.23, 6.35) 0.813

macrosomia 1.30 (0.25, 6.81) 0.760
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macrosomia or LGA in a sample of 221 women resid-
ing in Melbourne, Australia, attending low-risk antena-
tal clinics. Furthermore, we found that there was a low 
prevalence (< 7%) of VDD across pregnancy. This finding 
likely related to the high proportion of women (98%) who 
reported taking some form of vitamin D-containing sup-
plements during pregnancy. These findings are important 
in the context of assessing and understanding in utero 
environments in shaping early life weight gain, in light 
of a dramatic increase in global prevalence of childhood 
obesity throughout the past few decades [65].

Contrary to our hypothesis, we observed no significant 
associations between plasma 25(OH)D or VDD at any 
timepoint in pregnancy with birthweight, macrosomia 
and LGA. Broadly, VDD has been shown to be associ-
ated with obesity yet the mechanisms of cause are not 
well understood [66]. During pregnancy, understand-
ing the relationship is even more complex and it is likely 
that genetic factors play a role in the interaction between 
vitamin D and offspring adiposity [31]. This, along with 
additional modifiable factors such as maternal dietary 
macronutrient and micronutrient intake, the widespread 
use of vitamin D supplements amongst nearly all (98%) 
women in our study and the fact that their mean plasma 
25(OH)D concentrations ranged from 84 to 101 nmol/L 
throughout pregnancy, likely influenced our findings and 
the relationship between maternal vitamin D and birth-
weight outcomes more broadly.

Of the limited number of studies that have assessed 
the relationship of VDD and neonatal growth to date, 
findings have been mixed [22, 24, 67] and significant 
associations have been shown to vary by pregnancy tri-
mester. For example, in a study of pregnant women in 
Spain (n = 2358), maternal vitamin D was measured at 

13–15  weeks gestation. Deficiency (defined as 25(OH)
D < 20  ng/ml or < 69  nmol/L) was evident in 19.6% of 
women and was shown to predict fetal overweight 
(fetal weight ≥ 90th percentile) and abdominal adiposity 
(abdominal circumference ≥ 90th percentile) at birth [31]. 
In a separate study of Chinese women who had vitamin D 
assessed during the second (n = 11,634) and third trimes-
ter of pregnancy (n = 6609), median 25(OH)D concentra-
tion was found to be ~ 66  nmol/L, an maternal vitamin 
D in the third but not second trimester was negatively 
associated with macrosomia but not with birthweight, 
after adjustment for multiple confounders [67]. Variation 
in assessment timepoints of vitamin D during pregnancy, 
difference in the techniques used to analyse 25(OH)D, 
variation in cut points used to define VDD or variation 
in adjustment for critical confounders such as season of 
sample collection likely explain the observed inconsistent 
results across studies. However, in our study the lack of 
any significant associations with birthweight, macroso-
mia and LGA is likely related to the finding that vitamin 
D status was adequate in the vast majority of women 
across pregnancy with < 7% observed to have levels below 
50 nmol/L, widely regarded as insufficient or deficient.

It is well established that overweight and obesity are 
independent risk factors for maternal VDD [61, 68] and 
are components of the screening criteria used to classify 
women as clinically ‘high risk’ for VDD [66]. While we 
did not assess pre-pregnancy BMI as part of this study, 
the assessment of maternal weight gain across pregnancy 
is an important consideration in the context of monitor-
ing maternal vitamin D status. In our study, we assessed 
secondary outcomes of maternal weight status and found 
that plasma 25(OH)D levels at both mid and late preg-
nancy were negatively associated with late pregnancy 

Table 3  (continued)

Vitamin D measureª Neonatal outcome β (95% CI) OR (95% CI) P-value

Late pregnancy
  Crude birth length (cm) -0.06 (-1.66, 1.54) 0.940

birthweight (g) 110.86 (-221.38, 443.10) 0.510

LGA 1.61 (0.36, 7.18) 0.530

macrosomia 1.71 (0.37, 7.93) 0.490

  Adjustedc birth length (cm) -0.15 (-1.45, 1.15) 0.818

birthweight (g) 91.75 (-181.93, 365.44) 0.508

LGA 1.43 (0.31, 6.71) 0.647

macrosomia 1.56 (0.31, 7.81) 0.587

ªSerum 25(OD)D
b vitamin D deficiency defined as defined as serum 25(OH)D < 50 nmol/L; birth length and birth weight (continuous outcomes); LGA and macrosomia (binary 
outcomes); LGA (large for gestational age)

ͨAdjusted models (adjusted for maternal age, gestation length, region of birth and smoking status, for neonatal length and birthweight outcomes, maternal age, 
region of birth and early pregnancy BMI for macrosomia and LGA)
d insufficient cell numbers and precision/ power/ robustness therefore macrosomia omitted from this model
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BMI in the unadjusted model only, but this did not per-
sist after adjusting for confounders. However, in both the 
unadjusted and adjusted analyses, mid pregnancy VDD 
but neither early nor late pregnancy VDD, was negatively 
associated with total GWG. It is not entirely clear why 
this relationship was observed at only mid pregnancy and 
only very few studies to date have assessed the relation-
ship between maternal vitamin D status and total GWG 
and results have been conflicting [60, 69, 70]. Interest-
ingly in their prospective cohort study of 163 Brazil-
ian women, Figueiredo et  al. found that only in women 

who were overweight at the beginning of pregnancy, but 
not those who were a healthy weight, vitamin D inad-
equacy (25(OH)D < 50 nmol/L) in the first and third tri-
mesters, but not in the second trimester, was associated 
with higher increases in GWG compared to vitamin D 
adequacy [60]. Assessment of GWG is complex as mater-
nal weight is comprised of multiple components, with 
fat reserves accounting for roughly one third of the total 
weight gain. How vitamin D status impacts total GWG, 
fat mass or other components specifically, or how vita-
min D levels impact maternal weight change across preg-
nancy more broadly is largely uncertain. Yet, possible 
mechanisms to explain the relationship between VDD 
and excess weight have included evidence that vitamin 
D modulates adipogenesis and apoptosis, thereby regu-
lating the growth of adipose tissue [60, 69, 71] and that 
vitamin D may play a role in decreasing inflammation in 
adipose tissue [60, 71].

Overall, 9.6% of women in this study were diagnosed 
with GDM during pregnancy. Further exploring the rela-
tionship between VDD with glucose intolerance, insu-
lin resistance and the role of parathyroid hormone as 
an underlying factor in these associations is important 
to better understand the impact of vitamin D on devel-
opment of GDM. As prevalence of GDM is increasing 
globally [72] and previous research has highlighted a key 
potential interaction between maternal vitamin D and 
important glucose parameters during pregnancy [73–75], 
there is a need for further research in this area.

Maternal vitamin D levels increased significantly 
across pregnancy from early to mid pregnancy and 
late pregnancy in our sample of women, independent 
of season and other relevant confounders. Likewise, 
of the limited available studies that have assessed vita-
min D across three trimesters, in pregnant cohorts with 
similar rates of supplement usage to the women in our 
study, highest 25(OH)D levels have been reported in 
the third trimester [49, 76] even after adjustment for 
seasonal variation [49]. In a recent longitudinal study 
of Canadian pregnant women (n = 79), vitamin D lev-
els increased significantly from 68 nmol/L to 87 nmol/L 
and 88 nmol/L across the first, second and third trimes-
ters respectively [49]. In an earlier longitudinal study of 
Swedish women (n = 184), plasma 25(OH)D levels also 
increased with pregnancy gestation, from 55 nmol/L to 
60 nmol/L and 65 nmol/L [76]. As well as use of vita-
min D supplementation in pregnancy, physiological 
adaptations which occur during pregnancy may in part 
have influenced the observed upward trend of 25(OH)
D in our study. For instance, it has been previously 
reported that the rise in estrogen which occurs natu-
rally with pregnancy progression promotes an increase 
in vitamin D binding protein as well as active forms of 

Table 4  Associations of maternal vitamin D across pregnancy 
with maternal gestational weight gain and BMI

ªSerum 25(OD)D
b vitamin D deficiency defined as defined as serum 25(OH)D < 50 nmol/L; GWG 
and BMI (continuous outcomes); GWG (gestational weight gain); BMI (body mass 
index)
c Models adjusted for maternal age, region of birth, early pregnancy BMI and 
education

Vitamin D measureª Weight outcome β (95% CI) P-value

Early pregnancy
  Crude GWG (kg) -0.01 (-0.04, 0.02) 0.497

late BMI (kg/m2) -0.02 (-0.05, 0.01) 0.201

  Adjustedc GWG (kg) -0.02 (-0.05, 0.02) 0.333

late BMI (kg/m2) -0.01 (-0.03, 0.00) 0.058

Mid pregnancy
  Crude GWG (kg) 0.01 (-0.01, 0.03) 0.415

late BMI (kg/m2) -0.03 (-0.06, -0.01) 0.003
  Adjustedc GWG (kg) 0.00 (-0.02, 0.02) 0.791

late BMI (kg/m2) -0.01 (-0.01, 0.00) 0.271

Late pregnancy
  Crude GWG (kg) 0.00 (-0.02, 0.03) 0.676

late BMI (kg/m2) -0.04 (-0.06, -0.01) 0.002
  Adjustedc GWG (kg) 0.00 (-0.02, 0.02) 0.827

late BMI (kg/m2) 0.00 (-0.02, 0.01) 0.504

Vitamin D deficiencyb Weight outcome β (95% CI) P-value
Early pregnancy
  Crude GWG (kg) -1.64 (-4.54, 1.25) 0.263

late BMI (kg/m2) 0.11 (-2.79, 3.02) 0.938

  Adjustedc GWG (kg) -1.32 (-4.22, 1.59) 0.371

late BMI (kg/m2) -0.48 (-1.72, 0.75) 0.441

Mid pregnancy
  Crude GWG (kg) -3.13 (-5.62, -0.65) 0.014

late BMI (kg/m2) 1.39 (-1.28, 4.06) 0.307

  Adjustedc GWG (kg) -2.70 (-5.23, -0.17) 0.037
late BMI (kg/m2) -0.89 (-2.01, 0.23) 0.117

Late pregnancy
  Crude GWG (kg) -1.34 (-3.98, 1.31) 0.320

late BMI (kg/m2) 2.45 (-0.39, 5.29) 0.090

  Adjustedc GWG (kg) -0.86 (-3.54, 1.81) 0.525

late BMI (kg/m2) -0.26 (-1.45, 0.94) 0.671
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vitamin D, and subsequently a rise in maternal circulat-
ing 25(OH)D, irrespective of VD supplement use [49]. 
This highlights the importance of understanding and 
considering the physiological adaptations which occur 
during pregnancy, when assessing vitamin D status and 
nutritional markers more broadly across pregnancy and 
interpreting outcomes.

Moreover, mean plasma 25(OH)D levels across early, 
mid and late pregnancy in our sample were well above 
the cut point for VDD (< 50 nmol/L), with rates of VDD 
at each timepoint < 7%. These findings can most likely be 
attributed to almost all women (98%) reportedly taking 
a vitamin D-containing supplement during their preg-
nancy, in the form of a vitamin D specific supplement 
(7%), a pregnancy multivitamin (37%) or both forms of 
supplement (56%). The high use of vitamin D-containing 
supplements in our women may be attributed to the fact 
that 77% were tertiary educated, and education has been 
previously associated with high use of multivitamins and 
vitamin D supplements in pregnancy in high income 
countries [77]. Elsewhere, recent data has shown that the 
use of multivitamins and specifically vitamin D -contain-
ing supplements across pregnant populations globally 
varies widely [78–80], although small sample sizes and 
variations in measurement of adherence make it difficult 
to compare data across studies. Whether women were 
actively choosing to take vitamin D or if this was part 
of clinical management of a pre-existing deficiency was 
not able to be assessed in this study. Moreover, women 
may have been unaware they were taking a vitamin 
D-containing supplement. For example in a survey of 175 
pregnant women attending an antenatal clinic in Dublin, 
39% of women were taking a pregnancy supplement that 
knowingly contained vitamin D whilst 56% of women 
were taking vitamin D as part of their multivitamin sup-
plement but were unaware they were doing so [81].

Whether women in our study taking a vitamin D-con-
taining supplement were recommended to do so by 
antenatal clinicians after screening women considered 
‘high risk’ for deficiency is also an important considera-
tion. Australian recommendations specify that pregnant 
women considered ‘high risk’ of suboptimal vitamin D 
(including women born across regions classified as ‘high 
risk’ e.g. Asia and Africa) be tested, with supplementa-
tion advised for deficient women only [82]. In our study, 
over one third (35%) of women were classified as ‘high 
risk’ since they were born in Asia / South Asia, the Middle 
East/ Africa / South America, and indeed almost all (99%) 
were taking vitamin D-containing supplements. Screening 
and management of VDD for women from diverse cul-
tural backgrounds is important in the context of ensuring 
women vulnerable to nutrient deficiencies are adequately 
supported to achieve best pregnancy outcomes.

Whilst the assessment of offspring weight beyond 
birth was outside the scope of this study, exploring asso-
ciations of maternal vitamin D status longitudinally with 
weight trajectory from birth to early childhood could 
be an important additional step in further understand-
ing the role of vitamin D in shaping long term offspring 
weight. Findings from the Southampton Women’s Survey 
for example, showed that low maternal vitamin D status 
at 34 weeks gestation (≤ 50 nmol/L) was associated with 
lower fat mass at birth [83, 84] but with greater fat mass 
when children were aged 6 years [84]. Despite studies of 
such design currently lacking, future work in this area 
would be useful in the overall context of understanding 
how maternal vitamin D status during pregnancy con-
tributes to future offspring obesity.

There are a number of strengths and limitations of this 
study. A key strength of this study is that we assessed 
maternal 25 (OH)D at multiple timepoints across preg-
nancy and adjusted for important confounders which are 
known to influence vitamin D levels. We used the gold 
standard LC/MS/MS method to quantify plasma 25(OH)
D [76]. We did not assess physical activity in this study 
and could not account for this a potential confounder. 
This is a limitation as physical inactivity is known to be 
associated with VDD [85]. As this was a retrospective 
analyses with a relatively small sample size, it was likely 
underpowered to detect neonatal growth parameters. 
Specifically, the low number of LGA babies was also a 
limitation, yet as this study was secondary analyses of the 
CPO study, the initial study question was not designed to 
explicitly assess a high number of LGA birth outcomes. 
This study recruited mostly tertiary educated women 
(77%) with low-risk pregnancies, with the vast majority 
having adequate vitamin D levels, and thus the findings 
cannot be generalised to all cohorts of pregnant women. 
In particular, we did not recruit non-English speaking 
women, who may include immigrant populations and 
those specifically at risk of VDD. Finally, since we did not 
record dosage of vitamin D supplements taken by the 
women in our study, we cannot make any conclusions 
about whether a given dosage of vitamin D was associ-
ated with a given change in serum 25(OH)D during preg-
nancy. Compliance to supplementation is an important 
consideration for future work, particularly for women 
who are VDD at the beginning of pregnancy.

Conclusions
In this cohort of women with low-risk pregnancies in 
Melbourne, Australia, plasma 25(OH)D levels across 
pregnancy or maternal VDD were not associated with 
neonatal birthweight, macrosomia and LGA. Fur-
thermore, the prevalence of VDD deficiency was low 
(< 7%) in this sample who were predominantly highly 
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educated women with the vast majority (98%) taking 
some form of vitamin D supplement during pregnancy. 
Whist there was some observed interaction between 
vitamin D levels and maternal weight status, further 
work is needed to better understand the role of vita-
min D in maternal GWG. As in utero environments 
can be highly influential in determining short and long-
term offspring obesity, future research among large 
and diverse pregnant samples is warranted to further 
understand the role of maternal vitamin D in develop-
ment of obesity.
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